Skip to main content

Full text of "Tektronix Manual: DM5010"

See other formats


l^roniK 

COMMITTED TO EXCELLENCE 



Ail references to the SA 501 in this manual now apply 
to the 067-1090-00 Signature Analyzer. 



PLEASE CHECK FOR CHANGE INFORMATION 
AT THE REAR OF THIS MANUAL. 



DM 5010 

PROGRAMMABLE 

DIGITAL 

MULTIMETER 

Francais Deutsch 



INSTRUCTION MANUAL 



Tektronix, Inc. 




P.O. Box 500 




Beaverton, Oregon 97077 


Serial Number 


070-2994-01 


First Printing SEP 1981 


Product Group 76 


Revised JUL 1986 




Copyright 1981 Tektronix, Inc. All rights reserved. 
Contents of this publication may not be reproduced in any 
form without the written permission of Tektronix, Inc. 



Products of Tektronix, Inc. and its subsidiaries are covered 
by U.S. and foreign patents and/or pending patents. 




are 



TEKTRONIX, TEK, SCOPE-MOBILE, and 
registered trademarks of Tektronix, Inc. TELEQUIPMENT 
is a registered trademark of Tektronix U.K. Limited. 



Printed in U.S. A. Specification and price change privileges 
are reserved. 



Copyright C 1986 durch Tektronix, Inc. Alle Rechte vorbe- 
halten Der Innaii dieser Publikation darf ohne Genehmigung 
von Tektronix, Inc nicht weitergegeben werden 

Produkte von Tektronix, Inc und seinen Tochtergesellschatten 
Sind durch US- und Auslandspatente und/oder schwebende 
Patente abgedeckt, 

TEKTRONIX, TEK. SCOPE -MOBILE und ^ smd geschutzte 
Warenzeichen von Tektronix, Inc 

Gedruckt in U S A Speziftkations- und PreisSnderungen 
bleiben vorbehalten 



Copyright c. 1986 TEKTRONIX INC, Tous droits reserves. 
Le contenu de ce manuel ne peut etre reproduit sous quelque tor- 
me que ce soil sans I'accord de Tektronix Inc. 

Tous les produits TEKTRONIX sont bfevet^s US et E tranger et 
les logotypes TEKTRONIX. TEK SCOPE MOBILE, sont 

deposes 

Imprinne aux USA TEKTRONI X se reserve le droit de moditier 
caractenstiques et pnx dans le cadre de developpements techno- 
logiques- 



INSTRUMENT SERIAL NUMBERS 



Each instrument has a serial number on a panel insert, tag, 
or stamped on the chassis. The first number or letter 
designates the country of manufacture. The last five digits 
of the serial number are assigned sequentially and are 
unique to each instrument. Those manufactured in the 
United States have six unique digits. The country of 
manufacture is identified as follows: 

BOOOOOO Tektronix, Inc., Beaverton, Oregon, USA 

100000 Tektronix Guernsey, Ltd,, Channel Islands 

200000 Tektronix United Kingdom, Ltd., London 

300000 Sony/Tektronix, Japan 

700000 Tektronix Holland, NV. Heerenveen, 

The Netherlands 




DM 5010 



TABLE OF CONTENTS 



Page 



LIST OF ILLUSTRATIONS iii 

LIST OF TABLES iv 

OPERATORS SAFETY SUMMARY v 

SERVICE SAFETY SUMMARY vii 

Section 1 SPECIFICATION 

Introduction 1-1 

Standard Accessories 1-1 

IEEE 488 (GPIB) Functions 1-1 

Performance Conditions 1-1 

Section 2 OPERATING INSTRUCTIONS 

Introduction 2-1 



Page 



Mesures de tensions alternatives... 2-9 

Vitesses de conversion 2-9 

Declenchement 2-9 

Calculs 2-1 0 

Modification des valeurs des 

constantes 2-1 0 

Tableau 2.4 - Fonctions calcul et 

constantes associees 2-1 0 

Examples de calculs 2-1 1 

Instructions de reemballage 2-1 2 



Abschnitt 2 BEDIENUNGSANLEITUNG 



Preparation For Use 2-1 

Installation and Removal 2-1 

Front Panel Controls and Connectors . 2-2 

General Information 2-2 

Display Window 2-2 

Controls and Connectors 2-4 

Operators Familiarization 2-6 

Power On Seif Test 2-6 

General Operating Information 2-7 

Input Connections 2-7 

Rear interface Measurements 2-7 

Dc Voltage Measurements 2-9 

Resistance Measurements 2-9 

Measuring Diodes 2-9 

Ac Voltage Measurments 2-9 

Conversion Rates 2-9 

Triggering 2-9 

Calculations 2-10 

Changing Constant Values 2-10 

Calculation Examples 2-11 

Repackaging Information 2-12 

Chapitre 2 INSTRUCTIONS D’UTILISATION 

Introduction 2-1 

Preparation 2-1 

Installation et retrait de 

I’appareil 2-1 

Commandes et connecteurs de la 

face avant 2-2 

Fenetre d'affichage 2-2 

Commandes et connecteurs 2-4 

Tableau 2-2 - Codes d’erreur 

affiches en face avant 2-7 

Instructions generales 

d’utilisation 2-7 

Connexions d’entree 2-7 

Mesures sur I’interface arriere 2-8 

Mesures de tensions continues 2-9 

Mesures de resistances , 2-9 

Tableau 2.3 - Tensions de source 
(fonction ohms) : 2-9 



Section 3 PROGRAMMING 

Introduction 3-1 

Talk Only Mode 3-1 

Commands 3-3 

Functional Command List 3-3 

Detailed Command List 3-5 

Messages and Communication 

Protocol 3-21 

Command Separator 3-21 

Message Terminataor 3-21 

Formatting a Message 3-21 

Number Formats 3-21 

Message Protocol 3-22 

Multiple Messages 3-22 

Instrument Response to IEEE 488 

Interface Messages 3-22 

Remote-Local Operation 3-23 

Status and Error Reporting 3-24 

Sending Interface Commands 3-26 

Power On (Initial) Conditions 3-26 

Example Programs 3-28 

Programming Aids 3-29 

Handling Service Requests 3-29 

Front Panel Lockout 3-29 

Using INIT 3-29 

Invalidating a Pending Reading 3-29 

Allowing Setting Timel 3-30 

Triggering Measurements 3-30 

Determining Reading Availability 3-30 

Sending Readings to a Listener 3-30 

Chapitre 3 PROGRAMMATION 

Introduction 3-1 

Mode Emetteur-seulement 

(Talk only) 3-1 

Commandes 3-3 

Liste de commandes fonctionnelles ... 3-3 

Commandes de I’instrument 3-3 

Commandes d'entree/sortie 3-4 



REV JUL 1986 




DM 5010 



TABLE OF CONTENTS (cont) 



Commandes du systeme 3-4 

Commandes d’etat 3-4 

Liste de commandes detaillees 3-5 

Messages et protocoie de 

communication 3-21 

Delimiteur de commande 3-21 

Fin de message 3-21 

Formattage d'un message 3-21 

Formatdes arguments numeriques 3-21 

Protocole des messages 3-22 

Messages multiples 3-22 

Reponse de I’instrument aux 
messages de I'interface IEEE-488 .. 3-22 

Indications d’etats et d’erreurs 3-24 

Tableau 3.1 - Indications d’erreurs 

et d'etats 3-25 

Tableau 3.2 - Codes d’erreur 

visualises en face avant 3-25 

Transmission de messages de 

controle de I'interface 3-26 

Reglages effectues a la mise en 

service 3-26 

Tableau 3.3 - Reglages existants 

a la mise sous tension 3-26 

Table de conversion ASCII et 

IEEE 488 (GPIB) 3-27 

Aide a la programmation du DM 501 0 ,3-29 
Traitement des demandes 

de service 3-29 

Blocage de la face avant 3-29 

Utilisation de la commande INIT 3-29 

Invalidation d’une mesure 

en attente 3-29 

Temps d’etablissement 3-30 

Mesures par declenchement 3-30 

Disponibilite d'une mesure 3-30 

Transmission de mesures a un 
recepteur 3-30 

Abschnitt 3 PnOGRAMMIERUNG Seite 

Einfuhrung 3-1 

Betriebsart Talk Only 3-1 

Befehle 3-3 

Liste derfunktioneilen Befehle 3-3 

Detaillierte Befehlsliste 3-3 

Mitteilungen und 

Kommunikationsprotokoll 3-21 

Befehls-Trennzeichen 3-21 

Mitteilungs-Endezeichen 3-21 

Formatierung einer Mitteilung 3-21 

Zahlen-Formate 3-21 

Mitteilungs-Protokoll 3-22 

Mehrfach-Mitteilungen 3-22 

Gerdtereaktionen auf IEEE 488 

Interface-Mitteilungen 3-22 

Remote-Local Operation 3-23 

Status- und Fehlerbericht 3-24 



Das Senden von Interface 

Steuermitteilungen 3-26 

Einschalt- (Anfangs-) Bedingungen. 3-26 

Programmbeispiele 3-28 

Programmierungshilfen 3-29 

Behandlung von Service-Abfragen ...3-30 

interrupt Handler 3-30 

Frontplatten-Abschaltung 3-30 

Die Verwendung von INIT 3-30 

Loschen einer Darstellung 3-30 

Allowing Settling Time 3-30 

Getriggerte Messungen 3-30 

Verfugbarkeit von Ablesungen 3-30 

Senden an einen Horer (Listener) 3-30 



WARNING 



THE FOLLOWING SERVICING INSTRUCTIONS 
ARE FOR USE BY QUALIFIED PERSONNEL ONLY. 
TO AVOID PERSONAL INJURY, DO NOT PERFORM 
ANY SERVICING INSTRUCTIONS UNLESS YOU 
ARE QUALIFIED TO DO SO. 



Section 4 THEORY OF OPERATION 

Block Diagram Description 4-1 

Detailed Circuit Description 4-4 

Attenuator 4-5 

DCV signal conditioner 4-6 

Charge Balancing converter 4-7 

Auto Zero 4-8 

Isolated Regulators 4-12 

Function and Range Control 4-13 

Ohms Converter 4-14 

RMS Converter 4-14 

Grounded Power Supplies 4-14 

Isolated Power Supplies 4-16 

Control Logic 4-16 

Timing Logic 4-18 

Data 4-20 

Microprocessor 4-21 

GPIB 4-25 

Section 5 PERFORMANCE CHECK 

Introduction 5-1 

Test Equipment Required 5-1 

Preparation 5-2 



Performance Check Summary Sheet ..5-13 



ii 



REV JUL 1986 




TABLE OF CONTENTS (cont) 



Section 6 ADJUSTMENT PROCEDURE 

Introduction 6-1 

Services Available 6-1 

Test Equipment Required 6-1 

Preparation 6-3 

Section 7 MAINTENANCE 

Preparation For Use 7-1 

Setting the GPIB Address Switches 7-1 
Message Terminator Switch Setting 7-2 

Talk Only Switch Setting 7-2 

Using the Rear Interface 

Connections 7-2 

General Maintenance 7-2 

Rear Circuit Board Removal 7-2 

Front Panel Board Removal 7-2 

Input Switch Assembly 7-4 

Adjusting Cl 301 and Cl 404 7-4 

Battery Replacement 7-4 

Troubleshooting Aids 7-5 

Calibration Fixtures 7-5 

Troubleshooting Equipment 7-5 

Static-Sensitive Components 7-5 

Obtaining Replacement Parts 7-6 

Soldering Techniques 7-6 

Semiconductors 7-7 

Section 8 OPTIONS 

Section 9 REPLACEABLE ELECTRICAL PARTS 

Section 10 DIAGRAMS AND CIRCUIT BOARD 
ILLUSTRATIONS 

Section 1 1 REPLACEABLE MECHANICAL PARTS 

Accessories 



Change Information 




DM 5010 



LIST OF ILLUSTRATIONS 



Fig. 

No. Page 

DM 5010 Programmable Digital Multimeter 

2-1 Plug-in installation and removal 2-1 

2-2 DM 501 0 front panel range indication 2-2 

2-3 DM 5010 front panel controls and 

connectors 2-3 

2-4 Examples of front panel input connection 

methods 2-8 

2-5 Setup for calculation example 1 2-11 

2- 6 Setup for calculation example 2 2-12 

3- 1 Instrument commands and relationship to 

front panel controls 3-2 

3-2 Definition of STB bits 3-24 

3- 3 ASCII and IEEE 488 (GPIB) Code Chart . . 3-27 

4- 1 Attenuator 4-5 

4-2 Simplified overvoltage protection and 

function switching 4-6 

4-3 Simplified DCV signal conditioner buffer 

amplifier 4-7 

4-4 Simplified DCV signal conditioner 

bootstrap buffer 4-8 

4-5 Simplified charge-balancing converter 4-9 

4-6 U/D control for the measurement, override, 

and auto-zero periods 4-10 

4-7 Charge-balancing converter configuration 

during the auto-zero period 4-11 

4-8 Override and auto-zero timing for 

measurement period ending 4-12 

4-9 Simplified function and range control circuitry4-1 3 

4-10 Measurement switching during an Ohms 

conversion 4-15 

4-1 1 Transformer drive timing 4-16 

4-1 2 Timing of the divide by eighteen counter . . 4-18 

4-1 3 Influence of power line frequency on A/D 

conversion 4-20 

4-14 GPIB three wire handshake state diagram . 4-26 

4-15 GPIB handshake flowchart 4-27 



Fig- 

No, Page 

5-1 Common mode check setup 5-7 

5-2 Dc normal mode rejection setup 5-8 

5- 3 Ohms accuracy setup 5-10 

6- 1 Ohms adjustment setup 6-5 

7- 1 GPIB address and message terminator 

switches 7-1 

7-2 Back plate and retainer bar removal 7-2 

7-3 Latch disassembly 7-3 

7-4 Front panel removal 7-3 

7-5 Setup for Cl 301 and C1404 adjustment . . 7-4 

7-6 Location of C1301 and Cl 404 7-5 

7-7 I M/Z, I U/D, ICOMP and the zero-reference 

voltage waveforms after power on 7-16 

7-8 FET Gate timing diagram 7-16 

7-9 Over-voltage protection and function 

switching waveform 7-17 

7-10 DCV Signal Conditioner and Charge- 

Balancing Converter waveform 7-17 



NOTE 

The following illustrations are located in the diagrams 
foldout section at the rear of this manual. 

10-1 Jumper and GPIB address switch locations 
10-2 Location of DM 5010 adjustments and test 
points 

10-2 ADC Board (A17) 

10-4 RMS Board (A16) 

10-5 Isolation Board (A15) 

10-6 CPU Board (A14) 

10-7 Main Interconnect Board (A13) 

10-8 Front Panel Drive Board (A12) 

10- 9 Front Panel Board (All) 

11- 1 Exploded View 



iv 



REV JUL 1986 




DM 5010 



LIST OF TABLES 



Table 

No, Page 

1-1 IEEE 488 Interface Function Subsets 1-1 

1-1 Electrical Characteristics 1-2 

1-3 Miscellaneous 1-8 

1-4 Environmental 1-9 

1- 5 Physical Characteristics 1-10 

2- 1 Power On Settings (Front Panel Functions 

Only) 2-6 

2-2 Front Panel Error Codes 2-7 

2-3 Source Voltages (Ohms Function) 2-9 

2- 4 Calculations and Constants 2-10 

3- 1 Error Query and Status Information 3-25 

3-2 Front Panel Error Codes 3-25 

3- 3 DM 5010 Power On Settings 3-26 

4- 1 DCV Signal Conditioner Gain Settings 4-6 

4-2 Ohms converter Parameters 4-14 

4-3 RMS Converter Parameters 4-15 

4-4 Address Decoding 4-22 

4- 5 Address Decode Memory Map 4-23 

5- 1 Test Equipment List 5-1 

5-2 Dc Voltage Accuracy 5-3 

5-3 Ac Voltage Accuracy 5-4 

5 ^ Ac Voltage Accuracy 5-6 

5-5 Dc Normal Mode Rejection 5-9 

5-6 Ohms Offset Accuracy 5-9 

5- 7 Ohms Gain Accuracy 5-11 

6- 1 Test Equipment List 6-1 

6-2 Dev Offset Calibration Factors 6-3 

6-3 Dev Gain Calibration Factors 6-4 

6-4 Ohms Offset Calibration Factors 6-4 

6-5 Ohms Gain Calibration Factors 6-6 

6- 6 Aev Gain Calibration Factors 6-7 

7- 1 IEEE 488 (GPIB) Primary Addresses 7-1 

7-2 Relative Susceptibility to Static Discharge . 7-6 

7-3 Typical Trouble Symptoms 7-9 

7-4 No Load Power Supply Voltages 7-12 

7-5 Power Supply and Reference Voltages ... 7-13 



Table 

No. Page 

7-6 No Load Power Supply Voltages 7-13 

7-7 Error Code 311 Faults 7-14 

7-8 Attenuator Faults 7-15 

7-9 DCV Signal Conditioner Faults 7-15 

7-10 Charge-Balancing Converter Faults 7-15 

7-11 RMS Converter Faults 7-17 

7-12 RMS Converter Faults 7-17 

7-13 Power Supply Reference Voltages 7-18 

7-14 Ohms Converter Faults 7-18 

7-15 Signature Versions 7-19 



NOTE 

The following tables are located in the diagrams 

foldout section at the rear of this manual. 

10-1 Component Reference Chart 

10-2 Input and Attenuation Switching 

10-3 Component Reference Chart 

1 0-4 Component Reference Chart 

10-5 Input and Attenuation Switching 

1 0-6 Component Reference Chart 

1 0-7 Component Reference Chart 

1 0-8 Component Reference Chart 

10-9 Component Reference Chart 

10-10 Component Reference Chart 

1 0-1 1 Component Reference Chart 

10-12 Component Reference Chart 

10-13 Rear Interface Connector Asignments 

10-14 Rear Interface Connector Asignments 

1 0-1 5 Rear Interface Connector Asignments 

1 0-1 6 Component Reference Chart 

10-17 Component Reference Chart 



REV JUL 1986 



V 




DM 5010 



OPERATORS SAFETY SUMMARY 



The general safety information in this part of the sum- 
mary is for both operating and servicing personnel. Specific 
warnings and cautions will be found throughout the manual 
where they apply, but may not appear in this summary. 



TERMS 



Power Source 

This product is intended to operate from a power module 
connected to a power source that will not apply more than 
250 volts rms between the supply conductors or between 
either supply conductor and ground. A protective ground 
connection by way of the grounding conductor in the power 
cord is essential for safe operation. 



in This Manual 

CAUTION statements identify conditions or practices that 
could result in damage to the equipment or other property. 

WARNING statements identify conditions or practices that 
could result in personal injury or loss of life. 



As Marked on Equipment 

CAUTION indicates a personal injury hazard not immediate- 
ly accessible as one reads the marking, or a hazard to prop- 
erty including the equipment itself. 

DANGER indicates a personal injury hazard immediately ac- 
cessible as one reads the marking. 



SYMBOLS 



Grounding the Product 

This product is grounded through the grounding conductor 
of the power module power cord. To avoid electrical shock, 
plug the power cord into a properly wired receptacle before 
connecting to the product input or output terminals. A pro- 
tective ground connection by way of the grounding conduc- 
tor in the power module power cord is essential for safe 
operation. 



Danger Arising From Loss of Ground 

Upon loss of the protective-ground connection, all accessi- 
ble conductive parts (including knobs and controls that may 
appear to be insulating) can render an electric shock. 



Use the Proper Fuse 

To avoid fire hazard, use only the fuse of correct type, volt- 
age rating and current rating as specified in the parts list for 
your product. 



In This Manuai 



Refer fuse replacement to qualified service personnel. 




This symbol indicates where applicable caution- 
ary or other information is to be found. 



As Marked on Equipment 




DANGER — High voltage. 
Protective ground (earth) terminal. 
ATTENTION — refer to manual. 



Do Not Operate in Expiosive Atmospheres 

To avoid explosion, do not operate this product in an explo- 
sive atmosphere unless it has been specifically certified for 
such operation. 



Do Not Operate Without Covers 

To avoid personal injury, do not operate this product with- 
out covers or panels installed. Do not apply power to the 
plug-in via a plug-in extender. 



vi 



REV JUL 1986 




DM 5010 



SERVICE SAFETY SUMMARY 

FOR QUALIFIED SERVICE PERSONNEL ONLY 

Refer also to the preceding Operators Safety Summary 



Do Not Service Alone 

Do not perform internal service or adjustment of this prod- 
uct unless another person capable of rendering first aid and 
resuscitation is present. 



Use Care When Servicing With Power On 

Dangerous voltages may exist at several points in this prod- 
uct. To avoid personal injury, do not touch exposed connec- 
tions and components while power is on. 



Disconnect power before removing protective panels, sol- 
dering, or replacing components. 

Power Source 

This product is intended to operate in a power module con- 
nected to a power source that will not apply more than 250 
volts rms between the supply conductors or between either 
supply conductor and ground. A protective ground connec- 
tion by way of the grounding conductor in the power cord is 
essential for safe operation. 



@ 



vii 




DM 5010 



RECAPITULATIF DES CONSIGNES 

DESECURITE 



Termes utilises dans ce manuei 

Les paragraphes intitules ATTENTION identifient les cir- 
constances ou operations pouvant entramer la deterioration 
de I'appareil ou de tout autre equipement. 

Les paragraphes intitules AVERTISSEMENT indiquent les 
circonstances dangereuses pour I'utilisateur (danger de mort 
ou risque de blessure). 

Reperes graves sur i'appareil 

CAUTION (ATTENTION) : ce mot identifie les zones de ris- 
que de blessure non perceptibles immediatement ou un risque 
eventuel de deterioration de I'appareil. 

DANGER (DANGER) : ce mot indique les zones de risque 
imm6diat pouvant entramer blessures ou mort. 



Danger provoque par la coupure de connexion de 
masse 

En cas de coupure de la connexion de masse, tous les elements 
conducteurs accessibles (y compris boutons et commandes 
apparaissant isolants) peuvent provoquer un choc eiectrique. 



Utiiiser le cordon d'aiimentation approprie 

N'utiliser que le cordon d'alimentation et la prise recom- 
mandes pour votre appareil. Utiiiser un cordon d'alimen- 
tation en parfait etat. Seul, un personnel qualifie peut 
proceder a un changement de cordon et prises. 



Symboles graves sur i'equipement 




DANGER - Haute tension 

Borne de masse de protection (terre) 

ATTENTION — se reporter au manuei 



Source d'alimentation 

L'appareil est conpu pour fonctionner h partir d'une source 
d'alimentation maximale de 250 V efficaces entre les conduc- 
teurs d'alimentation ou entre chaque conducteur d'alimenta- 
tion et la terre. Pour utiiiser I'appareil en toute securite, une 
connexion d la masse, r6allsee au moyen d'un conducteur 
prevu dans le cordon d'alimentation, est indispensable. 



Mise ^ la masse de I'appareil 

Une fois installe dans le chassis d'alimentation, I'appareil est 
reii6 h la masse d I'aide d'un conducteur du cordon d'alimen- 
tation. Pour eviter tout choc eiectrique, insurer la prise du 
cordon d'alimentation dans une prise de distribution corres- 
pondante avant de connecter I'entree ou les sorties de I'appa- 
reil. Pour utiiiser i'appareil en toute s^curit^, une connexion 
d la masse r^alis^e au moyen d'un conducteur pr^vu dans le 
cordon d'alimentation, est indispensable. 



Utiiiser le fusible approprie 

Pour eviter tout risque d'accident (incendie...) n'utiliser 
que le fusible recommande pour votre appareil. Le fusible 
de remplacement doit toujours correspondre au fusible 
remplace : meme type, meme tension et meme courant. 
Un remplacement de fusible ne doit etre effectue que par 
un personnel qualifie. 



Ne pas utiiiser I'appareil en atmosphere explosive 

Pour eviter toute explosion, ne pas utiiiser cet appareil dans 
une atmosphere de gaz explosifs. 



Ne pas d^monter les capots 

Pour 6viter toute blessure, ne pas utiiiser cet appareil sans 
capots ou panneaux, Ne pas alimenter le tiroir ^ travers 
un prolongateur. 



viii 



ADD JUL 1986 



DM S010 



CONSIGNES DE SECURITE 

UNIQUEMENT DESTINEES AU PERSONNEL DE 

MAINTENANCE 



Ne d^pannez pas seui 

Ces consignes s'adressent exclusivement ^ un personnel qua- 
Iifi6. It est ^element indispensable de se reporter aux consi- 
gnes de securite precedantes. Toute intervention interne ou 
r^glage doit s'effectuer en presence d'une autre personne ca- 
pable d'assurer les premiers secours en cas de danger. 

Agir avec precaution lorsque Tappareil est sous ten- 
sion 

Des potentiels dangereux existent en diff^rents points de 
I'appareil. Pour 6viter toute blessure, ne pas intervenir sur les 
connexions et les composants alors que I'appareil est sous 



tension. Debrancher I'alimentation avant le demontage des 
panneaux, soudure ou remplacement de composants. 



Source d' alimentation 

Get appareii est con?u pour fonctionner ^ partir d'une sour- 
ce d'alimentation qui n'appiique pas plus de 250 V efficaces 
entre les conducteurs d'alimentation ou entre un conduc- 
teur et la masse. Pour utiliser I'appareil en toute securite, 
une connexion S la masse realisee au moyen d'un conduc- 
teur prevu dans le cordon d'alimentation est indispensable. 



ADD JUL 1986 



ix 




DM 5010 



SICHERHEITSANGABEN FUR DEN ANWENDER 



Die allgemeinen Sicherheitsinformationen in diesem Teii 
der Angaben dienen dem Anwender- und Serviceperso- 
nai. Spezielle Warnungen und Hinweise sind uberall im 
Handbuch zu finden, mussen jedoch in diesen Angaben 
nicht erscheinen. 



BEGRIFFE 

in diesem Handbuch 

VORSICHTSHINWEISE erlautern Bedingungen, die zur 
ZerstPrung des GerStes Oder anderer Gegenstande fuh- 
ren kpnnen. 

WARNUNGSHINWEISE erlautern Bedingungen, die zu 
PersonenschSden fuhren kPnnen Oder lebensgefahr- 
lich sind. 

Markierungen auf dem Gerat 

CAUTION - VORSICHT weist darauf hin, daS durch zufaili- 
ges Beruhren an einer nicht unmittelbar zugSngiichen 
Stelle Personenschaden entstehen kann, Oder Schaden 
am Gerat selbst. 

DANGER ‘ GEFAHR weist darauf hin, daS durch zufailiges 
Beruhren an einer zuganglichen Stelle Personenscha- 
den entstehen kann. 



dung von elektrischen Schiagen vor der Beschaltung der 
Ein-undAusgangeistderNetzsteckerineinekorrekt ver- 
drahtete Steckdose einzustecken. Verwenden Sie den 
Schutzleiter nicht als einzige Verbindung zwischen zwei 
Oder mehreren Geraten. Zur Vermeidung von elektri- 
schen Schiagen sind die Gerate untereinander mit sepa- 
raten Leitungen zu verbinden. 



Gefahr durch fehlende Schutzerde 

Durch eine fehlende Schutzerde kdnnen alle beruhr- 
baren, leitenden Teile (einschlieBlich Kndpfe und andere 
Bedienungselemente, die isoliert sind) einen elektri- 
schen Schlag bei der Beruhrung ausidsen. 



Verwendung eines richtigen Netzkabels 

Verwenden Sie nur Netzkabel, die fOr die Versorgungs- 
einheit geeignet sind und die sich in gutem Zustand be- 
finden. 

Fur detail! ierte Informationen uberKabel und Stacker be- 
ziehen Sie sich bitte auf Abbildungen innerhalb des 
Handbuches. 

Ein Austausch von Kabein und Steckern ist nur von ge- 
schultem Personal vorzunehmen. 



SYMBOLE 



In diesem Handbuch 




Dieses Symbol zeigt an, wo Vorsicht walten 
zu lassen ist, Oder wo Informationen zu 
finden sind. 



Verwendung einer richtigen Sicherung 

Zur Vermeidung von Brandschaden sind nur Sicherun- 
gen zu verwenden, die in den Teilelisten dieses Gerates 
aufgefuhrt sind und die in Spannungs- und Stromwert 
entsprechend sind. 



Markierungen auf dem Gerat 



/ 



GEFAHR - Hochspannung. 
Schutzerdungskontakt. 



A 



\ ACHTUNG - beziehen Sie sich auf das 
Handbuch. 



Netzspannungsversorgung 

Die Betriebsspannung fur dieses Gerat darf 250 Vef< nicht 
uberschreiten und ist an die Versorgungsleitungen bzw. 
an eine Versorgungsleitung und Masse anzulegen. Inner- 
halb des NetzanschluBkabels muB ein Schutzleiter vor- 
handen sein, der mit Geratemasse verbunden ist. 

MasseanschluB des Gerates 

Dieses Gerat wird uber den Schutzleiter der Versor- 
gungseinheit mit Erdpotential verbunden. Zur Vermei- 



Ersatz von Sicherungen ist nurvon geschuttem Personal 
vorzunehmen. 



Arbeiten Sie nicht in explosiver Umgebung 

Zur Vermeidung von Expfosionen ist die Inbetriebnahme 
dieses Gerates in explosiver Umgebung zu unterlassen, 
wenn das Gerat nicht dafur geeignet ist. 



Entfemen Sie keine Gehauseabdeckungen 

Zur Vermeidung von Personenschaden sind keine Ge- 
hauseteile zu entfemen. Auch ist das Gerat ohne Gehau- 
se nicht in Betrieb zu nehmen. 



Arbeiten Sie nicht ohne Gehauseabdeckung 

Zur Vermeidung von Personenschaden ist das Gerat 
nicht ohne Gehause in Betrieb zu nehmen. Der Einschub 
sollte nicht uber einen Verlangerungsadapter betrieben 
werden. 



X 



ADD JUL 1986 




DM 5010 



SICHERHEiTSANGABEN FUR DEN SERVICE 

NUR FUR GESCHULTES PERSONAL 

Beziehen Sie sich auch auf die vorangehenden Sicherheitsangaben fur den Anwender. 



Fuhren Sie keine Servicetatigkeiten alleine durch 

Nehmen Sie an dem Gerat keine Service- Oder Einstell- 
arbeiten vor, wenn nicht eine andere Person verfugbar ist, 
urn im Bedarfsfatl Erste Hilfe Oder Wiederbelebungsver- 
suche zu leisten. 



Lassen Sie besondere Vorsicht walten, wenn 
Sie an einem unter Spannung stehenden Gerat 
arbeiten 

An verschiedenen Stellen im Gerat liegen hohe und damit 
gefahrliche Spannungen. Zur Vermeidung von Personen- 



schaden sind solche Stellen und Bauteile nicht zu beruh- 
ren, wahrend Betriebsspannung anliegt. 

Vor dem Entfernen von Gehauseteilen, Ldten Oder Er- 
setzen von Bauteilen ist immer die Betriebsspannung zu 
entfernen. 

Netzspannungsversorgung 

Die Betriebsspannung fur dieses Gerat darf 250 V^ft nicht 
uberschreiten und ist an die Versorgungsleitungen bzw. 
an eine Versorgungsleitung und Masse anzulegen. Inner- 
haib des NetzanschluRkabels muB ein Schutzleiter vor- 
handen sein, der mit Geratemasse verbunden ist. 



ADD JUL 1986 



xi 




Section 1 — DM 5010 



SPECIFICATION 



Introduction 

The TEKTRONIX DM 501 0 Programmable Digital 
Multimeter is a TM 5000 plug-in designed to operate in two 
compartments of a TM 5000-Series power module. The 
DM 5010 measures and displays dc voltages, resistance, 
true rms ac voltages, and true rms ac -i- dc voltages. Range 
selection is automatic or manually incremented. A diode test 
function provides a 1 mA current output for diode testing. 
Measurements are made via front-panel connectors or a 
rear-interface connector. 

The DM 5010 also performs calculations for averaging, 
scale and offset, conversion to dBm or reference dB, and 
comparison. Measurements and calculation results are indi- 
cated on a signed 4 1/2 digit LED display. The decimal point 
is automatically positioned and leading zeros are blanked. 

The operation of the DM 501 0 is programmable via high- 
level commands (ASCII) sent over the IEEE 488 digital inter- 
face. The DM 501 0 can send information about front panel 
control settings, measurements, and calculations via the 
bus to a GPIB controller. Measurements and calculations 
are triggered by internal circuitry (at a normal or a fast rate), 
front-panel push button, GPIB command, or external signal 
via a rear-interface connector. 

This instrument is listed with Underwriters Laboratories, 
Inc. under U.L. Standard 1244 (Electrical and Electronic 
Measuring and Testing Equipment). 



Standard Accessories 

1 Instruction Manual 
1 Test Lead Set 
1 Reference Guide 



Refer to the Accessories page at the back of this manual 
for part numbers. 

IEEE 488 (GPIB) Functions 

The DM 501 0 can be remotely programmed via the digi- 
tal interface specified in IEEE Standard 488-1978, IEEE 
Standard Digital Interface for Programmable Instrumenta- 
tion. In this manual, the digital interface is called the General 
Purpose Interface Bus (GPIB). 



The IEEE standard identifies the interface function reper- 
toire of an instrument on the GPIB in terms of interface func- 
tion subsets. The subsets are defined in the standard. The 
subsets listed in Table 1-1 apply to the DM 5010. 



Table 1-1 

IEEE 488 INTERFACE FUNCTION SUBSETS 



Function 


Subset 


1 Capability 


Source 

Handshake 


SHI 


Complete. 


Acceptor 

Handshake 


AH1 


Complete. 


Basic Talker 


T5 


Responds to Serial Poll. 
Untalks if My Listen Ad- 
dress (MLA) is received. 
Talk Only capability. 


Basic Listener 


L4 


Unlistens if My Talk Ad- 
dress (MTA) is 
received. 


Service Request 


SRI 


Complete. 


Remote-Local 


RL1 


Complete. 


Parallel POII 


PPO 


Does not respond to 
Parallel Poll. 


Device Clear 


DC1 


Complete. 


Device Trigger 


DTI 


Complete. 


Controller 


CO 


No controller function. 



Performance Conditions 

The limits stated in the Performance Requirements col- 
umn of the following tables are valid with the following 
conditions: 



1. The instruments internal adjustments are performed 
at an ambient temperature between -i-21‘’C and 4-25°C. 



2. The instrument must be in a non-condensing environ- 
ment whose limits are described under Environmental. 



3. Allow thirty minutes warm-up time for operation to 
specified accuracy: sixty minutes after exposure to or stor- 
age in high-humidity (condensing) environment. 



Items listed in the Performance Requirements column of 
the Electrical Characteristics are verified by completing the 



REV JAN 1983 



1-1 



Specification — OM 5010 



Performance Check in this manual. Information given in the 
Supplemental Information and Description columns of the 
following tables is provided for user information only and 
should not be interpreted to be Performance Check require- 
ments. The information under Electrical Characteristics ap- 
plies to both front-panel and rear-interface measurements, 
unless otherwise noted. 



NOTE 

For measurements to specified accuracy, internal ad- 
justments should be performed after 1000 hours of 
operation or every six months if used infrequently. Re- 
fer to the Adjustment Procedure in this manual. 



Table 1-2 

ELECTRICAL CHARACTERISTICS 


Characteristics 


Performance Requirements 


Supplemental information 


DC VOLTS 


ACCURACY for the 200 mV, 2 V, 
20 V, 200 V. and 1 000 V ranges: 

Normal Conversion Rate 




(3 readings per second) 


-M8"C to -f2B“C 
200 mV range 


:t(0.015% of reading -i- 0.01% of full 
scale) 




2 V through 200 V ranges 


±(0.015% of reading + 0.005% of full 
scale) 




1 000 V range 


±(0,020% of reading -h 0.010% of full 
scale) 




0®C to -h 18“C, 
-j-28‘’C to -h50"C 

200 mV range 


±(0.06% of reading + 0.035% of full 
scale) 


For the typical accuracy for a given tem- 
perature in this range, add to the -i-18°C 
to ±28“C accuracy, ±(0.002% of read- 
ing -H 0.001% of full scale}/® C deviation 
from -|-28“C or -h18°C. 


2 V through 200 V ranges 


±(0.06% of reading + 0.03% of full 
scale) 


1 000 V range 


±(0.065% of reading + 0.035% of full 
scale) 


Fast Conversion Rate 




(26 readings per second) 


-l-18“C to +28“C 
200 mV to 200 V ranges 


±(0.05% of reading -h 0.05% of full 
scale) 




1 000 V range 


±(0.05% of reading -i- 0.1% of full scale) 




0"C to -|-18“C, +28"C to 
+ 50»C 

200 mV to 200 V ranges 


±(0.1% of reading -i- 0.1% of full scale) 




1 000 V range 


±(0.1% of reading + 0.15% of full scale) 















Specification — OM 5010 



Table 1*2 (cont) 



Characteristics 


Performance Requirements 


1 Supplemental Information 


DC VOLTS (cont) 


TRUE COMMON MODE 




Verified with 1 kfi unbalance in either 


REJECTION (CMR) 




terminal. 


Unguarded 


^130 dB at dc. 

>80 dB at 50 to 60 Hz 




Guarded 


>140 dB at dc 
>100 dB at 50 to 60 Hz 




NORMAL MODE REJECTION 
RATIO (NMRR) 






Normal Conversion Rate 


>40 dB at 50 or 60 Hz, ± 0.2 Hz 




Fast Conversion Rate 


>40 dB at 50 Hz, ±0.2 Hz 


(50/60 Hz jumper in 50 Hz position) 




>40 dB at 60 Hz, ±0.2 Hz 


(50/60 Hz jumper in 60 Hz position) 


MAXIMUM RESOLUTION 




10;*V 


INPUT RESISTANCE 






200 mV — 20 V ranges 




>10^ n 


200 V — 1000 V ranges 




10^0, ±0.25% 


STEP RESPONSE TIME (To rated 
accuracy) 






RUN Mode 






Normal Conversion Rate 




<0.53 sec 


Fast Conversion Rate 




<0.08 sec 


TRIGGERED Mode 






Norma) Conversion Rate 




<0.33 sec 


Fast Conversion Rate 




<0.06 sec 


MAXIMUM INPUT VOLTAGE 






Front Panel Connectors 






HIGH to LOW or HIGH to 
Chassis 




1000 V peak 


LOW to Chassis or GUARD 
to Chassis 




350 V peak 


GUARD to LOW 




200 V peak 


Rear Interface Connector 






Pin 28B (Hi) to pin 28A (Lo) 




60 V (dc plus pk ac) 



REV AUG 1984 



1-3 

































specification — DM 5010 



Table 1-2 (cont) 


Characteristics 


Performance Requirements 


Supplemental Information 


AC VOLTS— TRUE RMS 


ACCURACY for the 200 mV, 2 V, 
20 V, 200 V, and 700 V ranges: 
(sinewave AC) (Input signal 
between 5% and 1 00% of full scale 
except 700 V range 
(100 V<V^<700 V)). 


1 

1 

! 




Normal and Fast Conversion Rates 




(3 and 26 readings per second) 


ACV + DCV Function 
(DC only or DC component 
>10% of AC Component.) 






-I-18"C to +28“C 






200 mV Range 


±(.2% of reading + .55% of full scale) 




2 V. 20 V Ranges 


±(.2% of reading + .2% of full scale) 




200 V, 700 V Ranges 


±(.2% of reading + .5% of full scale) 




O'^C to +18“C 
+28°Cto -hSO^C 




For the typical accuracy for a given 
temperature in this range, add to the 
+ 18“C to +28®C accuracy the following 
tolerance, per degree deviation from 
+ 18"C or +28’’C. 


200 mV Range 


±(.45% of reading ■+■ 1.3% of full scale) 


±(.009% of reading + .025% of full 
scale)/® C 


2 V, 20 V Ranges 


±(.45% of reading + .4% of full scale) 


±(.009% of reading + .007% of full 
scale)/® C 


200 V, 700 V Ranges 


±(.45% of reading + .95% of full scale) 


±(.009% of reading + .015% of full 
scale)/ ®C 


ACV-f DCV Function 
(DC component <10% of 
AC Component.) 

1 0 Hz to 20 Hz (using LOW 
FREQ RESPONSE) 






+ 18“C to +28“C 






200 mV through 
200 V Ranges 


± (.8% of reading + .3% of full scale) 




700 V Range 


±(.8% of reading + .9% of full scale) 




0“Cto +18“C 
+ 28“C to +50“C 




For the typical accuracy for a given 
temperature in this range, add to the 
+ 18“C to +28®C accuracy the following 
; tolerance, per degree deviation from 
+ 18“C or +28°C. 


200 mV through 
200 V Ranges 


±(1 .25% of reading + .45% of full scale) 


± (0.02% of reading + 0.005% of full 
’ scale)/ “C 


700 V Range 


±(1.25% of reading + 1.25% of full 
scale) 


±(0.02% of reading + 0.015% of full 
scale)/ °C 



1-4 



REV AUG 1984 












specification — DM 5010 



Table 1*2 (cont) 



Characteristics 


Performance Requirements 


Supplemental Information 




AC VOLTS— TRUE RMS (cont) 




ACV and ACV + DCV 
(DC Component <10% 
of AC Component) 

+ 18°C to +28®C 






200 mV through 
200 V ranges 






20 Hz to 100 Hz 


^(0.8% of reading + 0.2% of full scale) 




100 Hz to 20 kHz 


±(0.2% of reading -i- 0.2% of full scale) 




20 kHz to 100 kHz 


±(1.0% of reading -i- 0.5% of full scale) 


Subject to 1 0^ V • Hz maximum 


700 V range 


i 

1 




20 Hz to 100 Hz 


±0.8% of reading -t- 0.6% of full scale) 




100 Hz to 15 kHz 


±(0.2% of reading -i- 0.6% of full scale) i 




O'^C to +18'C 
+ 28“C to +50“C 




For the typical accuracy for a given 
temperature in this range, add to the 
4-18°C to -i-28°C accuracy the following 
tolerance, per degree deviation from 
+ 18“C or -h28'’C. 


200 mV through 
200 V ranges 






20 Hz to 100 Hz 


±(1.25% of reading -h 0.35% of full 
scale) 


± (0.02% of reading + 0.005% of full 
scale)/ ®C. 


100 Hz to 20 kHz 


±(0.65% of reading + 0.3% of full scale) 


±(0.2% of reading -i- 0.005% of full 
scale)/ ®C. 


20 kHz to 100 kHz 


±(1.45% of reading 4 - 0.65% of full 
scale) 


± (0.02% of reading -h 0.005% of full 
scale)/ “C. 


700 V range 
20 Hz to 100 Hz 


±(1.25% of reading + 0.95% of full 
scale) 


±(0.02% of reading + 0.015% of full 
scale)/ “C. 


100 Hz to 15 kHz 


±(0.65% of reading + 0.95% of full 
scale) 


± (0.02% of reading 4 - 0.01 5% of full 
scale)/ “C. 


MAXIMUM RESOLUTION 




10 mV 


STEP RESPONSE TIME (To rated 
accuracy) 




<1.2 sec, except for LOW FREQ 
RESPONSE 


INPUT IMPEDANCE 




2 MO, ±0.1% paralleled by <150 pF 


MAXIMUM INPUT VOLTAGE 

Front-Panel Connectors 

HIGH to LOW, or 
HIGH to Chassis 




1 kV peak (500 Vdc maximum in ACV 
mode) 


LOW to Chassis, or 
GUARD to Chassis 




350 V peak 



REV AUG 1984 



1-5 
























Specification — DM 5010 



Table 1-2 (cont) 



Characteristics 


Performance Requirements 


Supplemental Information 




AC VOLTS— TRUE RMS 




GUARD to LOW 




200 V peak 


Rear interface Connector 






Pin 28B (HI) to pin 28A (LO) 




60 V (dc plus pk ac) 


CREST FACTOR 




4 (subject to maximum peak input 
voltage) 


MAXIMUM VOLT -Hz PRODUCT 




10^ V*Hz 


TRUE COMMON MODE 
REJECTION (CMR) 




With 1 kl2 unbalance in either terminal 


Unguarded 




Typically >80 dB from dc to 60 Hz 


Guarded 




Typically >100 dB from dc to 60 Hz 



OHMS 



ACCURACY for the 200 fi. 2 K2, 
20 Kfi, 200 KQ, 2 Mfi, and 20 Mfl 
ranges: 

Normal Conversion Rate 




(1.6 readings per second) 


+ 18“C to +28“C 
200 12 range 


±(0.015% of reading -f 0.015% of full 
scale)® 




2 kfi to 200 kfi ranges 


±(0.015% of reading + 0.01% of full 
scale)” 




2 Mfl range 


±(0.10% of reading + 0.01% of full 
scale) 




20 M^2 range 


±(0.15% of reading + 0.005% of full 
scale) 




0°C to +18“C, 

+ 28°C to +50'C 




For the typical accuracy for a given 
temperature in this range, add to the 
+ 18"Cto -|-28®C accuracy the following 
tolerance, per degree deviation from 
+ 18“C or +28“C. 


200 Q range 


±(0.06% of reading -i- 0.06% of full 
scale)® 




2 kl2 to 200 kfi ranges 


±(0.06% of reading + 0.035% of full 
scale)” 


±(0.002% of reading -i- 0.001% of full 
scale)/ “C 


2 Mf2 range 


±(0.54% of reading + 0.035% of full 
scale) 


±(0.02% of reading + 0.001% of full 
scale)/ “C 


20 MQ range 


±(0.9% of reading + 0.01% of full scale) 


± (0.034% of reading + 0.0001 % of full 
scale)/ “C 



Using NULL 

Using NULL on 2k OHM range only. 

Using NULL on 200 OHM range only. 

When the NULL function is not used, add ±200 milliohms to ail readings. 



1-6 



REV AUG 1984 




























Specification — DM 5010 



Table 1 -2 (cont) 

Characteristics Performance Requirements Supplemental Information 



OHMS (cont) 



Fast Conversion Rate 




(7.1 readings per second) 


+ 18*Cto +28"C 

200 0 to 200 kfl ranges 


±(0.05% of reading + 0.05% of full 
scale) 




2 MQ range 


±(0.10% of reading + 0.05% of full 
scale) 




20 Mn range 


± (1 .0% of reading + 0.05% of full scale) 




0“C to +18"C, 

+28“C to -h50“C 

200 0 to 200 kfl ranges 


1 

±(0.1% of reading + 0.1% of full scale) ! 




2 MQ range 


±(0.55% of reading + 0.1% of full scale) 




20 MO range 


±(1 .6% of reading + 0.05% of full scale) 




STEP RESPONSE TIME 
(To rated accuracy) 




Fast 

Conversion 

Rate 


Normal 

Conversion 

Rate 


RUN Mode (all ranges) 
TRIGGERED Mode (all ranges) 




<0.33 sec 
<0.19 sec 


<1.24 sec 
<0.73 sec 


MAXIMUM INPUT VOLTAGE 

Front Panel Connectors 

HIGH to LOW, or HIGH 
to Chassis 




400 V peak, applied continuously 


LOW to Chassis, or GUARD 
to Chassis 




350 V peak 


GUARD to LOW 




200 V peak 


Rear Interface Connector 
Pin 28B (Hi) to pin 28A (Lo) 




60 V (dc plus pk ac) 


MAXIMUM RESOLUTION 


I 


10 MO 



a- Using NULL 

Using NULL on 2k OHM range only. 

Using NULL on 200 OHM range only. 

When the NULL function is not used, add ±200 miiliohms to all readings. 



REV AUG 1984 



1-7 























Specification — DM 5010 



Table 1-2 (cont) 

Characteristics \ Performance Requirements ^ Supplemental Information 

- ■ ■ - i ■■ ■ i ■ ■ ■ 



OHMS (cont) 


MAXIMUM OPEN CIRCUIT 
VOLTAGE 




<5 volts 


MEASURING FULL SCALE VOLTS 






200 fi through 2 Mfi ranges 




0.2 V max 


20 MQ range 




0.8 V max 


REAR INTERFACE OFFSET 






Ohms offset to rear interface in- 
put connector pins 


-0.5 Q to -0 


Subtract offset from measurements, or 
use NULL feature to eliminate offset for 
ohms measurements via the rear 
interface. 




DIODE TEST 




ACCURACY 




With a 604 n, ± 1 % resistor connected 
between the HIGH and LOW input con- 
nectors, the display should read between 
0.5484 Vdc and 0.6054 Vdc. 


MAXIMUM OPEN CIRCUIT VOLT- 
AGE 




<5 volts 





Table 1-3 
MISCELLANEOUS 


Characteristics 

1 


Description 


POWER CONSUMPTION 


20 VA or less 


RECOMMENDED ADJUSTMENT INTERVAL 


1 000 hours or 6 months 


WARM-UP TIME 


30 minutes (60 minutes after storage in high humidity environment) 


OVER-RANGE INDICATION 


For OHMS or DIODE TEST function, OC is displayed; for ACV, DCV, 
or ACV + DCV, the display flashes. 



1-8 



REV JAN 1983 





















Specification — DM 5010 



Table 1-4 
ENVIRONMENTAL* 



Characteristics 


Description 


TEMPERATURE 

Operating 

Non-operating 


Meets MIL-T-28800B, class 5. Class 5 non-operating 
0®C to -t-SO^C temperature exception due to internal keep-alive 

-20“Cto +65®C battery. 


HUMIDITY 


95% RH, 0“C to 30°C Exceeds MIL-T-28800B. class 5. 
75% RH. to 40“C 
45% RH, to 50-C 


ALTITUDE 

Operating 

Non-operating 


Exceeds MiL-T-288006, class 5. 

4.6 km (15,000 ft.) 

15 km (50,000 ft.) 


VIBRATION” 


0.38 mm (0.015”) peak Meets MIL-T-28800B, class 5, when installed in quali- 
to peak, 5 Hz to 55 Hz, fled power module.” 

75 minutes 


SHOCK” 


30 g s (1/2 sine) 11 ms Meets MIL-T-28800B, class 5, when installed in quali- 

duration, 3 shocks in tied power module.” 

each direction along 3 

major axes, 1 8 total 

shocks. 


BENCH HANDLING” 


12 drops from 45“, 4” Meets MIL-T-28800B, class 5, when installed in quali- 
or equilibrium, whichev- tied power module.” 
er occurs first. 


TRANSPORTATION” 


Qualified under National Safe Transit Association Preshipment Test Procedures 
1A-B-1 and 1A-B-2. 


EMC* 


Within limits of F.C.C. Regulations. Part 15, Sub-part J, Class A; VDE 0871 ; and 
MIL 461 A test RE01, RE02, CE01, CE03, RS01, RS03, CS01, and CS02. 


ELECTRICAL DISCHARGE 


20 kV maximum charge applied to instrument case. 



“With power module. 

‘^Requires retainer clip. 

*^Refer to TM 5000-Series power module specifications. 

*^Without power module. 

^System performance subject to exceptions of power module or other individual plug-ins. 













specification — DM 5010 



Table 1-5 

PHYSICAL CHARACTERISTICS 


Characteristics 


Description 


FINISH 


Plastic-aluminum laminate front panel. 


NET WEIGHT 


4.5 lbs (2.04 kg) 


ENCLOSURE TYPE AND STYLE 


MIL-T-28800B, type 3, style E package with power module. (Style F in rackmount 
power module.) 


NOMINAL OVERALL DIMENSIONS 




Height 


126.01 mm (4.96 in.) 


Width 


134.47 mm (5.29 in.) 


Length 


288.34 mm (11.35 in.) 



MO 



REV JAN 1983 













Section 2 — DM 5010 



OPERATING INSTRUCTIONS 



Introduction 

This section of the manual provides installation and re- 
moval instructions and describes the functions of the 
DM 501 0 front-panel controls and connectors. Operators 
familiarization information is also provided as an aid in un- 
derstanding how to operate the DM 5010 under local (man- 
ual) control only. The information in this section assumes 
the instrument is not connected to the GPIB via the power 
module. 

Complete information for programming the DM 5010 via 
the GPIB (General Purpose Interface Bus) is found in the 
Programming section of this manual. 



PREPARATION FOR USE 



Installation and Removal 




Upon receipt of the instrument, the DM 5010 should 
Pe powered up continuously for approximately 24 
hours to ensure that its internal keep-alive battery re- 
mains sufficiently charged. Failure to do so can result 
in faulty operation due to loss of calibration factors 
stored in memory. Calibration factors are restored to 
memory by performing the Adjustment Procedure In 
this manual. 



NOTE 

The DM5010 is designed to operate only in a 
TM 5000-Senes power module. Refer to the power 
module instruction manual before installing the 
DM5010. 



The DM 501 0 is calibrated and ready for use when re- 
ceived. Make certain that the line selector block on the pow- 
er module is positioned correctly. In addition, the DM 501 0 
contains an internal line frequency select jumper. For best 
rejection of line frequency related noise when the instrument 
is operating at the FAST CONVERSION RATE, this jumper 
position should match the line frequency supplied to the 
power module. The instrument is shipped with the jumper 



positioned for a 60 Hz line frequency. For jumper placement, 
refer qualified service personnel to the Maintenance section 
of this manual for additional information. 




To prevent damage to the DM 5010, turn off the pow- 
er module before installing or removing the instru- 
ment. Do not use excessive force to install or remove. 



Check to see that the plastic barriers on the 
interconnecting jacks of the selected power module com- 
partments match the cutouts in the DM 5010 rear-interface 
connectors. If they do not match, do not install the DM 5010 
until the reason is investigated. When the units are properly 
matched, align the DM 5010 chassis with the upper and 
lower guides of the selected compartments (see Fig. 2-1). 
Push the DM 501 0 chassis in and press firmly to seat the 
rear-interface connectors in the interconnecting jacks. Apply 
power to the DM 5010 by operating the power switch on the 
power module. 



To remove the DM 501 0 from the power module, pull out 
on the release latch (located in the lower left corner) until the 
interconnecting jacks disengage and the DM 501 0 slides 
out. 




Fig. 2-1. Plug-in installation and removal. 




Operating Instructions — DM 5010 



FRONT PANEL CONTROLS 
AND CONNECTORS 



General Information 

The seventeen front-panel push buttons listed below en- 
able their functions and illuminate when pressed. The push 
buttons in the left column are seif-cancelling; that is, only 
one push button is active {illuminated} at a time. The push 
buttons in the right column illuminate when activated, and 
remain illuminated and active until pressed again. 



DCV 
OHMS 
DIODE TEST 
ACV 

ACV-hDCV 



NULL 

LOW FREQ RESPONSE 

AUTO 

RUN 

TRIGGERED 

FAST 

AVERAGE 

X-B 

A 

dBm 

dBr 

COMPARE 
REAR INPUT 



The remaining twenty-three are non-illuminating push 
buttons that activate their associated functions. Refer to 
Fig. 2-2. 



Display Window 

The left side of the window displays measurements and 
calculation results using signed 4 1 /2 digit LEDs. Zeros lead- 
ing the decimal are suppressed. A flashing display indicates 
over-range when the voltage measurement functions are ac- 
tive; OC is displayed for OHMS and DIODE TEST. 



The center area of the window indicates the range multi- 
plier for the displayed reading. Illuminated LED associated 
with the words MILLl, KILO, and MEGA on the window indi- 
cate when the displayed measurement is in milli, kilo, or 
mega units. The decimal point is fixed for each function 
range. The multiplier LED and decimal point location indi- 
cate the range for both AUTO and manual (STEP) methods 
of range selection. See Fig. 2-2. 



The right area of the display window indicates the oper- 
ating state of the instrument, as follows: 

REMOTE and ADDRESSED illuminate only when the in- 
strument is operating under remote program control via 
the GPIB. 

ERROR illuminates when an internal error, seif test error, 
or operating error occurs. The left area of the window 
also displays front panel error codes indicating the type 
of error. See Table 2-2 in Operators Familiarization in this 
section of the manual. 



Function 


Illuminated 

Multiplier 




Selecte 


d Range 




DCV 


• MILLI 






200 mV 






2V 


20 V 


200 V 


1000 V 


ACV 

and 

ACV + DCV 


•MILLI 






200 mV 






2 V 


20 V 


200 V 


700 V 










200 Q 




OHMS 


•KILO 


2kfi 


20 ka 


200 kfl 






• MEGA 


2 m 


20 m 






DIODE 

TEST 




Uses 2 V dc 
range. 












1 • ^ 


3 1 < 


^ 1 < 


1 s 



Overrange indication: 

Display flashes for voltage functions. 

Displays **00” for OHMS and DIODE TEST functions. 



Blank when 

FAST CONVERSION 

RATE is enabled. 2994-02 



Fig. 2-2. DM 5010 front panel range indication. 






2-2 




Operating instructions — DM 5010 



Controls and Connectors 

The following list describes the functions of the DM 5010 
front-panel controls and connectors. See Fig, 2-3. 

FUNCTIONS 
0 DCV 

When this button is illuminated, the DM 5010 mea- 
sures dc voltages applied to the front-panel or rear- 
interface input connectors. The range used with 
this function are: 200 mV, 2 V, 20 V, 200 V, and 
1000 V. 

OHMS 

Illuminating this button selects the resistance mea- 
surement mode. Resistances applied to the front- 
panel input connectors or the rear-interface input 
connections are measured using the 200 fl, 2 ki2, 
20 kfi, 200 kfl, 2 M12, and 20 MO ranges. 

NULL 

This function operates with the DM 501 0 set to 
DCV, OHMS, DIODE TEST, ACV, or ACV+DCV 
(any range). When the NULL button is illuminated,, 
the instrument measures and stores the value of 
resistance or voltage across the front-panel or 
rear-interface input connectors. This stored offset 
is applied to the subsequent measurements and 
the results displayed. The value of the offset may 
be up to ±1 00% of the range. When the function in 
use is changed or NULL function disabled (NULL 
button pressed), the NULL offset is no longer ap- 
plied. The stored offset is retained until a new off- 
set is set by nulling or until the function in use at 
the time of nulling is changed. 



WARNING 



Use caution when the NULL function is enabled, since 
the displayed measurement may not indicate the value 
of the voltage applied to the input connectors. 

0 DIODE TEST 

Illuminating this button generates a 1 mA dc cur- 
rent at the front panel or rear interface high input 
connector. Using conventional current flow, this 
current flows out the high input connector, through 
a component connected between the high and low 
connectors and into the low connector. The volt- 
age developed across the component is measured 
and displayed using the 2 V dc range. 

0 ACV 

When this button is illuminated, the DM 5010 mea- 
sures and displays true rms ac voltages. Applied 
voltages are internally ac coupled to a rms convert- 



er. The ranges used with this function are: 200 mV, 
2 V, 20 V. 200 V, and 700 V. 

ACV + DCV 

When this button is illuminated, the DM 501 0 mea- 
sures and displays true rms ac voltages elevated to 
a dc voltage level. Applied voltages are internally 
dc coupled to the rms converter. The ranges used 
are: 200 mV, 2 V, 20 V, 200 V, and 700 V. 

LOW FREQ RESPONSE 

When this button is illuminated and the ACV or 
ACV + DCV function is active, the instrument aver- 
ages 4 measurements and displays the average 
value of these measurements. This sequence then 
repeats. The function provides a stable readout 
when measuring low-frequency ac voltages. It is 
specified down to 1 0 Hz; however, it is usable over 
the entire frequency range specified for the 
DM 5010. 

RANGE 
0 AUTO 

When this button is illuminated, range selection is 
automatic. At over-range, the DM5010 switches 
to the next higher range. If the measured value is 
less than 9.5% of the range (for most ranges), the 
instrument switches to the next lower range. 

STEP-^ 

Activating this button causes the DM 5010 to in- 
crement one range. The range is maintained until 
the AUTO button is pressed to activate automatic 
range selection or until the range is again incre- 
mented. The range is maintained when the function 
(DCV, OHMS. DIODE TEST, ACV, ACV + DCV) is 
changed, except a change to the OHMS function 
selects the highest range. Incrementing while oper- 
ating in the highest range selects the lowest range. 

TRIGGER MODE 
0 RUN 

When this button is illuminated, conversions are 
free-running at the selected rate. For conversion 
rate selection, refer to FAST. 

TRIGGERED 

Illuminating this button triggers and displays one 
measurement. The next measurement begins 
when this function is again activated (button is 
pressed, or EXTRIG trigger signal is received). Use 
of the EXTRIG triggering requires installation of an 
internal jumper by qualified service personnel. The 
TRIGGERED button flashes on briefly when the in- 
strument is triggered. 






2-4 





Operating Instructions — DM 5010 



CONVERSION RATE 
(?) FAST 

With this button illuminated, the conversion (read- 
ing) rate is the maximum rate specified for the se- 
lected measurement function. At this conversion 
rate, resolution is 3.5 digits. 

When the FAST button is not illuminated, conver- 
sions occur at the normal reading rate specified for 
the selected measurement function. Results are 
displayed using 4.5 digits. 

(7) AVERAGE 

Illuminating this button causes the DM 5010 to cal- 
culate the average of a series of readings. The val- 
ue of the N constant determines how many 
readings are averaged in the series. To calculate 
the average, the instrument sums the measured 
values for the series of readings and divides the 
sum by the number of readings in the series. If 
LOW FREQ RESPONSE is also active, the number 
of measurements averaged is four times the value 
of the N constant. When operating in the TRIG- 
GERED mode, only one trigger is required to initi- 
ate all the measurements used in the AVERAGE 
calculation. 

N 

This button is used to store or recall a constant 
used in the AVERAGE calculation. The constant 
determines how many measurements are aver- 
aged. At instrument power-up, the value of N Is set 
to 2. This value can be changed to any positive 
integer ^1 and <19999. 

® “ 

Illuminating this button causes the DM 501 0 to 
subtract a stored offset constant from a measure- 
ment, divide the result by a stored scale constant, 
and display the result. The offset constant is B, the 
scale constant is A, and X is the measurement. 

A, B 

These buttons are used to store or recall constants 
used in the X-B/A calculation. At instrument power- 
up, the value of A is set to 1 and the value of B is 
set to 0. These constants can be changed to any 
number (integer, decimal, positive or negative) ex- 
cept that the value of A cannot be 0. 




dBm 

When this button is illuminated, the DM 5010 cal- 
culates and displays the power ratio of a voltage 
measurement referenced to 1 mW and 600 Q 
(.7746 V), using the formula: 



dBm = 20 log^Q 



X 



1 



Iv^ I 

where x^ is the voltage measurement. The loga- 
rithm of the absolute value of xy\/^ is taken. 



dBr 

When this button is illuminated, the DM 501 0 cal- 
culates and displays the logarithmic ratio of a mea- 
surement to the constant stored for the ref button, 
using the formula: 



dBr = 20 log^g 




where x^ is the measurement. The logarithm of the 
absolute value of x^ref is taken. 

ref 

This button is used to store or recall a constant 
used in the dBr calculation. At instrument power- 
up, the value of ref is set to 1 . The value of ref can 
be any number except 0. 

COMPARE 

Activating this calculation (button illuminated) 
causes the DM 5010 to compare the next reading 
with limits set by LIMITS constants. If the com- 
pared reading is algebraically less than both 
constants, the word LO is displayed. The word HI 
is displayed if the reading is algebraically greater 
than both constants. PASS is displayed if the read- 
ing is equal to or between the constants. 

LIMITS (2) 

These buttons are used to store or recall constants 
used as limits in the COMPARE calculation. The 
values of the constants are set to 0 at instrument 
power-up. 



RECALL CONST 



Pressing this button and then one of the constant 
buttons (N, A, B, ref, LIMITS) causes the instru- 
ment to display the value stored for that constant. 



REAR INPUT 




See Rear Interface Measurements under Opera- 
tors Familiarization in this section of the manual. 
Illuminating this button selects rear-interface Inputs 
instead of front-panel inputs. 



DIGITS (0 through 9), Decimal Point, and Sign 

These buttons are used for entering numerals, 
decimals, and polarity for storing constants. 



CLEAR 

When an error code is displayed in the display win- 
dow, activating this button clears the displayed er- 
ror code. Also, when entering a constant, acti- 
vating the CLEAR button clears from the display 
window a constant value that has not yet been 
entered. 



ENTER 

When entering a constant, activating this button 
stores the number for the selected constant and 
displays the stored constant value. 



REV JAN 1982 



2-5 




Operating Instructions — DM 5010 



INST ID 

Activating this button causes the instrument to dis- 
play its primary address and, if USEREQ has been 
enabled, generate a Service Request (SRQ) on the 
GPIB. Also, the minus sign lights if Talk Only mode 
is enabled and the far right decimal point lights if 
LF/EOI message terminator is selected; decimal 
does not light for EOl ONLY selection. 

INPUT 

(j^ HIGH Connector 

Isolated analog high connector used with LOW and 
GUARD connectors for all front panel 
measurements. 

LOW Connector 

Isolated analog low connector used with HIGH in- 
put connector. 

GUARD Connector 

Isolated connector connected to a shield that en- 
closes the analog circuitry of the instrument, if a 
GUARD test lead is not used, the GUARD connec- 
tor is connected to the LOW connector by an inter- 
nal switch in the connector assembly. If a GUARD 
test lead is used, it is normally connected to the 
LOW test lead at the point of measurement by the 
user. The GUARD is used to maximize common 
mode rejection. 

Ground Binding Post 

Chassis ground connector. 

Release Latch 

Pull to remove plug-in. 

OPERATORS FAMILIARIZATION 

The following discussion describes the use of the 
DM 501 0 front panel controls and connectors under local 
operation. 

Power On Self Test 

Upon application of power, the DM 5010 performs a self- 
test routine. During the self test, all front panel LEDs illumi- 



nated. After the self test, the instrument enters the Local 
State (LOOS) and assumes the power on default settings 
listed in Table 2-1 . 



Table 2-1 

POWER ON SETTINGS 
(FRONT PANEL FUNCTIONS ONLY) 



Front-Panel Control 


Status 


DCV 


on 


OHMS 


off 


NULL 


(off) Constant set to 0 


DIODE TEST 


off 


ACV 


off 


acv-hdcv 


off 


LOW FREQ RESPONSE 


!off 


AUTO 


1 on 


STEP 


off 


RUN 


on 


TRIGGERED 


off 


FAST 


off 


AVERAGE 


off 


N 


Constant set to 2 


X-B 




A 


off 


A 


Constant set to 0 


B 


Constant set to 1 


dBm 


off 


dBr 


off 


ref 


Constant set to 1 


COMPARE 


off 


LIMITS 


Constants set to 0, 0 


REAR INPUT 


off 



if an internal error is detected during self test, the instru- 
ment continuously displays a three-digit error code in the 
display window and the ERROR indicator is lit. See Table 
2-2. Refer an error code condition to qualified service 
personnel. 



2-6 




operating Instructions — DM 5010 



Table 2-2 

FRONT PANEL ERROR COOES 



Displayed 


Abnormal Event 




205 


Execution Errors: 

Argument out of range. 




231 1 


Not in calibrate mode. 




232 


' Beyond calibration capability. 




303 


! Internal Errors: 

1 

Math pack error. 




311 


Converter time-out. 




317 ! 


Front panel time-out. 




318 1 


Bad calibration constant. 




340 


RAM error (high nibble). 




341 j 


RAM error (low nibble). 




351 1 


Calibration checksum error. 




372 


RCM placement error. 


COOO 


373 


RCM placement error. 


DOOO 


374 


RCM placement error. 


EOOO 


392 


RCM checksum error. 


COOO 


393 


RCM checksum error. 


DOOO 


394 


RCM checksum error. 


EOOO 


395 


RCM checksum error. 


FOOO 



General Operating information 

Allow 30 minutes warmup time for operation to specified 
accuracy. Over-range for the OHMS and DIODE TEST func- 
tions causes the instrument to display OC; for the DCV, 
ACV, and ACV-i-DCV functions: over-range is indicated by 
a flashing display. 




Observe the specified maximum input voltage ratings. 
Instrument damage may occur if the maximum input 
voltage ratings are exceeded. 



For all measurement functions, range selection may be 
either auto-ranging (AUTO button pressed} or a fixed range 
may be selected using the STEP button. Refer to the range 
indication discussion under Display Window. DIODE TEST 
uses only the 2 V range. 




input Connections 

The HIGH, LOW, and GUARD connectors are used for 
front-panel measurements. The connector assembly con- 
tains an internal switch connected between the LOW and 
GUARD connectors. This switch is closed until a test lead 
probe is inserted into the GUARD connector; it remains 
open until the GUARD test lead probe is removed. 



Figure 2-4 illustrates three examples of using the front- 
panel connectors to make measurements. Method A is the 
most commonly used. It is used when common mode volt- 
age is not a consideration. In this example, only the HIGH 
and LOW connectors of the DM 5010 are used. Since a test 
lead probe is not inserted into the GUARD connector, the 
connector assembly internal switch is closed, shorting the 
LOW to the GUARD. This allows common mode current to 
flow through the LOW test lead and the power source 
ground, introducing some measurement error. 



Method B provides the most accurate measurements 
when common mode voltages are a problem. The DM 5010 
GUARD connector is connected to the source tow terminal. 
Common mode current flows through the GUARD test lead 
and power source ground, not the measurement circuits. 



In Method C, the DM5010 GUARD connects to the 
source ground. Some measurement error may occur, since 
common mode current generated between the source low 
and power source ground flows in the measurement circuit. 






To help eliminate shock hazard from voltages mea- 
sured by the DM 5010: 

1. A void all contact with the voltage source if the 
measured voltage exceeds 42.4 V peak. 



2. Disconnect test probes from the circuit-under- 
test before disconnecting probes from the 
DM5010, or before removing the DM5010 
from the power module. 



With the instrument in the AUTO range mode, do not 
repeatedly switch the input voltage between a low val- 
ue (<200 mV peak) and a higher value (>200 V 
peak). For repeated measurements alternating be- 
tween voltage extremes, use the STEP range mode to 
select an appropriate higher range before increasing 
the input voltage. Failure to do so may temporarily 
cause inaccuracy in measurements made using the 
200 mV range. 



Rear- Interface Measurements 




If the REAR INPUT button is pressed (illuminated), sig- 
nals applied to the rear interface pins 28B (Hi) and 28A (Lo) 
on the ADC board (A17) are measured. If the button is not 
illuminated, signals are measured via the front-panel input 
connectors. 



@ 



2*7 




Operating Instructions — DM 5010 



DM 5010 



GUARD 

o— 




A. Guard connected (internally) to DM 5010 LOW terminal — error present. 




•O' 



B. Guard connected to source Lo terminal — No error. 




C. Guard connected to source chassis ground. Low Ecm error, assuming the 
common error source is mostly between grounds. 




2-8 




operating Instructions — DM 5010 




To avoid equipment damage, do not apply a voltage 
exceeding 42.4 V peak ac or 60 V dc between pins 
28B (Hi) and 28A (Lo) of the rear-interface connector 
P1031 on the ADC board (A 17). 




Do not switch from front-pane! to rear interface input 
while over 500 V peak is appiied to the front panel 
input connectors. Instrument damage and erratic op- 
eration may result. 

Dc Voltage Measurements 

When the DCV button is pressed, the DM 5010 mea- 
sures dc voltages using the following ranges: 200 mV, 2 V, 
20 V, 200 V, and 1000 V. The readout displays a positive 
sign when the input to the HIGH connector is positive with 
respect to the LOW connector. Observe the maximum input 
voltage ratings. 

Resistance Measurements 

Pressing the OHMS button enables the DM 501 0 to 
measure resistance using these ranges: 200 2 kfi, 20 kfi, 

200 kfi, 2 MO, and 20 MO. Conventional current flow is from 
the HIGH connector to the LOW connector. Refer to Table 
2-3 for the value of current and maximum voltages across 
the input connectors for full scale display readings {instru- 
ment not over-ranged). The maximum (open circuit) voltage 
available from the HIGH connector referenced to the LOW 
connector is less than 5 V. 



Table 2-3 

SOURCE VOLTAGES 
(OHMS FUNCTION) 



Range 


Typical Current 
(0 9 to Full Scale) 


V Max 
(Full Scale) 


200 9 


1 .02 mA to 1 mA 




2k0 


0.12 mA to 0.1 mA 




20 kO 


9.2 (iA to IOmA 


0.2 V 


200 kfi 


1 .08 mA to 1 mA 




2 M9 


0.12 mA to 0,1 mA 




20 M9 


0.12 fiA to 0.04 mA 


0.8 V 



Measuring Diodes 

Pressing the DIODE TEST button causes the DM 5010 
to generate a 1 mA dc current at the HIGH connector. The 
forward voltage drop of diode junctions is measured by con- 
necting the diode anode to the HIGH connector and the 



cathode to the LOW. Devices that can be checked are those 
having a voltage drop under 1 .999 volts. These include most 
diodes and some LEDs. 

To check the reverse voltage drop, reverse the diode 
connections to the instrument. The display window should 
display OC. 



Ac Voltage Measurements 

The DM 501 0 provides two ac measurement functions. 
True rms ac voltages are measured and displayed using the 
ACV function. True rms ac voltages elevated to a dc level 
are measured and displayed using the ACV -i- DCV function. 
Ranges for both functions are 200 mV, 2 V, 20 V, 200 V, 
and 700 V. Voltages can be measured with a crest factor up 
to four at full scale. The crest factor is the ratio of the peak 
voltage to rms voltage. Observe the maximum input voltage 
ratings. The LOW FREQ RESPONSE function provides a 
stable display for low-frequency ac measurements. When 
activated, this function displays the average of four ac 
measurements. 



Conversion Rates 

The DM 501 0 operates at either of two conversion rates. 
The FAST rate (CONVERSION RATE button illuminated) 
makes measurements at the maximum rate specified for the 
selected function. Measurements are displayed using 3 1/2 
digits. With the button not illuminated, the instrument makes 
measurements at the normal rate specified for the selected 
function and uses a 4 1/2 digit display. 



Triggering 

The DM 5010 has two front-panel trigger modes, RUN 
and TRIGGERED. When the RUN button is pressed, con- 
versions are free-running at the selected conversion rate. 
Pressing the TRIGGERED button causes the instrument to 
trigger one measurement each time the button is pressed. 



In addition, conversions may be triggered via the rear 
interface connector, pin 16A and 16B (Lo) on the Isolation 
board (A15). Use of this feature requires installation of an 
internal jumper. Refer qualified service personnel to the 
Maintenance section of this manual for ad ditional in forma- 
tion. Installation of this jumper enables the EXTRIG trigger 
function in addition to the RUN and TRIGGERED functions. 
To use the EXTRIG trigger, activate the TRIGGER button to 
disable the instrument's free-running trigger. The EXTRIG 
requires a negative-going TTL compatible signal to initiate 
the internal trigger. To cause a single trigger, this line must 
be held low betvveen 0.5 and 1 0 ^sec. If held low for a longer 
time, the instrument triggers multiple measurements. 



REV JAN 1982 



2-9 




Operating Instructions — DM 5010 



Calculations 

Five front-panel buttons activate calculations on mea- 
surements made by the DM 5010. These calculations may 
be performed singly or in a sequence. A sequence of calcu- 
lations may be activated (buttons pushed) in any order; 
however, the DM 501 0 executes them in the following or- 
der: AVERAGE, X-8/A, dBm or dBr, COMPARE. The in- 
strument performs all activated calculations on the 
measurement and then displays the result. If active, NULL 
and then LOW FREQ RESPONSE are executed before any 
of the calculations. Both of the calculations dBm and dBr 
cannot be performed in the same sequence. If both buttons 
are pressed in the same calculation sequence, only the last 
one pressed will be executed. One trigger begins execution 
of a single calculation or a calculation sequence. In the RUN 
trigger mode, an activated calculation or sequence repeats 
until turned off (calculation button(s) pressed again), or until 
the trigger mode or measurement function is changed. The 
display LEDs blank while calculations are being executed. 
The instrument displays OC to indicate a display overflow 
for calculation results. 



Except for dBm, each calculation uses one or more 
constants. The numerical value stored in memory for each 
constant is set to a default value at instrument power up. 
This value may be changed to any value within the limits 
specified for each constant. Table 2-4 lists each calculation 



and associated constant(s), constant default values, and the 
limits for each constant. 



Changing Constant Values 

There are two methods for changing constant values in 
the instrument memory. 



1. Using the numeric keyboard: 

a. Press selected constant button. 

b. Press numeric keyboard buttons to display the 
new constant value (within the limits specified in Table 
2-4). 

c. Press ENTER. 



2. Using a displayed measurement. (Changes a constant 
value to the value of the displayed measurement.) Make cer- 
tain the displayed measurement meets the limits specified in 
Table 2-4 for the selected constant. 

a. Press selected constant button. 

b. Press ENTER. 



Table 2-4 

CALCULATION AND CONSTANTS 



Calculation 


Constants 


Default Value 


Valid Constant Range 


AVERAGE 


N 


2 


+ ^ to -h19999 


X-B 

A 


B (offset) 


0 


-H or integer or decimal. 




! A (scale) 


1 


-i- or — , integer or decimal, ¥= 0 


dBm 


- 


- 


- 


dBr 


ref 


1 


-I- or — , integer or decimal, # 0 


COMPARE 


LIMITS (2) 


0 





2-10 



REV JAN 1982 





Operating Instructions — DM 5010 



After the ENTER button is pressed, the DM 5010 dis- 
plays the stored constant value. The displayed value is the 
new one if the entered value was valid. The previously- 
stored value is displayed if the entered value was invalid. 
Each constant value remains stored until a new value is 
entered or until power is removed from the instrument. 



Calculation Examples 

The following examples are provided to suggest applica- 
tions using the DM 5010 calculations. 

Example 1: Using X-B/A to display the difference between 
the nominal and actual zener voltages. 



Set the DM 5010 front-pane! controls as follows: 



DCV 


on 


NULL 


off 


LOW FREQ RESPONSE 


off 


RANGE 


AUTO 


TRIGGER MODE 


RUN 


CONVERSION RATE 


FAST off 


CALCULATIONS 




X-B 




A 


on 


all others 


off 


REAR INPUT 


off 



Set the constant A to 1 . 

Set the constant B to 15 (for a 15 V zener diode). 



Connect the zener diode, resistor, and power supply to 
the DM 501 0 input connectors as shown in Fig. 2-5. The 
value of the resistor and the power supply voltage set the 
zener current. 



The displayed voltage initially is unstable until the current 
through the diode reaches its final value. When the display 
stabilizes, the displayed voltage is the difference between 
the nominal zener voltage (15 V) and the actual zener volt- 
age for the zener diode being measured. 



To read the voltage difference in percent deviation, 
change constant A to .15 where A = B (.01). 

Example 2: Using dBr to find the point where an audio am- 
plifier is 3 dB down from mid-range. 



Set the DM 5010 front-panel controls as follows: 



ACV on 

NULL off 

LOW FREQ RESPONSE off 

RANGE AUTO 

TRIGGER MODE RUN 

CONVERSION RATE FAST off 

CALCULATIONS off 

REAR INPUT off 



Set constant ref to 1 . Connect a sinewave generator, the 
audio amplifier, and the DM 5010 as shown in Fig. 2-6. 




3994-05 



Pig. 2*5. Setup for calculation example 1. 



2*11 




Operating Instructions — DM 5010 




Rg. 2’6. Setup for calculation example 2. 



Set the sinewave generator to mid-range {5 kHz in this 
example): adjust the sinewave generator amplitude for a 1 V 
reading on the DM 501 0. 



Press the DM 5010 dBr button. The display reads 0.0. 



Reduce the sinewave generator frequency until the 
DM 5010 display reads —3.00. (Do not readjust amplitude.) 
The frequency of the generator is the lower — 3 dB point of 
the audio amplifier. 

Example 3: Using COMPARE to select resistors within 2% 
of the nominal value. 



Set the DM 5010 front-pane! controls as follows: 


OHMS 


on 


NULL 


off 


LOW FREQ RESPONSE 


off 


RANGE 


AUTO 


TRIGGER MODE 


RUN 


CONVERSION RATE 


FAST off 


CALCULATIONS 




COMPARE 


on 


all others 


off 


REAR INPUT 


off 



To select 1 5 kfi resistors within 2% of the nominal value, 
set one LIMITS constant to 15300. Set the other LIMITS 
constant to 14700. Connect the first resistor to the 
DM 501 0 front-panel HIGH and LOW input connectors. The 
DM 5010 displays HI or LO if the resistor is above or below 
the 2% tolerance. PASS is displayed if the resistor is be- 
tween or equal to the limits. 



The COMPARE and X-B/A calculations may be com- 
bined in the above example. This combination eliminates fig- 
uring the highest and lowest in-tolerance values; only the 
nominal resistance value and the tolerance are used as 
constants. 



Set constant B to 15000 (nominal resistance). 

Set constant A to 150 where A — B (.01). This converts 
the difference between nominal value and actual value to a 
per cent. 

Set one LIMITS constant to 2 (for a 2% tolerance). 



Set the other LIMITS constant to —2. 



Press X-B/A. 



The DM 5010 displays PASS, HI, or LO. 

Repackaging information 

If this Tektronix instrument is to be shipped to a 
Tektronix Service Center for service or repair, attach a tag 
showing owner (with address) and the name of an individual 
at your firm that can be contacted. Include the complete 
instrument serial number and a description of the service 
required. 



Save and re-use the package in which the instrument 
was shipped. If the original packaging is unfit for use or not 
available, repackage the instrument as follows: 






Operating Instructions — DM 5010 



Surround the instrument with polyethylene sheeting to 
protect the finish of the instrument. Obtain a carton of 
corrugated cardboard of the correct carton strength and 
having inside dimensions of no less than 6 inches more 
than the instrument dimensions. Cushion the instrument 
by tightly packing at least 3 inches of dunnage or 



urethane foam between carton and instrument on all 
sides. Seal the carton with shipping tape or an industrial 
stapler. 

The carton test strength for this instrument is 200 
pounds per square inch. 



Section 3 — DM 5010 



PROGRAMMING 



Introduction 

This section of the manual provides Information for pro- 
gramming the TEKTRONIX DM 5010 Programmable Digital 
Multimeter via the IEEE-488 digital interface. The IEEE-488 
interface function subsets for the DM 501 0 are listed in Sec- 
tion 1. In this manual, the IEEE-488 digital interface is called 
the General Purpose Interface Bus (GPIB). The following 
information assumes the reader is knowledgeable in GPIB 
communication and has some exposure to programming 
controllers. Message protocol over the GPIB is specified 
and described in the IEEE Standard 488-1978, Standard 
Digital Interface for Programmable Instrumentation‘S . 
TM 5000 instruments are designed to communicate with 
any GPIB-compatible controller that sends and receives 
ASCII messages (commands) over the GPIB. These com- 
mands program the instrument or request information from 
the instrument. 



Commands for TM 5000 programmable instruments are 
designed for compatibility among instrument types. The 
same command is used in different instruments to control 
similar functions. In addition, commands are specified in 
mnemonics related to the functions they implement. For ex- 
ample, the command I NIT initializes instrument settings to 
their power-up states. For further ease of programming, 
command mnemonics are similar to front-panel control 
names. 

Instrument commands are presented in three formats: 

• A front panel illustration — showing command relation- 
ships to front panel operation. See Fig. 3-1 . 

• Functional Command List — a list divided into func- 
tional groups with brief descriptions. 

• Detailed Command List — an alphabetical listing of 
commands with complete descriptions. 



Published by the institute of Electrical and Electronics Engi- 
neers, Inc., 345 East 47th Street, New York, N.Y., 10017. 



TM 5000 programmable instruments connect to the 
GPIB through a TM 5000 power module. Refer to the Oper- 
ating Instructions section of this manual for information on 
installing the instrument in the power module. Also review 
this section for instrument caution and warning statements 
and to become familiar with front-pane! and internally 
selectable instrument functions. 



The GPIB primary address for this instrument may be 
internally changed by qualified service personnel. The 
DM 501 0 is shipped with the address set to decimal 1 6. The 
message terminator may also be internally selected by quali- 
fied service personnel. Message terminators are discussed 
in Messages and Communication Protocol (in this section). 
TM 5000 instruments are shipped with this terminator set to 
EOl ONLY. Refer qualified service personnel to the Mainte- 
nance section of this manual for locations and setting infor- 
mation. Pressing the INST ID button causes the instrument 
to display its selected GPIB primary address; the far right 
decimal point lights if the selected message terminator is 
LF/EOI. The minus sign lights if the Talk Only mode is 
enabled. 



Talk Only Mode 

The Talk Only mode enables the DM 501 0 to send data 
under local control over the GPIB to a listener. To Initiate 
this mode, an internal switch is set to the Talk Only position. 
Refer qualified service personnel to the Maintenance section 
of this manual for switch setting information. 



With the Talk Only mode enabled, the DM 5010 begins 
sending measurement data when the front panel INST ID 
button is pressed; it stops sending data when the front pan- 
el CLEAR button is pressed. If the instrument is sending a 
reading when CLEAR is pressed, it completes sending that 
reading. The ADDRESSED light remains on until transmis- 
sion of the last reading is complete. 



3*1 




Programming — DM 5010 




.■. :men» ■■■ 

itUR FA»T 

tail 



-tiilkcsiumom 

1. : «EC*U 

; SMSf. 



*mmu 



mm 



’OISrfAl'MUlTIMnEB 



FUNCT? 



ERR? 

ID? 

INIT 

MONITOR ON 
MONITOR OFF 
MONITOR? 
RQS ON 
RQSOFF 
RQS? 

SET? 

TEST 



DATA 

OPCON 

OPCOFF 

OFC7 

OVER ON 

OVER OFF 

OVER? 

M>Y? 

SEND 



ACDC <m»n> 
ACV <num> 
DCV <num> 
DIODE 

OHMS <num> 



BCV SUMS 8U>&£ ACV ACV^SCV 

11 [SI li] fii nil 



USER ON 
USER OFF 
USER? 



NUU. <miin> 
NULL? 






DIGIT 3.S 
DIGIT 4.5 
DIGIT? 



MODE Rim 
^ MODE TRIG 
< MODE? 



SOURCE FRONT 
SOURCE REAR 
SOURCE? 






UIWTS-^ 

ni 



DT TRIG 
DT OFF 
DT? 



CALC OFF 
CALC? 



CALC AVE CALC RATIO CALC DBM 

i I 

f * 

AVE <num> RATIO <A num>,<B num> 

AVE? RATIO? 



— ^ 1 

CALC DBR CALC CMPR 

f I 

I I 

DBR <num> LIMITS <num>,<num> 
DBR? LIMITS? 



2994-07 



Fig. 3-1. Instrument commands and relationship to front panel controls. 





Programming — DM 5010 



COMMANDS 

The instrument is controlled by the front panel or via 
commands received from the controller. These commands 
are of three types: 

Setting commands — control instrument settings. 
Query-output commands — ask for data. 

Operational commands — cause a particular action. 




Using fewer characters than the abbreviated header 
or argument should be done with caution since erro- 
neous results or damage could result if this data is 
sent to the wrong instrument. 



The instrument responds to and executes all commands 
when in the remote state. When in the local state, setting 
and operational commands generate errors since instru- 
ment functions are under front panel control; only query- 
output commands are executed. 

Each command begins with a header — a word that de- 
scribes the function implemented. Many commands require 
an argument following the header— a word or number that 
specifies the desired state for the function. 




With the instrument in the AUTO range mode, do not 
repeatedly switch the input voltage between a low val- 
ue (<200 mV peak) and a higher value (>200 V 
peak). For repeated measurements alternating be- 
tween these voltage extremes, use the STEP range 
mode to select an appropriate higher range before in- 
creasing the input voltage. Failure to do so may tem- 
porarily cause inaccuracy in measurements made 
using the 200 mV range. 



FUNCTIONAL COMMAND LIST 



INSTRUMENT COMMANDS 
Function Commands 

ACDC <num> — Sets the ACV-hDCV function and 
range 

ACV <num> — Sets the ACV function and range. 

DCV <num.> — Sets the DCV function and range. 

DIODE — Sets the DIODE TEST function, 

FUNCT? — Returns present function and range, 

LFR on— E nables the LOW FREQ RESPONSE 
function, 

LFR OFF— Disables the LOW FREQ RESPONSE 
function. 

LFR?— Returns LFR ON or LFR OFF. 

NULL <num> — Enables the NULL function and offset 
value, 

NULL? — Returns NULL offset value. 

OHMS <num> — Sets the OHMS function and range. 



Trigger Mode Commands 

MODE RUN — Enables the RUN trigger mode. 

MODE TRIG — Enables the TRIGGERED trigger mode. 

MODE?— Returns MODE RUN or MODE TRIG. 

RDY? — Returns RDY 1 if a measurement is ready; RDY 
0 if one is in progress or waiting for trigger. 

DIGIT 3.5 — Enables FAST conversion rate. 

DIGIT 4.5 — Enables normal conversion rate. 

DIGIT?— Returns DIGIT 3.5 or DIGIT 4.5, 

Calculation Commands 

AVE <num> — Sets the value of constant N. 

AVE? — Returns value of constant N. 

CALC AVE— Enables the AVERAGE calculation. 

CALC CMPR — Enables the COMPARE calculation. 
CALC DBM — Enables the dBm calculation. 

CALC DBR — Enables the dBr calculation 



@ 



3-3 



Programming — DM 5010 



CALC RATIO— Enables X-B/A calculation. 

CALC OFF — Disables all calculations. 

CALC? — Returns CALC OFF or the enabled 
calculation(s). 

DBR <num> — Sets the value of the ref constant. 

DBR? — Returns value of ref constant. 

LIMITS <num>,<num> — Sets values of LIMITS 
constants. 

LIMITS? — Returns values of LIMITS constants. 

MONITOR ON — Enables SRQ when measurement 
exceeds LIMITS constants. 

MONITOR OFF — Disables SRQ when measurement 
exceeds LIMITS constants. 

MONITOR?— Returns MONITOR ON or MONITOR 
OFF. 

RATIO <num>,<num> — Sets values of A and B 
constants. 

RATIO? — Returns values of A and B constants. 



INPUT/OUTPUT COMMANDS 

DATA — Outputs data saved by MONITOR SRQ. 

SEND— Outputs data in Output Buffer; triggers, if 
necessary. 

SOURCE REAR — Selects rear interface connector input. 

SOURCE FRONT — Selects front panel connector input. 

SOURCE?— Returns SOURCE FRONT or SOURCE 
REAR. 



SYSTEM COMMANDS 

DT TRIG — Enables device trigger function. Instrument 
triggers after <GET> interface message. 

DT OFF — Disables device trigger function. 

DT?— Returns DT TRIG or DT OFF. 

ERR? — Returns error code. 

ID? — Returns instrument identification and firmware 
version. 

INIT — Initializes instrument settings. 

SET? — Returns instrument settings. 

TEST — Returns 0 for correct calibration checksum; 351 
for incorrect. 

STATUS COMMANDS 

OPC ON — Enables operation complete SRQ. 

OPC OFF — Disbies operation complete SRQ. 

OPC?— Returns OPC ON or OPC OFF. 

OVER ON — Enables overrange SRQ. 

OVER OFF — Disables overrange SRQ. 

OVER?— Returns OVER ON or OVER OFF. 

RQS ON — Enables generation of SRQ s. 

RQS OFF — Disables generation of SRQ’s. 

RQS?— Returns RQS ON or RQS OFF. 

USER ON — Enables SRQ when ID button Is pushed. 
USER OFF — Disables SRQ when ID button is pushed. 
USER?— Returns USER ON or USER OFF. 



@ 



3*4 




Programming — DM 5010 



DETAILED COMMAND LIST 

ACDC (AC with DC Voltage Function) ACV (AC Voltage Function) 

Type: Type: 

Setting Setting 



Setting syntax: 

ACDC <number> 

ACD <number> 

ACDC 

Examples: Range Selected: 

ACDC 2 2 V 

ACDC .9 2 V 

ACD —200 700 V, auto-range 

ACD 700 V, auto-range 

ACD 0 700 V, auto-range 



Discussion: 

The header selects the ACD-l-DCV function; the argu- 
ment selects a fixed range or auto-range. The format for 
numeric arguments is described under Number Format later 
in this section of the manual. The argument can be any val- 
ue <700; ho\A/ever, the instrument rounds the argument up 
to the next full scale range. For instance, for an argument of 
.9, the instrument selects the 2 V range. 

If the argument is omitted or its value is 0 or less, the 
instrument auto-ranges beginning at the highest range. 

If the argument is above the highest range, the instru- 
ment generates a command error (and asserts SRQ if RQS 
is on). 

Ranges; 

200 mV 
2 V 
20 V 
200 V 
700 V 



Setting syntax: 

ACV <number> 
ACV 



Examples: Range Selected: 

ACV 18 20 V 

ACV 2 2 V 

ACV —200 700 V, auto-range 

ACV 700 V, auto-range 



Discussion: 

The header selects the ACV function; the argument se- 
lects a fixed range or auto-range. The format for numeric 
arguments is described under Number Format later in this 
section of the manual. The argument can be any value; 
however, the instrument rounds the argument up to the first 
full scale range. For Instance, an argument of 1 8 selects the 
20 V range. 

If the argument is omitted or its value is 0 or less, the 
instrument auto-ranges beginning at the highest range. 

If the argument is above the highest range, the instru- 
ment generates a command error (and asserts SRQ if RQS 
is on). 

Ranges: 

200 mV 
2 V 
20 V 
200 V 
700 V 



@ 



ACDC 



ACV 



3-5 



Programming — DM 5010 

AVE (Average) 

Type: 

Setting or query 

Setting syntax: 

AVE <number> 

AVG <number> 



Examples; 

AVE 6 
AVE 2 
AVG 10 



Query syntax: 

AVE? 

AVG? 



Query response: 

AVE <number>; 



Discussion: 

This command specifies the number of conversions used 
in the AVERAGE calculation. (It corresponds to setting the 
value for the front panel button constant N.) See CALC 
AVE. The argument may be any number from 1 to 19999. 
The instrument truncates the argument to integers. 



3-6 



AVE 



Programming — DM 5010 



CALC (Calculation Operation) 



Type: 

Setting or query 



Setting syntax: 

CALC <argument> 

CALC <argument>, <argument> 

Arguments; 

AVE or AVG 

CMPR or COMP 

DBM 

DBR 

RATIO 

OFF 



Examples; 

CALC OFF 
CALC AVE 
CALC AVE, DBM 
CALC RATIO, AVE, DBR 



Query syntax: 

CALC? 



Query response: 

CALC OFF; or list of enabled calculation(s). 



Discussion: 

Wnen the instrument receives a CALC command, it turns 
off all calculations except those listed after the CALC head- 
er. If the result of a calculation exceeds the capabilities of 
the math pack (±3.4028E--38). the instrument generates a 
math pack error (303). 

• CALC AVE or CALC AVG enables the AVERAGE cal- 
culation. The instrument calculates the average of a 



series of measurements. The number of measure- 
ments in the series is set by the AVE <number> 
command. 

One trigger generates enough readings for an average 
result. If over-range occurs for a measurement in a 
sequence, the AVE calculation is aborted. 

If LFR is also enabled, the number of measurements 
set by the AVE <number> command is multiplied by 

4. 



• CALC CMPR or CALC COMP enables the COM- 
PARE calculation. The instrument compares the input 
to the values set by the LIMITS command. Refer to 
the text on the following commands, which output 
comparison results; 

SEND — returns 1., 2., or 3. for LO, PASS, or HI; 

returns -i-IE-i-99; or -1E-f99; for over-range. 

DATA — returns out-of-limits measurement value. 



• CALC DBM enables the dBm calculation and disables 
the dBr calculation. The Instrument calculates the 
power ratio of the input voltage, referenced to 1 mW 
dissipated in 600 fi (.7746 V). 

dBm = 20 log^p j _)^ 

I 

• CALC DBR enables the dBr calculation and disables 
the dBm calculation. The DM 5010 computes the 
logarithmic ratio of the input to the value set by the 
DBR <number> command. 

dBr = 20log^P 

I ref 

• CALC RATIO enables the X-B/A calculation, where X 
is the measurement, B is an offset value, and A is the 
scale factor. The values of A and B are set by the 
RATIO command. 

• CALC OFF disables all calculations. 



REV JAN 1982 



CALC 



3-7 



Programming — DM 5010 



DATA 



Type: 

Output 



Syntax: 

DATA 



Response: 

DATA <number>; 
or 

DATA ±1.E+99; (for over-range) 



Discussion: 

This command returns one of the responses listed below. 
It does not trigger a conversion nor wait to return a new 
reading as the SEND command does. 



1 . After power on, returns 0 until a reading is available. 

2. If a MONITOR SRQ has occurred, DATA returns the 
measurement causing the SRQ. 

3. If neither of the above conditions is true, DATA re- 
turns the most recent reading. DATA returns the same read- 
ing until the next conversion is triggered and a new reading 
is available. 

DATA may return more digits of resolution for a reading 
than is dispiayed on the front panel or returned by the SEND 
command. 



DBR 

Type: 

Setting or query 

Setting syntax: 

DBR <number> 

Examples: 

DBR 1 
DBR .707 
DBR 2E-3 

Query Syntax: 

DBR? 

Query Response: 

DBR <number>; 

Discussion: 

This command argument sets the value of the constant 
used by the CALC DBR command. It corresponds to setting 
the constant value for the front panel button constant ref. 
The argument can be any number except 0. 



3*8 



DATA 



DBR 



Programming — DM 5010 



DCV (DC Voltage Function) 



DIGIT (Digital Resolution) 



Type: 

Setting 

Setting syntax: 

DCV <number> 
DCV 

Examples: 

DCV 1.5 
DCV 

DCV -1.E+3 



Range selected: 

2 V 

1000 mV, auto-range 
1000 V, auto-range 



Type: 

Setting or query 



Setting syntax: 

DIGIT 3.5 
DIGIT 4.5 
DIG 3.5 
DIG 4.5 



Query syntax: 

DIGIT? 

DIG? 



Discussion; 

The header selects the DCV function; the argument se- 
lects a fixed voltage range. The format for numeric argu- 
ments is described under Number Format later in this 
section of the manual. The argument can be any value; 
however, the instrument rounds the argument up to the first 
full scale range. For instance, for an argument of 1.5, the 
instrument selects the 2 V range. 



If the argument is omitted or its value is 0 or (ess, the 
instrument auto-ranges beginning at the highest range. 



If the argument is above the highest range, the instru- 
ment generates a command error (and asserts SRQ if RQS 
is on). 

Ranges: 

200 mV 
2 V 
20 V 
200 V 
1000 V 



Query response: 

DIGIT 3.5; 

DIGIT 4.5; 

Discussion: 

This command selects the conversion rate. The argu- 
ment 3.5 sets the FAST conversion rate (3.5 digit resolu- 
tion). A reading takes approximately 35 ms in the voltage 
functions and approximately 130 ms in the OHMS function. 



The argument 4.5 sets the normal conversion rate (4.5 
digit resolution). A reading takes approximately 310 ms in 
the voltage functions; 620 ms in the OHMS function. 



REV JAN 1982 



DCV 



DIGIT 



3-9 



Programming — DM 5010 



DIODE (Diode Test Function) 

Type: 

Setting 

Setting syntax: 

DIODE 

DIO 

Discussion: 

This command selects the DIODE TEST function. An ar- 
gument is not accepted. 



DT (Device Trigger) 

Type: 

Setting or query 

Setting syntax: 

DT TRIG 
DT OFF 

Query syntax: 

DT? 

Query response: 

DT TRIG: 

DT OFF; 

Discussion: 

This command enables or disables the device trigger 
function. If Device Trigger is enabled, the <GET > IEEE 488 
interface message causes the instrument to trigger a 
reading. 

If <GET> is received while the message processor is 
busy or when DT is OFF, the instrument generates an error, 
which indicates the <G£T> message was ignored. 



3-10 



DIODE 



DT 



Programming — DM 5010 



ERR? (Error) 

Type: 

Query 

Query syntax: 

ERR? 

Query response: 

ERR <number> 

sp sp 

Examples: 

ERR 401; (power on) 

sp sp 

Discussion: 

The ERROR query is used to obtain information about 
the status of the instrument. 



The ERROR query returns a code indicating the event 
causing SRQ to be asserted. See Status and Error Report- 
ing for more information. 



FUNCT? (Function) 



Type: 

Query 



Query syntax: 

FUNCT? 

FUNC? 



Query response example: 

DCV 2.; 

ACV 20.; 

DIODE; 

ACDC 200.; 

OHMS -2.E-F6; 



Discussion: 

This command returns the measurement function in use. 
The argument specifies the range currently in use. A nega- 
tive argument is returned if the instrument is in autorange. 







ERR? 



FUNCT? 



3*11 



Programming — DM 5010 



ID? 

Type: 

Query 

Query syntax; 

ID? 

Query response; 

ID TEK/DM5010.V79.1 Fxx; 

Discussion; 

The ID? query returns the above response. 

TEK/DM5010 — Identifies the instrument manufac- 
turer and type. 

V79.1 — Identifies the version of Tektronix 
Codes and Format Standard to 
which the instrument conforms. 

Fxx — Identifies the firmware version of 
the instrument. 



INIT 

Type: 

Operational 

Syntax: 

INIT 

Discussion: 

This command resets instrument functions to their pow- 
er-on settings. Table 3-3 lists the power-on settings. 



3-12 



ID? 



INIT 




Programming — DM 5010 



LFR (Low Frequency Response) 

Type: 

Setting or query 

Setting syntax: 

LFR ON 
LFR OFF 

Query syntax: 

LFR? 

Query response: 

LFR ON; 

LFR OFF; 

Discussion: 

This command enables or disables the LOW FREQ RE- 
SPONSE function (used with ACV and ACV+DCV func- 
tions). When enabled, the instrument computes the average 
of four measurements. 

If CALC AVE is also enabled, the number of measure- 
ments set by the AVE <num> command is multiplied by 4. 



LIMITS 



Type: 

Setting or query 

Setting syntax: 

LIMITS <number>,<number> 
LIM <number>,<number> 

Examples: 

LIMITS 3.2, -2 
LIMITS -1, -6.5 
LIM 6, 1 

Query syntax: 

LIMITS? 

LIM? 



Query response: 

LIMITS <number>,<number>: 

Discussion: 

The arguments for this command set the value of the 
limits used by the COMPARE calculation and the MONITOR 
SRQ. The first argument sets the value of the limit, which 
corresponds to the upper front panel LIMITS button; the 
second argument sets the constant value, which corre- 
sponds to the lower LIMITS button. 



@ 



LFR 



LIMITS 



3-13 



Programming — DM 5010 



MODE 



Type: 

Setting or query 

Setting syntax; 

MODE RUN 
MODE TRIG 
MOD RUN 
MOD TRIG 



Query syntax; 

MODE? 

MOD? 

Query response: 

MODE RUN; 

MODE TRIG; 

Discussion: 

This command selects the Trigger Mode. The RUN argu- 
ment sets the RUN (free-run) Trigger Mode. 

The TRIG argument sets the TRIGGERED mode. In this 
mode, a trigger occurs upon receipt of one of the following: 

• A “SEND" command 

• A Group Execute Trigger <GET> interface message 
(only if DT, Device Trigger, is enabled). 

• My Talk Address (MTA) with the output unspecified 
(no query command). 

• EXTRIG rear interface trigger (requires internal jumper 
installation — see Maintenance section). To cause a 
single trigger, this line must be held low between 0.5 
and 10 Msec. If held low for a longer time, the instru- 
ment triggers multiple measurements. 

If over-range or under-range occurs while MODE TRIG is 
enabled and the instrument is in auto-range, it will change 
range and take another reading. 



MONITOR 



Type: 

Setting or query 



Setting syntax: 

MONITOR ON 
MONITOR OFF 
MON ON 
MON OFF 



Query syntax: 

MONITOR? 

MON? 

Query response: 

MONITOR ON; 

MONITOR OFF: 

Discussion: 

This command enables or disables the MONITOR SRQ. 
With the MONITOR SRQ enabled, the instrument. saves the 
first measurement outside the limits (set by LIMITS com- 
mand) and generates an SRQ. SRQ’s are not generated for 
subsequent measurements (outside the limits) until the SRQ 
is serviced and the measurement is reported to the control- 
ler in response to the DATA command. 



If the instrument over-ranges with MON ON, it reports an 
over-range error even though OVER is OFF. 



3-14 



MODE 



MONITOR 



Programming — DM 5010 



NULL 



OHMS (Ohms Function) 



Type: 

Setting or query 



Type: 

Setting 



Setting syntax: 

NULL <number> 



Setting syntax: 

OHMS <number> 
OHMS 



Examples: 

NULL .2 
NULL 0 



Query syntax: 

NULL? 



Examples: 

OHMS 
OHMS 100 
OHMS -2E+7 
OHMS 1E+4 



Range selected: 

20 MO, auto-range 
200 0 

20 MO, auto-range 
20 kO 



Query response: 

NULL <number>; 



Discussion: 

This command enables the NULL function; the argument 
(in volts or ohms) specifies the value of the offset. This value 
can be any number up to 100% of the range. 



The NULL function is disabled when the measurement 
function is changed or when the argument is 0. (Changing 
the measurement function also sets the argument to 0.) 



Use caution when the NULL function is enabled, since 
the measurement may not indicate the value of the 
voltage applied to the input connectors. 



Discussion: 

The header selects the OHMS function; the argument 
selects the range. The format for numeric arguments is de- 
scribed under Number Format later in this section of the 
manual. The argument can be any value; however, the in- 
strument rounds the argument up to the first full scale 
range. For instance, for an argument of 100, the instrument 
selects the 200 0 range. 



If the argument is omitted or its value is 0 or less, the 
instrument auto-ranges beginning at the highest range. 



If the argument is above the highest range, the instru- 
ment generates a command error (and asserts SRQ if RQS 
is on). 



Ranges; 

200 
2 kU 
20 kO 
200 kfi 
2 MQ 
20 Mfi 



NULL I OHMS 




Programming — DM 5010 



OPC (Operation Complete) 

Type: 

Setting or query 

Setting syntax: 

OPC ON 
OPC OFF 

Query syntax: 

OPC? 

Query response: 

OPC ON; 

OPC OFF; 

Discussion: 

This command enables or disables the operation com- 
plete service request. If enabled and RQS is ON, the instru- 
ment asserts SRQ when a new measurement is available. 



OVER (Over-range) 

Type: 

Setting or query 

Setting syntax: 

OVER ON 
OVER OFF 

Query syntax: 

OVER? 

Query response: 

OVER ON; 

OVER OFF; 

Discussion: 

This command enables or disables the over-range ser- 
vice request. If enabled and RQS is ON, the instrument as- 
serts SRQ when it takes an over-range measurement. 



When OVER is OFF, the instrument returns ±1,E-i-99 
when talked, to indicate over-range (does not assert SRQ). 



3-16 



OPC I OVER 



@ 



Programming — DM 5010 



RATIO 



RDY? 



Type: 

Setting or query 



Type: 

Query 



Setting syntax: 

RATIO <number>,<number> 



Query syntax: 

RDY? 



Examples: 

RATIO 100, 15 
RATIO 10, 2 



Query response: 



RDY 

RDY 



0 ; 

sp sp 

1 ; 

5P sp 



Query syntax; 

RATIO? 



Query response; 

RATIO <number>,<number>: 



Discussion: 

This command returns RDY 0 if a measurement is in 
progress or if the instrument Is waiting for a trigger. RDY 1 
indicates data is available. 



Discussion: 

The arguments for this command set the value of the 
offset and scale factor used in the X-B/A calculation. See 
CALC RATIO. The first argument sets the value of the scale 
factor (button A on the front panel); the second sets the 
offset value (button B on the front panel). The arguments 
can be any number except that scale factor cannot be 0. 



@ 



RATIO 



RDY? 



3-17 




Programming — DM 5010 



RQS (Request Service) 

Type: 

Setting or query 

Setting syntax: 

RQS ON 
RQS OFF 

Query syntax: 

RQS? 

Query response: 

RQS ON; 

RQS OFF; 

Discussion: 

This command enables the instrument to generate any 
service requests. The OFF argument disables all service re- 
quests. See Status and Error Reporting for more 
information. 



SEND 

Type: 

Output 

Syntax: 

SEND 

SEN 

Response: 

<number> ; (no header) 

Example: 

± 1 . E H- 99 ; (over-range) 

+3.2E+3; 

Discussion: 

This command causes the instrument to output the latest 
measurement. If no measurement Is available, the instru- 
ment triggers a measurement and then outputs it. 

If the COMPARE calculation is enabled (CALC CMPR) 
the instrument outputs one of the following numbers which 
indicate the relationship between the input and the limits set 
by the LIMITS command: 

3.; if the input is above both limits 

2.; if the input is between limits or equal to one of the 
limits 

1 .; if the input is below both limits 
-l-1.E-i-99; or — 1.E + 99; if over-ranged. 



3-18 



RQS 



SEND 



Programming — DM 5010 



SET? 

Type: 

Query 

Query syntax; 

SET? 

Query response example (power up settings): 

DCV -1.E + 3;AVE 2; RATIO 1. 0.;DBR 1.;UMITS 0.. 
0.;CALC OFF;NULL 0.; DIGIT 4.5;LFR OFF;MODE 
RUN;SOURCE FRONT;DT OFF;MONITOR OFF;OPC 
OFF; OVER OFF;USER OFF;RQS ON; 



Discussion; 

This command returns the present settings of all instru- 
ment functions. The longest response is 225 characters. 



SOURCE 



Type: 

Setting or query 



Setting syntax: 

SOURCE FRONT 
SOURCE REAR 
SOUR FRONT 
SOUR REAR 



Query syntax: 

SOURCE? 

SOUR? 

Query response: 

SOURCE FRONT: 

SOURCE REAR; 

Discussion: 

SOURCE FRONT selects the front panel input for mea- 
surement; SOURCE REAR selects the rear interface input 
connectors for measurement. 




Do not switch from front panel to rear interface input 
while over 500 V peak is applied to the front pane! 
input connectors. Instrument damage and erratic op- 
eration may result. 



@ 



SET? 



SOURCE 



3-19 



Programming — DM 5010 



TEST 

Type: 

Output 

Syntax: 

TEST 

Response: 

TEST 0; 
TEST 351; 



Discussion: 

Returns a number that indicates the status of the calibra- 
tion checksum. Returns 0 if the checksum is correct; 351 if 
erroneous. 



USER 

Type: 

Setting or query 

Setting syntax: 

USER ON 
USER OFF 

Query syntax; 

USER? 

Query response: 

USER ON; 

USER OFF; 

Discussion: 

This command enables or disables the INST ID button 
service request. If enabled, the instrument asserts SRQ 
when the front panel INST ID button is pressed. 



3-20 



TEST 



USER 






Programming — DM 5010 



MESSAGES AND 
COMMUNICATION PROTOCOL 



Command Separator 

A message consists of one command or a series of com- 
mands, followed by a message terminator. Messages con- 
sisting of multiple commands must have the commands 
separated by semicolons. A semicolon at the end of a mes- 
sage is optional, For example, each line below is a message. 

INIT 

TEST;INIT;RQS ON;USER OFF:ID?;SET? 

TEST; 



added between the header delimiter and the argument, they 
are ignored by the instrument. 

Example 1: RQSgpON; 

Example 2: RQSgpgpON; 

Example 3: RQSgp^pLF 



In general, these formatting characters are ignored after any 
delimiter and at the beginning and end of a message. 



gpRQSgpON.^P UF 

spUSER,,OFF 



Message Terminator 

Messages may be terminated with EOl or the ASCII line 
feed (LF) character. Some controllers assert EOl concur- 
rently with the last data byte; others use only the LF charac- 
ter as a terminator. The instrument can be internally set to 
accept either terminator. With EOl ONLY selected as the 
terminator, the instrument interprets a data byte received 
with EOl asserted as the end of the input message; it also 
asserts EOl concurrently with the last byte of the output 
message. With the LF/EO! setting, the instrument interprets 
the LF character without EOl asserted (or any data byte 
received with EOl asserted) as the end of an input message; 
i^transmits carriage return (CR) followed by line feed (the LF 
with EOl asserted) to terminate output messages. Refer 
service personnel to the Maintenance section of the manual 
for information on setting the message terminator. TM 5000 
instruments are shipped with EOl ONLY selected. 



Formatting A Message 

Commands sent to TM 5000 instruments must have the 
proper format (syntax) to be understood; however, this for- 
mat is flexible in that many variations are acceptable. The 
following describes this format and the acceptable 
variations. 



The instruments expect all commands to be encoded in 
ASCII: however, they accept both upper and lower case 
ASCII characters. All data output is in upper case. 



As previously discussed, a command consists of a head- 
er followed, if necessary, by arguments. A command with 
arguments must have a header delimiter that is the space 
character (SP) between the header and the argument. The 
space character (SP). carnage return (CR). and line feed 
(LF) are shown as subscript in the following examples. 

RQSgpON 

If extra formatting characters SP, CR, and LF (the LF can- 
not be used for format in the LF/EO I terminator mode) are 



In the command list, some headers and arguments are 
listed In two forms, a full-length version and an abbreviated 
version. The instrument accepts any header or argument 
containing at least the characters listed in the short form; 
any characters added to the abbreviated version must be 
those given in the full-length version. For documentation of 
programs, the user may add alpha characters to the full- 
length version. Alpha characters may also be added to a 
query header, provided the question mark is at the end. 

USER? 

USERE? 

USEREQ? 

USEREQUEST? 



Multiple arguments are separated by commas; however, the 
instrument will also accept a space or spaces as a delimiter. 

2.3 



NOTE 

In the last example, the space is treated as a format 
character because it follows the comma (the argument 
delimiter). 



Number Formats 

The instrument accepts the following kinds of numbers 
for any of the numeric arguments. 

• Signed or unsigned integers (including -fO and — 0). 
Unsigned integers are interpreted as positive. Exam- 
ples: -M, 2, —1, —10 

• Signed or unsigned decimal numbers. Unsigned deci- 
mal numbers are interpreted to be positive. Examples: 
-3.2, +5.0, 1.2 



3-21 




Programming — DM 5010 



• Floating point numbers expressed in scientific nota- 
tion. Examples: +1.0E — 2, 1.0E— 2, 1.E-2, O.OIE-kO 



The largest acceptable number for an argument is 
+ 3.4028E+38. 



Message Protocol 

As the instrument receives a message it is stored in the 
Input Buffer, processed, and executed. Processing a mes- 
sage consists of decoding commands, detecting delimiters, 
and checking syntax. For setting commands, the instrument 
then stores the indicated changes in the Pending Settings 
Buffer. If an error is detected during processing, the instru- 
ment asserts SRQ, ignores the remainder of the message, 
and resets the Pending Settings Buffer. Resetting the Pend- 
ing Settings Buffer avoids undesirable states that could oc- 
cur if some setting commands are executed while others in 
the same message are not. 



Executing a message consists of performing the actions 
specified by its command(s). For setting commands, this in- 
volves updating the instrument settings and recording these 
updates in the Current Settings Buffer. The setting com- 
mands are executed in groups — that is, a series of setting 
commands is processed and recorded in the Pending 
Settings Buffer before execution takes place. This allows 
the user to specify a new instrument state without having to 
consider whether a particular sequence would be valid. Ex- 
ecution of the settings occurs when the instrument pro- 
cesses the message terminator, a query-output command, 
or an operational command in a message. 



When the instrument processes a query-output com- 
mand in a message, it executes any preceding setting com- 
mands to update the state of the instrument. It then 
executes the query-output command by retrieving the ap- 
propriate data and putting it in the Output Buffer. Then, pro- 
cessing and execution continue for the remainder of the 
message. The data are sent to the controller when the in- 
strument is made a talker. 



When the instrument processes an operational command 
in a message, it executes any preceding setting commands 
before executing the operational command. 



Multiple Messages 

The Input Buffer has finite capacity and a single message 
may be long enough to fill it. In this case, a portion of the 
message is processed before the instrument accepts addi- 
tional input. During command processing the instrument 
holds off additional data (by asserting NRFD) until space is 
available in the buffer. 



When space is available, the instrument can accept a 
second message before the first has been processed. How- 
ever, it holds off additional messages with NRFD until it 
completes processing the first. 



After the instrument executes a query-output command 
in a message, it holds the response in its Output Buffer until 
the controller makes the instrument a talker. If the instru- 
ment receives a new message before all of the output from 
the previous message is read, it clears the Output Buffer 
before executing the new message. This prevents the con- 
troller from getting unwanted data from old messages. 



One other situation may cause the instrument to delete 
output. The execution of a long message might cause both 
the Input and Output buffers to become full. When this oc- 
curs, the Instrument cannot finish executing the message 
because it is waiting for the controller to read the data it has 
generated; but the controller cannot read the data because 
it is waiting to finish sending its message. Because the in- 
strument’s Input buffer is full and it is holding off the rest of 
the controllers message with NRFD, the system is hung up 
with the controller and instrument waiting for each other. 
When the instrument detects this condition, it generates an 
error, assets SRQ, and deletes the data in the Output buff- 
er. This action allows the controller to transmit the rest of 
the message and informs the controller that the message 
was executed and that the output was deleted. 



ATM 5000 instrument can be made a talker without hav- 
ing received a message that specifies what it should output. 
In this case, acquisition instruments (counters and multi- 
meters) return a measurement if one is ready. If no mea- 
surement is ready, they return a single byte message with all 
bits equal to 1 (with message terminator); other TM 5000 
instruments will return only this message. 

instrument Response to IEEE-488 Interface 
Messages 

Interface messages and their effects on the instrument’s 
interface functions are defined in IEEE Standard 488-1978. 
Abbreviations from the standard are used In this discussion, 
which describes the effects of interface messages on instru- 
ment operation. 



UNL — Unlisten (63 with ATN) 

UNT— Untalk (95 with ATN) 

When the UNL command is received, the instrument’s 
listener function goes to its idle state (unaddressed). In the 
idle state, the instrument will not accept instrument com- 
mands from the GPIB. 




Programming — DM 5010 



The talker function goes to its idle state when the instru- 
ment receives the UNT command. In this state, the instru- 
ment cannot output data via the GPIB. 



The ADDRESSED light is off when both the talker and 
listener functions are idle. If the instrument is either talk ad- 
dressed or listen addressed, the light is on. 



IFC — Interface Clear (GPIB pin 9) 

This uniline message has the same effect as both the 
UNT and UNL messages. The front panel ADDRESSED 
light is off. 



DCL — Device Clear (20 with ATN) 

The Device Clear message reinitializes communication 
between the instrument and controller. In response to DCL. 
the instrument clears any input and output messages and 
any unexecuted settings in the Pending Settings Buffer. 
Also cleared are any errors or events waiting to be reported, 
except the power-on event. If the SRQ line is asserted for 
any reason other than power-on when DCL is received, the 
SRQ is unasserted. 



SDC — Selected Device Clear (4 with ATN) 

This message performs the same function as DCL; how- 
ever, only instruments that are listen addressed respond to 
SDC. 



GET — Group Execute Trigger (8 with ATN) 

The instrument responds to <GET> only if it is listen 
addressed and the instrument device trigger function has 
been enabled by the Device Trigger command (DT). The 
<GET> message is ignored and an SRQ generated if the 
DT function is disabled (DT OFF), tne instrument is In the 
local state, or if a message is being processed when 
<GET> is received. 



SPE— Serial Poll Enable (24 with ATN) 

SPD— Serial Poll Disable (25 with ATN) 

The SPE message enables the instrument to output 
serial poll status bytes when it is talk addressed. The SPD 
message switches the instrument back to its normal oper- 
ation of sending the data from the Output Buffer. 



MLA — My Listen Address 
MTA — My Talk Address 

The primary listen and talk addresses are established by 
the instruments GPIB address (internally set). The current 
setting of the GPIB address is displayed on the front panel 



when the ID button is pressed. When the instrument is ad- 
dressed to talk or listen, the front pane! ADDRESSED indi- 
cator is illuminated. 



LLO— Local Lockout (17 with ATN) 

In response to LLO, the instrument goes to a lockout 
state — from LOGS to LWLS or from REMS to RWLS. 



REN — Remote Enable 

If REN Is true, the instrument goes to a remote state 
(from LOCS to REMS or from LWLS to RWLS) when its 
listen address is received. REN false causes a transition 
from any state to LOCS; the instrument stays in LOCS as 
long as REN is false. 



A REN transition may occur after message processing 
has begun. In this case, execution of the message being 
processed is not affected by a transition. 



GTL— Go To Local (1 with ATN) 

Only instruments that are listen addressed respond to 
GTL by going to a local state. Remote- to-local transitions 
caused by GTL do not affect the execution of the message 
being processed when GTL was received. 

« 

Remote-Local Operation 

The preceding discussion of Interface messages de- 
scribes the state transitions caused by GTL and REN. Most 
front panel controls cause a transition from REMS to LOCS 
by asserting a message called return-to-local (rtl). This tran- 
sition may occur during message execution; but in contrast 
to GTL and REN transitions, a transition initiated by rtl does 
affect message execution. In this case, the instrument gen- 
erates an error if there are any unexecuted setting or oper- 
ational commands. Front panel controls that only change 
the display (like INST ID) do not affect the remote-local 
states — only front panei controls that change settings as- 
sert rtl. The rtl message remains asserted while multiple 
keystroke settings are entered; and it is unasserted after 
the execution of the settings. Since rtl prevents transitions 
to REMS, the instrument unasserts rtl if a multiple button 
sequence is not completed in a reasonable length of time 
(approximately 5 to 10 seconds). 



The instrument maintains a record of its settings in the 
Current Settings Buffer and new settings from the front 
panel or the controller update these recorded settings. In 
addition, the front panel Is updated to reflect setting 
changes due to commands. Instrument settings are unaf- 
fected by transitions between the four remote-local states. 
The REMOTE indicator is illuminated when the instrument is 
in REMS or RWLS. 




Programming — DM 5010 



Local State (LOGS) 

In LOGS, instrument settings are controlled by the opera- 
tor via front panel push buttons. When in LOGS, only bus 
commands that do not change instrument settings are ex- 
ecuted {query-output commands); all other bus commands 
(setting and operational) generate an error since their func- 
tions are under front-panel control. 



Local With Lockout State (LWLS) 

The instrument operates the same as it does in LOGS, 
except that rtl will not inhibit a transition to remote. 



Remote State (REMS) 

In this state, the instrument executes alt instrument com- 
mands. For commands having front panel indicators, the 
front panel is updated when the commands are executed. 



Remote With Lockout State (RWLS) 

Instrument operation Is identical to REMS operation ex 
cept that the rtl message is ignored. 



STATUS AND ERROR REPORTING 

Through the Service Request function (defined in the 
IEEE-488 Standard), the instrument may alert the controller 
that it needs service. This service request is also a means of 
indicating that an event (a change in status or an error) has 
occurred. To service a request the controller performs a 
Serial Poll; in response the instrument returns a Status byte 
(STB), which indicates whether it was requesting service or 
not. The STB can also provide a limited amount of informa- 
tion about the request. The format of the information en- 
cooed in the STB is given in Fig. 3-2. 



When data bit 8 is set, the STB conveys Device Status 
information that is indicated by bits 1 through 4. Bit 4 is set 
if the DM 5010 is waiting for a trigger; bit 3 set indicates a 
reading is available. 



EXECUTION ERROR Indicates that the instrument has 
received a command that it can- 
not execute. This is caused by ar- 
guments out of range or settings 
that conflict. 



INTERNAL ERROR Indicates that the instrument has 
detected a hardware condition or 
firmware problem that prevents 
operation. 

SYSTEM EVENTS Events that are common to in- 
struments in a system (e.g., Pow- 
er on, User Request, etc.). 



INTERNAL WARNING Internal warning indicates that 
the instrument has detected a 
problem. The instrument remains 
operational, but the problem 
should be corrected (e.g., out of 
calibration). 

DEVICE STATUS Device dependent events. 



r{' 



If 0, STB indicates event class 
It 1 , STB indicates device status 



-- 1 if requesting service 

1 indicates an abnormal event 

- 1 if message processor is busy 



I 
I 

! '"I- 



' I I 
DATA BITS 



Define Events 



DECIMAL 



Status Byte 
{Example) 


£ 


7 


6 


5 


4 


3 


2 


1 j 


j Not 
i busy 


Busy 


Power 

Or 


0 


1 


0 


X 

_i 


0 


0 


0 


I 


j 65 


81 



Fig. 3-2. Definition of STB bits. 



Because the STB conveys limited information about an 
event, the events are divided into classes: the Status Byte 
reports the class. The classes of events are defined as 
follows: 

COMMAND ERROR Indicates the instrument has re- 
ceived a command that it cannot 
understand. 



The instrument can provide additional information about 
many of tne events, particutariy the errors reported in the 
Status Byte. After determining that the instrument request- 
ed service (by examining tne STB) the controller may re- 
quest the additional information by sending error query 
(ERR?), in response, the instrument returns a code which 
defines tne event. Tnese cooes are described in Table 3-1. 




Programming — DM 5010 



Table 3-1 

ERROR QUERY AND STATUS INFORMATION 





Error Query 


Serial Poll 


Abnormal Events 


Response 


Response* 


Command Errors: 






Invalid command header 


101 


97 


Header delimiter error 


102 


97 


Argument error 


103 


97 


Argument delimiter error 


104 


97 


Missing argument 


106 


97 


Invalid message unit delimiter 


107 


97 


Execution Errors: 






Not executable in local mode 


201 


98 


Settings lost due to rtl 


202 


98 


Input and output buffers full 


203 


98 


Argument out of range 


205 


98 


Group Execute Trigger Ignorec 


206 


98 


Not in calibrate mode 


231 


98 


Beyond calibration or null 






capability 


232 


98 


Internal Errors: 






Interrupt fault 


301 


99 


System error 


302 


99 


Math pack error 


303 


99 


Converter time-out 


311 


99 


Front panel time-out 


317 


99 


Bad ohms calibration constant 


318 


99 


Calibration checksum error 


351 


99 


Normal Events 






System Events: 






Power on 


401 


65 


Operation complete 


402 


66 


ID user request 


403 


67 


Internal Warning: 






Over-range 


601 


102 


Device Status^: 






Reading available 


0 


132 


Waiting for trigger 


0 


136 


Reading available and 






waiting for trigger 


0 


140 


Below limits 


701 


193 


Above limits 


703 


195 


No Errors or Events 


0 


128 



*lf the instrument is busy, it returns a decimal number 16 higher 
than the number listed. 



‘^he 4050>Series controller POLL command returns 0 for serial 
poll responses between 128 and 192; the responses listed can 
be obtained by using WBYTE and RBYTE statements. 



Table 3-2 

FRONT-PANEL ERROR CODES 



Displayed Abnormal Events 

Execution Errors: 



205 

231 

232 


Argument out of range 
Not in calibrate mode 
Beyond calibration capability 




Internal Errors: 




303 


Math pack error 




311 


Converter time-out 




317 


Front panel time-out 




318 


Bad ohms calibration constant 




340 


RAM error (high nibble) 




341 


RAM error (low nibble) 




351 


Calibration checksum error 




372 


ROM placement error 


COOO 


373 


ROM placement error 


DOOO 


374 


ROM placement error 


EOOO 


392 


ROM checksum error 


COOO 


393 


ROM checksum error 


DOOO 


394 


ROM checksum error 


EOOO 


395 


ROM checksum error 


FOOO 


521 


Indicates GPIB address switch (Signature 
Analysis) is enabled 



If there is more than one event to be reported, the instru- 
ment re-asserts SRQ until it reports all events. Each event is 
automatically cleared when it is reported via Serial Poll. The 
Device Clear (DCL) interface message may be used to clear 
all events except power-on. 



Commands are provided to control the reporting of some 
individual events and to disable all service requests. For ex- 
ample, the User Request command (USER) provides indi- 
vidual control over the reporting of the user request event, 
which occurs when the front panel INST ID button is 
pushed. The Request for Service command (RQS) controls 
whether the instrument reports any events with SRQ. 



RQS OFF inhibits all SRQ’s, (except the power-on SRQ) 
so in this mode the ERR? query allows the controller to find 
out about events without first performing a Serial Poll. With 
RQS OFF, the controller may send the ERR? query at any 
time and the instrument returns an event waiting to be re- 
ported. The controller can clear all events by sending the 
error query until a zero (0) code is returned, or dear all 
events except power-on through the DCL interface 
message. 



With RQS OFF the controller may perform a Serial Poll, 
but the Status Byte only contains Device Dependent Status 
information. With RQS ON, the STB contains the class of 
the event and a subsequent error query returns additional 
information about the previous event reported in the STB. 



REV JAN 1982 



3-25 




Programming — DM 5010 



SENDING INTERFACE COMMANDS 

The controller commands in the following text are for 
TEKTRONIX 4050-Series Controllers: they are representa- 
tive of commands for other controllers. 



Instrument commands are sent to the DM 5010 in ASCII 
using controller PRINT statements. The DM 5010 outputs 
data in response to INPUT statements from the controller. 
For example: 

PRINT @ 16:*SET?" 

INPUT @ 16;A$ 

where 16 is the DM 5010 primary GPIB address. 

Interface control messages may be sent to the DM 501 0 
using WBYTE controller commands. In the following exam- 
ples, A and B are the DM 5010 talk and listen addresses. 
For A, substitute the instrument primary address plus 32; 



for B, substitute the instrument primary address plus 64. 


Listen (MLA) 


WBYTE @ A: 


Uniisten (UNL) 


WBYTE (§) 63: 


Talk (MTA) 


WBYTE @ B: 


Untalk (UNT) 


WBYTE @ 95: 


Device Clear (DCL) 


WBYTE @ 20: 


Selected Device Clear (SDC) 


WBYTE @ A,4: 


Go To Local (GTL) 


WBYTE (§) A,1; 


Remote With Lockout (RWLS) 


WBYTE (® A, 17 


Local With Lockout (LWLS) 


WBYTE (g) 17: 


Group Execute Trigger <GET> 


WBYTE @ A.8: 


Serial Poll Enable (SPE) 


WBYTE @ 24: 


Serial Poll Disable (SPD) 


WBYTE @ 25: 



Refer to the 4050-Series Controller manual for informa- 
tion on using RBYTE statements. 



POWER-ON (INITIAL) CONDITIONS 

At power on, the DM 5010 microprocessor performs a 
diagnostic routine (self-test) to check the functionality of the 
ROM and RAM. If no error is found, the instrument enters 
the Local State (LOCS) with the settings listed in Table 3-3. 
The SRQ line on the GPIB is also asserted. 



The DM5010 also assumes the settings in Table 3-3 
when it executes the INIT command. The range setting for 
the DCV function is valid only for the first reading, since the 
instrument is in auto-range. 



Table 3-3 

DM 5010 POWER ON SETTINGS 



Header 


Argument 


AVE 


2 


CALC 


OFF 


DBR 


1 


DCV 


-1.E+3 


DIGIT 


4.5 


DT 


OFF 


LFR 


OFF 


LIMITS 


0.0 


MODE 


RUN 


MONITOR 


OFF 


NULL 


0 


OPC 


OFF 


OVER 


OFF 


RATIO 


1,0 


RQS 


ON 


SOURCE 


FRONT 


USER 


OFF 



3-26 



REV JAN 1982 




ASCII & IEEE 468 |GPIB| CODE CHART 




ADDRESSED COMMANDS | 

UNIVERSAL COMMANDS 

KEY TO CHART 

octM -Sb PPU owe code 

NAK ASCII charsctw 

-T5 (211-^— 

3391-13 







Programming — DM 5010 



Example Programs 

Talker Listener Program For TEKTRONIX 4050-Series 
Controllers 

100 RFft DftSOlO Talkcr/Ustener Proara* 
lio REn 005010 Priaary Address 16 
120 INIT 

130 OM SRQ THEN 260 
140 Dlft A$(2D0> 

ISO PRINT "Enter rtas53do<s)* *' » 

160 INPUT C» 

170 PRINT ai6»C$ 

180 REn Check for «iuer leB 

190 IF P0S(C$,"?'M)O0 THEN 220 

200 REn Check for 'SEND' 

210 IF P03(C$r"SEND",l)=0 THEN 150 
220 REn Input froa device 
230 INPUT ei6»A$ 

240 PRINT A» 

250 GO TO 150 

260 REn Ser i el POLL Routine 
270 POLL X.YJ 16 
280 PRINT "StetuB Bute! 'MY 
290 RETURN 



These sample programs allow a user to send instrument 
commands to the DM 5010 to change instrument settings 
and to return the data generated. 



Additional assistance in developing specific application 
oriented software is available in the following Tektronix 
manuals. 



070-3985-00 — GPIB Programming Guide. This manual is 
specifically written for applications of this instrument in 
IEEE-488 systems. It contains programming instructions, 
tips, and some specific example programs. 



070-2270-00 — 4051 GPIB Hardware Support Manual. 
This manual gives an in-depth discussion of IEEE-488 
bus operation, explanations of bus timing details and ear- 
ly bus interface circuitry. 



Talker Listener Program For TEKTRONIX 4040-Series 
Controllers 



100 Rem DH5010 TALKER/LISTENER PROGRAM 
110 Rea PRIMARY ADDRESS = 16 
120 Xnit all 

130 On arq then gosub arqbdl 

140 Enable arq 

130 Dim respons$ to 200 

160 Input prompt "ENTER MESSAGE(S): *:aeasage$ 
170 Print #l6:me33age$ 

160 Rem CHECK FOR QUERIES 

190 If posfmeaaagel ,■?" ,1 ) then goto 280 

200 Rem CHECK FOR 'SEND* COMMAND 

210 If po3(measage$ ,”SEND" , 1 ) then goto 260 

220 Rem CHECK FOR ’TEST* COMMAND 

230 If po3(me83age$,"TEST",1) then goto 280 

240 Rem CHECK FOR 'DATA' COMMAND 

250 If po3(mea3age$ ,"DATA" , 1 ) then goto 260 

260 Goto 160 

270 Rem INPUT FROM DEVICE 
280 Input #l6;respona4 
290 Print "RESPONSE; "jreaponal 
300 Goto 160 

310 Rem SERIAL POLL ROUTINE 
320 Srqhdl: poll atb^pri 
330 Print "STATUS BYTE: ";atb 
340 Reaume 
350 End 



070-2058-01 — Programming in BASIC 

070-2059-01 — Graphic programming in BASIC 

062-5971-01 — 4050-Series programming aids, T1 (in- 
cludes software) 

062-5972-01 — 4050-Series programming aids, T2 {in- 
cludes software) 

070-2380-01—4907 File manager operators manual 

070-2128-00 — 4924 Users manual 

070-1940-01 — 4050- Series graphic system operators 
manual 

070-2056-01 — 4050-Series graphic system reference 
manual 

070-3918-00 — 4041 Operators manual 
061-2546-00 — 4041 Programming reference manual 



3-28 



REV JAN 1983 




Programming — DM 5010 



PROGRAMMING AIDS 

This discussion of programming considerations and the 
program examples are provided to aid in developing pro- 
grams to control the DM 501 0. The program examples were 
designed using a TEKTRONIX 4050-Series controller and 
the DM5010; some examples also use other TM 5000 
programmable instruments. 



An initial programming consideration is setting the 
DM 5010 message terminator, GPIB address, and Talk Only 
mode switches. To determine their settings, press the INST 
ID button. The number displayed is the selected GPIB pri- 
mary address; the far right decimal illuminates if the LF/EOI 
message terminator is selected; the minus sign illuminates if 
the Talk Only mode is selected. To change switch settings, 
refer qualified service personnel to the Maintenance section 
of this manual. 



In the program examples, variable D is assigned to the 
DM 5010 GPIB primary address, which is assumed to be 
set to decimal 1 6. Using a variable name eliminates repeat- 
ing the address decimal number and allows the address in 
the program to be easily changed. 



Handling Service Requests 

At power-on, the DM 501 0 asserts SRQ. The power-on 
SRQ is incorporated to inform the controller if the power 
source is interrupted during program operation, since it may 
interfere with proper program execution. The DM 5010 can 
also assert SRQ for other events, if SRQ is enabled (see 
Table 3-1, Error Query and Status Information). Some con- 
trollers have the capability of ignoring SRQs; the other con- 
trollers require servicing all SRQs. If SRQs are to be 
serviced in the program, be sure to enable its interrupt. 



Interrupt Handler — an interrupt driven routine to service 
SRQs when they occur during program operation. An inter- 
rupt handler basically consists of an ON SRQ statement in 
the beginning of the program, and a serial poll routine some- 
where in the program. The ON SRQ statement directs pro- 
gram control to the serial poll routine when an SRQ occurs. 
See program example 1 or 3, line 110 for ON SRQ state- 
ments. When an SRQ interrupt occurs, the controller per- 
forms the serial poll routine. In a POLL statement, the first 
variable returns the instruments position in the list of GPIB 
addresses; the second variable returns the status byte, A 
serial poll of one instrument on the bus is illustrated in ex- 
ample 3, line 1000. Line 400 in example 4 polls three instru- 
ments on the bus, using the variable names for each 
instrument address. In each example, the POLL returns the 
status byte from the instrument asserting SRQ. Program 
example 9, lines 150, 160, and 170 comprise a serial poll 
using 4050-Series WBYTE and RBYTE statements. 



The serial poll routine can be expanded to decode infor- 
mation about the event causing the SRQ. In example 1, 
lines 510 and 520 clear the busy bit in the status byte; lines 
530 through 560 decode the status byte, and lines 1000 
through 7030 print the event class on the controller display. 



Program example 7 uses the MONITOR SRQ to detect 
measurements above or below limits set by the LIMITS 
command, or overrange. Lines 1020, 1040, and 1045 de- 
code the status byte and initiate the appropriate print out on 
the controller display. 



In program example 2, line 130, the controller polls the 
instrument at address 16 to clear the power-on SRQ. Line 
160 turns SRQ off to inhibit additional SRQs. After SRQ 
OFF, the ERR? query may be inserted in the program where 
it is necessary to determine an event state. 



Front Panel Lockout 

The front panel may t^ locked out so that only the con- 
troller may change instrument settings. To lock out the front 
panel, first assert REN (true). REN must remain true as long 
as lock out is desired. For 4050-Series controllers, the RUN 
statement automatically asserts REN; the END statement 
unasserts REN. Then send the interface message LLO 
(decimal 17 with ATN). This is done in the 4050-Series con- 
troller with the WBYTE statement. Finally, address the in- 
strument by sending a setting or query command using a 
PRINT @D: statement or send only the listen address using 
a WBYTE statement. After these three steps, the front pan- 
el is locked out and remains so until REN goes false or a 
<GTL> message (decimal 1 with ATN) is sent. See pro- 
gram example 4, lines 150 and 190; and example 5, lines 
130 and 220. 



Using INIT 

Using the INIT command simplifies the program because 
it usually takes fewer commands to set the instrument state 
than specifying all settings individually. In program example 
6, line 150, the DM5010 receives the INIT command, fol- 
lowed by a series of commands that change the instrument 
state from the INIT (power-on) settings to the desired state. 



invalidating a Pending Reading 

Following a change to the applied input, it may be desir- 
able to invalidate the pending reading since it no longer re- 
flects the current measurement conditions One way to 
invalidate a pending reading is to send the instrument a set- 
ting command — this causes the instrument to delete data in 
the output buffer. Another way is to input a reading to the 
controller and ignore It. 



ADD JAN 1982 



3-29 



Programming — DM 5010 



Invalid readings can be avoided by using MODE TRIG to 
control when readings are taken. 



Allowing Settling Time 

Settling time may be incorporated in a program to ensure 
that the reading returned to the controller is valid. Refer to 
Step Response Time in the Specification section of this 
manual. 



In program example 4, lines 230-250 use a FOR... NEXT 
loop to input five readings into variable R. At the end of the 
loop, variable R contains the fifth reading. 



In program example 5, lines 290-320, two DM 5010 read- 
ings are compared; if the difference Is greater than 0.001, 
another reading is taken for comparison. Comparisons are 
repeated until the difference indicates two readings are 
nearly the same. 



Triggering Measurements 

To trigger a single conversion, use MODE TRIG and initi- 
ate a trigger by using one of the following: 

1 . Talk-address the instrument. See program example 2 
line 180. 

2. SEND command. 

3. Send DT TRIG. Then trigger the DM 5010 by trans- 
mitting a Group Execute Trigger (GET) interface message 
(decimal 8 with ATN). Refer to program example 9, lines 120 
and line 5. 

4. If the EXTRIG mode is enabled, hold P1031-16A on 
the Isolation board low for 1 0 or less. 

5. Instruct the operator to press the front-panel TRIG- 
GERED button. 



For repetitive (free-run) triggering, use the MODE RUN 
command. If the EXTRIG mode is enabled, hold P1031-16A 
on the Isolation board low. 



Determining Reading Availability 

It is not necessary to determine if a reading is available 
when the instrument is talk addressed or when the SEND 
command is used to return data. For either of these retrieval 
methods, the instrument triggers a conversion if a reading is 
not pending. 



For other retrieval methods, there are several ways to 
determine if a reading is available. 



1. Send the RDY? query command. When the response 
is 1, a reading is ready. See program example 3, line 140. 

2. Set OPC ON and RQS ON. The instrument asserts 
SRQ when a reading is available. See example 8, line 1 50. 

3. Repeat a serial poll routine using the WBYTE state- 
ments until the status byte is 132, 148', 140, or 156. See 
example 9, lines 150 and 200. 



The RDY?, OPC ON and serial poll routine are useful 
when several tasks are going on at the same time. 



Sending Readings to a Listener 

To transfer a DM 501 0 reading to a GPIB listener, the 
instrument that is to receive the data must be listen ad- 
dressed. Then talk address the DM 5010 to transmit read- 
ings. When sent to a controller, data can be read into a 
string or numeric variable. See programming examples 2, 
line 180, and 3, line 150. 



3*30 




Programming — DM 5010 



Program Example 1: 

1 REM IMTERACTIVE DRIVER WITH STHTUS BYTE DECODER FOR DM5010 

99 REM D = PIDDRESS OF DM5010 

100 D=16 

110 OM SRQ THEN 500 

120 PRINT ei6;”INIT;USER ON; OVER ON" 

130 PRINT "ENTER DM5010 COMMPND: " ; 

140 INPUT 
150 PRINT 

159 REM GET QUERY RESPONSE OR REftDING FROM DM5010 

160 INPUT eDrfiS 
170 PRINT A$ 

200 GO TO 130 

499 REM SERVICE REQUEST INTERRUPT SUBROUTINE 

500 POLL X,Y;D 

509 REM CLEfiR BUSY BIT 

510 IF Y/32-INT(Y/32)<0.5 THEN 530 
520 Y=Y-16 

529 REM DECODE STPTUS BYTE 

530 IF Y-102 THEN 6010 

540 GO TO Y-192 OF 7010,550,7030 
550 GO TO Y-64 OF 4010,4020,4030 
560 GO TO Y-96 OF 1000,2000,3000 

570 PRINT Y;" IS RN INVPLID STPTUS BYTE FOR DM5010" 

500 RETURN 

1000 PRINT "COftIPND ERROR" 

1009 RETURN 

2000 PRINT "EXECUTION ERROR" 

2009 RETURN 

3000 PRINT "INTERNPL ERROR" 

3009 RETURN 

4010 PRINT "POWER ON" 

4019 RETURN 

4020 PRINT "OPERPTION COMPLETE" 

4029 RETURN 

4030 PRINT "USER REQUEST" 

4039 RETURN 

6010 PRINT "OVER-RPNGE" 

6019 RETURN 

7010 PRINT "BELOW LIMITS" 

7019 RETURN 

7030 PRINT "PBO\€ LIMITS" 

7039 RETURN 



Program Example 2: 

1 REM PROGRPM TO ECHO REPDINGS FROM DM5010 ONTO CONTROLLER DISPLPY 

2 REM PSSUrt USER WILL SET DM5010 TO PROPER FUNCTIONS VIP FRONT PPNEL 
100 REM D = PDDRESS OF DM5010 

110 D-16 

120 REM REPD SERVICE REQUESTS 
130 POLL X,Y;D 
140 IF X THEN 130 

150 REM DISPBLE PLL OTHER SERVICE REQUESTS 

160 PRINT ei6:"RQS OFF- 

170 REM INPUT REPDING FROM DM5010 

180 IhPUT ®D:R$ 

190 REM CHECK FOR ERROR 
200 PRINT 9D;"ERR'?’' 

210 INPUT ^D:E$ 

220 IF ES*"ERR 0;" THEN 240 
230 PRINT E$; 

240 PRINT R$ 

250 GO TO 1B0 



ADD JAN 1982 



3-31 




Programming — DM 5010 



Program Example 3: 

1 RD1 RERDY QUERY 

100 REM D • ADDRESS OF DM5010 

101 D*16 

110 ON SRQ THEN 1000 
115 PRINT eD:”INIT" 

120 PRINT "WAITING FOR READING" 

130 PRINT "KWAITING FOR READING" 

140 PRINT eD;"RDY?" 

150 INPUT 9D:G 

160 IF NOT(G) THEN 130 

169 REM IhPUT READING FROM DM5010 

170 INPUT gD;R 

180 PRINT "READING IS ";R 
190 GO TO 120 

999 REM SERVICE REQUEST INTERRUPT SUBROUTINE 

1000 POLL X,Y;D 
1010 RETURN 



Program Example 4: 

1 REM GAIN VS FREQUENCY USING DM5010, FG5010 AND SI5010 

100 ON SRQ THEN 400 

110 D=16 

120 F=24 

130 S=26 

140 REM SEND LLO (LOCAL LOCKOUT) 

150 WBYTE ?17: 

160 PRINT "FREQUENCY (HZ) AMPLITUDE (DB)" 

170 REM H = FREQUENCY IN HZ 
180 H=10 

190 PRINT $D: "INIT;ACV" 

200 PRINT eF:"INIT;AMPL 1; OUTPUT ON; FREQ ";H 
210 PRINT eS:"INIT;CONF 0, 8, 0, 8; CLOSE 4" 

220 REM WAIT FOR FG, TEST CIRCUIT AND DM TO SETTLE 
230 FOR K*1 TO 5 
240 INPUT 9D:R 
250 NEXT K 

260 REM R » IHPUT VOLTAGE TO TEST CIRCUIT 
270 PRINT 0D:"CALC DBR;DBR ";R 
280 PRINT eS:"INIT; CLOSE 1,4,5" 

290 REM WAIT FOR SI 5010 AND DM5010 AC CONVERTER TO SETTLE 
300 FOR K=1 TO 5 
310 IHPUT eD:Rl 
320 NEXT K 

330 REM R1 - TEST CIRCUIT GAIN IN DB 
340 PRINT H,R1 

350 REM STEP FREQUENCY AND REPEAT MEASUREMENT 
360 H=10*H 

370 IF H< -100000 THEN 190 
380 END 

390 REM SERVICE REQUEST INTERRUPT SUBROUTINE 
400 POLL X.Y;D;F;S 
410 RETURN 



3-32 



REV JAN 1983 




Programming — DM 5010 



Program Example 5: 

1 REM GfliM VS FREQUENCY USING DM5010 PiND A MANUAL FG 

98 INIT 

99 REM D * ADDRESS OF DM5010, S ' ADDRESS OF SI5010 

100 D=16 
105 S=26 

110 ON SRQ THEN 480 

120 REM SEND LLO (LOCAL LOCKOUT) 

130 WBYTE ei7: 

140 PRINT "PLEASE APPLY THE FOLLOWING FREQUENCY, 

150 PRINT "THEN PRESS THE INSTRUMENT ID BUTTON ON THE DM5010" 

160 PRINT "FREQUENCY (HZ) AMPLITUDE (DB)“ 

170 REM H - FREQUENCY IN HZ 
180 H-10 

190 REM V IS A FLAG THAT IS CLEARED WHEN USER PUSHES ID BUTTON ON DM5010 
200 V=1 

210 REM FRONT INPUT OF DM IS CONNECTED TO THE FG OUTPUT 
220 PRINT eD:" INIT; ACV; USER ON;LFR ON" 

230 PRINT e26:"C0NF 0, 8, 0, 8; CLOSE 4;RQS OFF" 

240 PRINT H,""; 

250 REM WAIT FOR USER TO SET FG FREQUENCY AND PUSH DM5010 INST ID BUTTON 
260 IF V THEN 250 

270 REM WAIT FOR FG, TEST CIRCUIT AND DM5010 TO SETTLE BY TAKING 

280 REM READINGS UNTIL TWO READINGS ARE WITHIN 0.1^: OF EACH OTHER 

290 INPUT eD:R 

300 R1=R 

310 INPUT ?D:R 

320 IF ABSCR-Rl) >R>Kl.0E-3 THEN 300 

338 REM R HAS VALUE OF INPUT TO TEST CIRCUIT 

340 PRINT e26:"C0NF 4, 4, 4, 4; CLOSE 1,5" 

350 PRINT ^DL’CALC DBR;DBR ";R 

360 REM WAIT FOR TWO CONSECUTIVE READINGS WITHIN 0.1X OF EACH OTHER 

370 INPUT gD:R 

380 R1=R 

390 INPUT ?D:R 

400 IF ABS((R-Rl)/R)*1.0E-3 THEN 388 
410 REM R HAS TEST CURCUIT'S GAIN IN DB 
420 PRINT R 

430 REM CHANGE FREOJENCY AND REPEAT MEASUREMENT 
440 H=10*H 

450 IF H< = 100000 THEN 200 
460 END 

470 REM SEVRICE RE(XJEST INTERRUPT SUBROUTINE 
480 POLL X,Y;D;S 

490 REM CHECK FOR USER REQUEST INTERRUPT GENERATED BY PUSHING INST ID 
500 IF Y=67 OR Y=83 THEN 530 
510 RETURN 

520 REM CLEAR FLAG TO INDICATE THAT USER HAS PUSHED ID BUTTON 
530 V=0 
540 RETURN 



ADD JAN 1982 



3-33 



Programming — DM 5010 



Program Example 6: 

1 REM DPC TEST LSING DM5010 PHD MI5010 WITH 58M30 DIGITRL I/O CPRD 

99 REM D = PDDRESS OT DM5010, M * PDDRESS OF MI5010, C * CPRD SLOT 

100 D*16 
110 M-H3 
120 C'l 

130 OH SRQ THEM 1000 
140 DIM R(256) 

150 PRINT eD:"IHIT;DCV 20; MODE TRIG; DIGIT 3.5" 

160 PRINT eM:"INIT;SEL ";C;";CHP 1" 

170 FOR K=0 TO 255 

179 REM OUTPUT K TO DPC UNDER TEST 

1 RO PPTNT ®M’’‘riOTO "•k*" *110707" 

189 REM WRIT FOR MI5010 TO SETTLE BY REPDING RESPONSE TO DPTP QUERY 

190 IM=irr eM:K$ 

199 REM TRIGGER DM5010 PHD REPD VOLTPGE FROM DPC UNDER TEST 

200 INPUT eD;R(K+l) 

210 rCXT K 

220 REM DPTP IN PRRPY R IS REPDY FOR PROCESSING 
230 END 

999 REM SERVICE REQUEST INTERRUPT SUBROUTINE 

1000 POLL X,Y;D;M 
1010 RETURN 



Program Example 7: 

1 REM MONITOR LINE VOLTPGES 

99 REM D - PDDRESS OF DM5010 

100 D=16 

110 ON SRQ THEN 1000 

120 PRINT eD:"INIT;PCV; LIMITS 105, 120; MONITOR ON" 
130 REM PLPCE MPIN PROGRPM HERE 
150 GO TO 130 
160 END 

999 REM SERVICE REQUEST INTERRUPT SUBROUTINE 

1000 POLL X,Y;D 
1005 PRINT Y 

1009 REM TEST STPTUS BYTE FOR BELOW LIMITS 

1010 Z$*"BELOW" 

1020 IF Y-193 OR Y-209 THEN 1060 

1029 REM TEST FOR PBOVE LIMITS 

1030 2$'"PB0VE" 

1040 IF Y-195 OR Y-211 TI-EN 1060 

1044 REM TEST FOR OVERRPNGE 

1045 IF Y-102 OR Y-llB THEN 1110 
1050 RETURN 

1060 PRINT eD:"DPTP" 

1070 IhPUT ®D:W 

1080 PRINT W;" IS LIMITS" 

1090 RETURN 

1110 PRINT “OVER-RPNGE" 

1120 RETURN 



3-34 



ADD JAN 1982 




Programming — DM 5010 



Program Example 8: 

1 REM PM EXAMPLE OF DOING TWO UNRELRTED TftSKS 

2 REM MAIN PROGRPlM LISTS A TAPE FILE ONTO A PRINTER AT ADDRESS P 

3 REM INTERRUPT SUBROUTINE FINDS MAXIMUM VOLTAGE USING DM5010 
100 INIT 

109 REM D « ADDRESS OF DM5010, P = ADDRESS OF PRINTER 

110 D-16 
115 P-40 

120 ON SRQ THEN 1000 
130 PRINT eD:”INIT" 

140 INPUT eD;M 

150 PRINT eD:"0PC ON" 

160 PRINT "ENTER FILE NUMBER TO BE LISTED" 

170 IN=UT F 
180 FIND F 
190 E-1 

200 ON EOF (0) THEN 500 
210 GO TO 230 
220 PRINT 940; A$ 

230 INPUT 933: AS 

240 IF E THEN 220 

250 PRINT "DONE WITH FILE ";F 

260 PRINT "MAX VOLTAGE IS ";M 

270 GO TO 160 

499 REM END OF FILE INTERRUPT SUBROUTINE 

500 E=0 
510 RETURN 

999 REM SERVICE REQUEST INTERRUPT SUBROUTINE 

1000 POLL X Y'D 

1009 REM TEStVoR OPERATION COMPLETE 

1010 IF Y-66 OR Y-B2 THEN 1030 
1020 RETURN 

1029 REM INPUT READING FROM DM AND COMPARE TO PREVIOUS MAXIMUM 

1030 INPUT 9D:M1 

1040 IF MK-M THEN 1060 

1049 REM h€W READING IS NEW MAXIMUM 

1050 M=M1 
1060 RETURN 



ADD JAN 1982 



3-35 




Programming — DM 5010 



Program Example 9: 

1 REM POLL FOR NORMAL DEVICE DEPENDENT STATUS 

3 GO TO 100 

4 REM USER DEFINABLE KEY *1 SENDS GROUP EXECUTE TRIGGER TO DM5010 

5 WBYTE eD+32,B,63: 

7 RETURN 

19 REM USER DEFINABLE KEY *5 DOES AN ERROR QUERY 

20 PRINT eD:"ERR'?’' 

21 INPUT eD:AS 

22 PRINT 

23 PRINT A$ 

24 RETURN 

99 REM D = ADDRESS OF DM5010 

100 D=16 

109 REM DO SERIAL POLL TO CLEAR POWER ON SERVICE REQUEST 

110 POLL X,Y;D 

119 REM DISABLE SERVICE REQUESTS 

120 PRINT eD:''INIT;DT TRIG;RQS OFF" 

129 REM S - PREVIOUS STATUS, SI = PRESENT STATUS 

130 S*0 
140 Sl=5 

144 REM DO SERIAL POLL WITH WBYTE TO GET DEVICE DEPENDENT STATUS 

145 SET NOKEY 

150 WBYTE e24,D+64: 

160 RBYTE S 
170 WBYTE $25, 95: 

175 SET KEY 

178 REM IF NEW STATUS IS SAME AS OLD STATUS THEN PRINT VERTICAL TAB 

179 REM SO THAT STATUS MESSAGE WILL APPEAR BRIGHT 

180 IF SOS*'; THEN 200 
190 PRINT "K"; 

198 REM DECODE STATUS BYTE 

199 REM TEST FOR READING READY 

200 IF 5-132 OR 5*148 OR S=140 OR 5-156 THEN 300 

209 REM TEST FOR WAITING FOR TRIGGER 

210 IF 5-136 OR S-152 THEN 250 

219 REM TE5T FOR CONVERSION IN PROGRESS 

220 IF 5-128 OR 5=144 THEN 280 

230 PRINT 5;*’ UTCXPECTED STATUS BYTE" 

240 GO TO 140 

250 PRINT 5;" WAITING FOR TRIGGER" 

270 GO TO 140 

280 PRINT 5;" CONVERSION IN PROGRESS" 

290 GO TO 140 
300 I^PUT $D:R 

310 PRINT 5;" READING IS ";R 
320 GO TO 140 



3-36 



ADD JAN 1982 




Section 4— DM 5010 



THEORY OF OPERATION 

BLOCK DIAGRAM DESCRIPTION 



This discussion is provided to aid in understanding the over- 
all concept of the DM5010 Programmable Digital 
Multimeter. The basic block diagram of the DM 5010 in Sec- 
tion 1 0. Diagrams and Circuit Board Illustrations, should be 
followed when reading the Block Description. 



General Description 

The DM5010 Programmable Digital Multimeter is a 
microprocessor based GPIB programmable instrument de- 
signed to operate in any two adjacent compartments of a 
TM 5000-Series power module. It has dual-polarity floating- 
voltage measurement capabilities as well as the ability to 
offset or null resistance and voltage measurements under 
user control. It uses a charge balancing technique to convert 
the analog input signals to digital data for storage and 
processing. 



To understand how the DM 501 0 functions, some con- 
cepts and techniques implemented in the instrument are ex- 
plained at this point. These concepts should be understood 
before proceeding to the block diagram and detailed circuit 
descriptions in this section. 



Isolation 

The floating measurement capability allows the DM 5010 
to accurately measure voltages referenced to a point other 
than DMM chassis ground. To accomplish this, the 
DM 5010 implements an isolation scheme. The TM 5000 
power module supplies power to the analog and isolated 
sections through a transformer to etectriclaly isolate it from 
the chassis ground. The required data and control signals 
to/from this section are transmitted via opto-isolators, com- 
pleting the isolation scheme. Isolating the “front-end", 
where the critical portion of the measurement process oc- 
curs, from chassis ground eliminates many problems inher- 
ent in ground-related measurement techniques. 

Charge Balancing 

The DM 5010 Programmable Digital Multimeter operates 
on the principle that each of its various measurement modes 
(dc volts, ac volts. Ohms, etc.) may, through proper input 
conditioning, be translated into a dc voltage representing 
the conditions present at the instruments inputs. After input 
conditioning, four major tasks remain: 



1. conversion of the representative voltage to a digital 
form that may be stored and manipulated as necessary; 

2. keeping track of measurement specifics {i.e., type, 
range, etc.); 

3. performing any secondary conditioning or algorithms 
dependent on 2, above, and; 

4. presenting the resultant measurement data to the 
user in a visible display or, if desired, to another device in 
some intelligent format. 

The latter three functions are performed and controlled 
mostly by microprocessor and GPIB circuitry and are de- 
scribed more fully later in this section. In this instrument, the 
conversion of step 1 is performed using the charge-balanc- 
ing A/D conversion technique. 

Charge balancing conversion operates on the following 
principle. An unknown (voltage-dependent) current l.^ inject- 
ed into an integrator’s input causes the integrator’s output 
to charge away from its initial value at some unknown rate. 
Similarly, either injecting or removing a known net current 
^oetrefin O'" ^netrefout causes the integrators 

output to integrate down and up, respectively, at a known 
rate. If the unknown current and one of the known net cur- 
rents (either injected or removed) are applied to the node 
simultaneously, the integrators output charges at a rate de- 
termined by the sum of the currents. If the reference cur- 
rents ref in ^net ref out chosen to always be 
greater in magnitude than any allowed value of \jp, the inte- 
grators output charges in the direction established by the 
reference current switched into the summing mode. Charge 
rate is established bv I . + I - ■ 

A conversion is accomplished by keeping track of the 
time required in each of its 1^,^^ + I, charge modes to keep 
the integrators output near a predetermined zero- reference 
voltage. By attaching a comparator to the zero-reference 
voltage and to the output of the integrator, it may be deter- 
mined whether the integrators output is above or below the 
zero-reference. By adding or subtracting dock pulses to a 
counter in response to the comparator output, a numerical 
representation of the net time required by ^netret^^ balance 
the effect of 1,^ on the integrator capacitor is generated. The 
system microprocessor translates the numerical results into 
a meaningful data format for display to the user. 



REV JAN 1982 



4-1 




Theory of Operation — DM 5010 



At the beginning of a conversion, an Auto-Zero period is 
initiated in which a zero-reference voltage is stored by the 
converter. This voltage is compared to the output of the 
integrator during actual signal measurement and represents 
a zero- volt input. 



After the zero reference has been established, the input 
current is switched into the node. This current and 
cause the integrators output to integrate up toward the 
zero-reference voltage at a rate determined by i^tre/out + *//?• 
For input voltages ^ the full scale voltage, the integrator 
output will cross the zero-reference voltage in less than four 
measurement intervals. After the zero-reference voltage 
crossing and a new polarity determination is made, the con- 
trol logic switches the reference current’s direction {and thus 
the direction of integration). 



The measurement interval consists of 18 clock cycles, 
which allow the integrators output to charge somewhat be- 
yond the zero-reference voltage before charge direction is 
reversed. During this charging process, each clock is added 
to or subtracted from the contents of a counter depending 
on the output state of the comparator. 



The integrators output now charges back toward the 
zero-reference at a rate determined by + 1,^,. It may 

take less than one or up to several hundred measurement 
intervals for the integrator output to again cross the zero- 
reference voltage. After the comparator detects the cross- 
ing and a new polarity determination is made, charge 
direction is reversed at the beginning of the next measure- 
ment interval. This process of charging toward the thresh- 
old, beyond the threshold, and then reversing direction to 
charge back toward the threshold repeats until the pre- 
script number of measurement intervals is complete. Dur- 
ing this time, the accumulated count in the up/down counter 
is being added to or subtracted from, depending on the out- 
put state of the comparator (ICOMP). When the last mea- 
surement interval is complete, the accumulated clocks in the 
counter are representative of the A/D converters input. 



Microprocessor 

The implementation of a microprocessor in the DM 5010 
substantially reduces its hardware requirements and in- 
creases its flexibility and capability. Microprocessor sys- 
tems use bus-structured architecture. A general description 
follows. 



At any given time in a microprocessor system, many 
'pieces’ of information may be present at various physical 
locations within the system. This information may include 
the instructions for the microprocessor to perform some 
process, constants and algorithms for that process, inter- 
mediate and final results for the process, control and switch- 



ing information, “locations” of certain information, etc. Of 
these types of information, most are stored (at least tempo- 
rarily) in the form of “data” at an “address" or as some type 
of control signal or level. 



The microprocessor uses busses to control the flow of 
data and program execution. A bus is a group of signal lines 
dedicated to a data transfer or program control function. It 
is connected to allow bidirectional data transfer or control 
over two or more devices using the same signal paths for 
any two of the transfers or control functions. 



The data bus is the group of eight signal lines in the 
DM 501 0, dedicated to transferring data in a standard for- 
mat between the microprocessor and the other devices on 
the bus. 



The address bus is another group of signal lines dedi- 
cated solely to “addressing” (selecting) the device that the 
microprocessor wants to communicate with (data transfer 
via the data bus). Address-decoding circuitry makes the de- 
vices on the data bus respond only to their proper 
address(es). 



The remaining lines associated directly with the micro- 
processor IC (with the exception of power supply and clock 
signals) comprise the control bus. These signal lines allow 
the processor to control certain system functions and allow 
certain conditions within the system to alter processor 
operation. 



The bus configuration employed in processor-oriented 
systems allows great flexibility when implementing hard- 
ware. Since system operation is under “firmware” control, 
functions that normally require large amounts of dedicated 
circuitry may be performed by a general block operating in 
several different modes. 



Another characteristic of processor-oriented systems is 
the ability to perform calculations. Some parameters may 
not be measured directly with a multimeter, and a series of 
calculations must be performed to arrive at the desired re- 
sult. The DM 5010 has the capability of performing some 
frequently used calculations, giving the user the ability to 
“directly" measure these parameters. 



GPIB 

The GPIB (General Purpose Interface Bus) circuitry of 
the DM 5010 provides a communication link to other GPIB 
compatible instruments. This communication link allows the 
DM 5010 to be programmed to operate in any of its mea- 
surement modes and then to transfer the results of that 



4-2 



ADD JAN 1982 




Theory of Operation — DM 5010 



measurement to any other assigned instrument on the GPIB 
bus. The DM 5010’s GPIB circuitry adheres to IEEE Stan- 
dard 488-1978 and will be described later in this section. 



Block Description 

The following block description uses the Block Diagram 
in Section 10 at the rear of this manual. Each major block of 
circuitry is assigned a name according to its primary func- 
tion. The diamond numbers within a block represent the dia- 
gram(s) on which the complete circuit may be found. Only 
the basic interconnections between the individual blocks are 
shown. 



As previously mentioned, the circuitry of the DM 5010 is 
divided into two distinct sections, depending on how the 
devices within each section receive their power. The block 
diagram indicates the division between the Grounded Sec- 
tion and the Isolated Section. 



The power for the circuitry in the Grounded Section is 
derived from the Grounded Power Supplies. These supplies 
are powered from the TM 5000-Series power module and 
regulated to meet the requirements of the DM 501 0. 



The power required for the circuitry in the Isolated Sec- 
tion is tranf erred from the power module to the Isolated 
Power Supplies through a transformer. The Transformer 
Drive circuitry switches the power-module current through 
the transformer at a frequency synchronized to the analog- 
to-digital conversion process to minimize the noise error 
caused by power supply ripple in the Isolated Section. 



Power is transferred to the Isolated Power Supplies, and 
the Isolated Regulators stage regulates the power to the 
levels required by the rest of the Isolated Section. 



The Input Switch stage allows analog signals from either 
the front panel or the rear interface input to be selected for 
measurement. 



The selected input is applied to either the DCV Signal 
Conditioner, RMS, or Ohms Converter circuits where the 
applied input is translated into a representative dc voltage. 
The Range Control circuitry provides the gain and attenu- 
ation switching necessary to accommodate the various 
ranges of the RMS, DCV Signal Conditioner, and Ohms 
circuits. 



Depending on the mode of operation, the dc output from 
either the Input switch, RMS Converter, or Ohms Converter 
is applied to the DCV Signal Conditioner as determined by 



the Function Switch. The Attenuator and DCV Signal Condi- 
tioner provide attenuation or gain factors and scale the input 
signal to fall within the A/D converters input range. The A/D 
converter uses a charge balancing conversion technique to 
convert the applied analog dc input to a corresponding digi- 
tal equivalent. 



As the conversion takes place, the A/D converter gener- 
ates a count direction control signal defining the input condi- 
tions. As this signal is generated, it is transferred via an 
opto-isolator to the Grounded Section and is used to main- 
tain control of the on-going conversion. The remaining opto- 
isolators transfer control information from the Grounded 
Section to the Isolated Section to set up the range switching 
and to control the A/D conversion process. 



The microprocessor is the control center for all activity in 
the instrument. It is a time-dependent device and most func- 
tional blocks are synchronized to it, either directly or indi- 
rectly, shortly after power-up. The Timing Logic, together 
with the Control Logic, develops the proper time-dependent 
logic signals for the A/D conversion circuitry on both sides 
of the opto-isoiators. The Timing Logic also drives the 
Transformer Drive circuitry at a rate that makes the A/D 
conversion most immune to power supply noise. 



The Data circuitry consists of a counter that keeps track 
of clock pulses under the direction of the count-direction 
control signal generated during an A/D conversion. The sig- 
nal originates in the A/D Converter in the Isolated Section 
and is passed through the opto-isolators and the Control 
Logic to the Data counter where it controls the count direc- 
tion of an up/down counter. From there, this binary-coded 
counter data is transferrerd one bit at a time onto the data 
bus via the block labeled Miscellaneous Buffer. This sequen- 
tial data string, representing the conditions at the instru- 
ments inputs, is read by the Microprocessor. Then the 
processor performs the manipulations necessary to bring it 
to the desired format for display or transfer over the GPIB. 



With the exception of some front-pane! circuitry and a 
battery circuit, the remainder of the circuitry in the instru- 
ment is directly connected to the microprocessor's address 
or data busses. 



The Address Decode and Logic circuits decode certain 
addresses or groups of addresses output from the proces- 
sor on its address bus. When output by the processor, they 
enable specific blocks of circuitry to communicate with the 
processor. There are many discrete enabling lines involved 
with the Address Decode; they are shown on the Block Dia- 
gram as being returned back onto the address bus. These 
enable lines may be thought of as an extension of the ad- 
dress bus. Due to the multiplicity of devices requiring micro- 



ADD JAN 1982 



4-3 



Theory of Operation — DM 5010 



processor addressing, an Address Bus Buffer stage is 
necessary to increase current drive capability. 

The Data Bus Buffer serves much the same purpose but 
is bidirectional; i.e., it buffers data signals both from and to 
the microprocessor. 

The ROM circuitry contains the instruments operational 
firmware that tells the Microprocessor how to control and 
perform instrument functions. Many functions the processor 
performs require some way to temporarily store data and 
read it back later. The RAM serves this purpose. 



A special CMOS RAM is used to store “calibration 
constants’ for the instrument. During adjustment of the in- 
strument, specific signals are applied to its inputs and the 
microprocessor is “told" what the readings it is receiving 
from the D/A converter represent. Constants are derived 
from this data and are stored in the CMOS RAM. This mem- 
ory may only be changed during the adjustment procedure. 
The Battery circuit connected to the CMOS RAM ensures 
that these constants are maintained when instrument power 
is turned off. 



The Front-Panel Control block provides the circuitry nec- 
essary for the microprocessor to read information from the 



user-selectable Front-Panel Switches as well as the ability 
to present measurement data and some status information 
back to the user via the Front-Panel Display. The Front- 
Panel Drive circuitry provides the current drive necessary to 
illuminate the various devices of the Front-Panel Display. 



The GPIB (General Purpose Interface Bus) circuitry en- 
ables the DM 5010 to communicate with other GPIB-com- 
patible instruments. By using an external controller, other 
GPIB instruments may receive measurement information 
from the DM5010 or may send measurement related 
instructions to it. This allows the DM 501 0 to change mea- 
surement modes and send the measurement results to a 
desired instrument without operator intervention. 



When a GPIB controller addresses an instrument on the 
GPIB. the microprocessor looks at the DM 5010's Switches 
block to see if it is supposed to respond. These Switches 
may be set by the user to define which GPIB address the 
DM 5010 will recognize. 



One of the Switches, when set, stops all normal oper- 
ation of the DM 501 0. This is its signature analysis mode, 
and signature analysis troubleshooting may be performed 
on the instrument. By disconnecting the Data Bus Buffer 
from the Microprocessor and connecting the NOP (no-oper- 
ation) Buffer in its place, a more rudimentary form of 
troubleshooting may be performed. 



DETAILED CIRCUIT DESCRIPTION 



The following description provides detailed information 
about the circuitry of the DM 501 0. The diamond number(s) 
preceding the individual descriptions indicate the specific 
diagram(s) being explained by that description. 

INPUT SWITCH 

The Input Switch determines whether the analog signal 
applied to the DM 501 0's front-panel inputs or the signal 
from the analog inputs at its rear interface connector is mea- 
sured. Depending on the range of the measurement being 
made, the input is attenuated by an appropriate factor to 
prescale the signal and protect the various input circuits 
from overvoltage conditions. 



With no current through relay K1 631 , the front-panel in- 
puts HIGH, LOW, and GUARD are selected for measure- 



ment. Guard switch SI 731 allows the user to select the 
guard configuration most suited for his measurement re- 
quirements. Resistor R1626 provides a known impedance 
of 1 M12 between the GUARD and LOW inputs with the 
Guard switch open. Refer to the Operating Instructions in 
Section 2 for specifics concerning use of the GUARD input. 
The internal Guard is connected to the rear LO when using 
the rear interface inputs. 



With the low ( — 27 V) applied to K1631-4, indicating that 
measurements should be taken from the rear interface con- 
nector, current to activate the relay flows through both 
R1613 and CR1621. Once activated, the current path 
through R1S31 is opened and only the smaller current nec- 
essary to keep the relay activated flows in the relay via 
CR1621 and R1615. 



4-4 



ADD JAN 1982 




ATTENUATOR 

The input signal to be measured passes through a resis- 
tive attenuator network that prescales the analog signal to 
fall within the input circuitry’s dynamic range. Attenuation 
factors of 1 and 1 00 are controlled by closing contacts of 
relays K1527, K1425, and K1525 as shown in Fig. 4-1 and 
Tables 10-2 and 10-5 in the pull out pages. 



OVERVOLTAGE PROTECTION AND FUNC- 
TION SWITCHING <i> 

All measurement modes of the DM 501 0 require that 
some type of conditioning be performed on the input signal 
before an A/D conversion is performed. In each case, the 
input conditions are converted to a representative dc volt- 
age level by the appropriate conditioning circuitry and are 
then applied to the DCV Signal Conditioner where some 
range-dependent gain factor is applied to the signal. This 
resultant prescaled signal is the basis for all A/D conver- 
sions and. along with the various mode, attenuation, and 



Theory of Operation — DM 5010 

gain factors set by the microprocessor, represents the input 
conditions. 

This stage selects the appropriate conditioning circuit 
output and routes it to the DCV Signal Conditioner input. It 
also provides overvoltage protection should these signals 
exceed the specified input range. 



A simplified schematic of the Overvoltage Protection and 
Function Switching stage appears in Fig. 4-2. Each of the 
FET switches connects either an individual function or the 
high quality ground reference to the DCV Signal Conditioner 
when closed. Refer to Tables 10-2 and 10-5 in the pull out 
pages for mode-dependent function and range switch 
settings. 

Transistors Q1327 and Q1323 connected as diodes pre- 
vent the input voltage applied to FET switch Q1319 from 
exceeding + 23 volts and -23 volts, respectively. Similar- 
ly, transistors Q1321 and Q1322 prevent the output voltage 
of the Ohms Converter from exceeding the same voltages. 



HIGH 

FROM INPUT 
SWITCH 



R1637 

) Wv- 



R1521 

202kn 

-O—T) ► 

K1S27S 



TO FUNCTION 
SWITCH HI 



LOW 

FROM INPUT 
SWITCH 



> > 



A, ATTENUATION FACTOR = 1 , INPUT IMPEDANCE 



HIGH 

FROM INPUT 
SWITCH 



LOW 

FROM INPUT 
SWITCH 




> [> 



TO 

FUNCTION 

SWITCH 

HI 



B. ATTENUATION FACTOR = 100 i INPUT IMPEDANCE = 10 MR 



2994.09 



Fig. 4-1. Attenuator. 



ADD JAN 1982 



4-5 




Theory of Operation — DM 5010 



EXTERNAL 

CONNECTORS 




2994-10 



Fig. 4-2. Simplified overvoltage 

DCV SIGNAL CONDITIONER 

The DCV Signal Conditioner provides range-dependent 
gain for the various dc mode-dependent signals applied to it. 
Figure 4-3 shows a simplified diagram of the buffer amplifier 
Table 4-1 shows the states of the buffer amplifier. 



Table 4-1 



DCV SIGNAL CONDITIONER GAIN SETTINGS 



FET 


1 Gain of the Buffer Amplifier 


Switch 


i 10 


1 


1 o-i 


Q1105 


ON 


OFF 


OFF 


Q1106 


OFF 


OFF 


ON 


Q1112 


OFF 


ON 


ON 


Q1114 


ON 


ON 


OFF 



The Function Switch directs the mode-dependent dc level 
to the noninverting input of U1210, the buffer amplifier. The 



protection and function switching. 

gain of the buffer amplifier is set depending on which of the 
FET switches are turned on by a high at their gates. 
Feedback to the inverting input of the operational amplifier 
is through either Q111 2 or Q1 1 05 while forward attenuation 
of the signal to the A/D converter is determined by Q1114 
for Q1106. Diodes CR1221 and CR1223 prevent 
overdriving the buffer amplifier. 



To ensure linear response of the buffer amplifier over its 
input range, a bootstrap buffer is used to make the buffer 
amplifier supply voltages track its input. This has the effect 
of making U1 21 0 operate at the middle of its range, avoiding 
the linearity problems encountered when the output ap- 
proaches one of the supply voltages. By making the gate 
bias of the various FET switches also track the input volt- 
age, proper bias is maintained and current leakage through 
the FETs (and thus the associated error) is minimized. A 
simplified schematic of the bootstrap buffer is shown in Fig. 
4-4. 

The input to the bootstrap buffer, pin 3 of U 1110, is con- 
nected to the inverting input of U1 21 0 and is therefore at the 



4-6 



ADD JAN 1982 





Theory of Operation — DM 5010 



U1210 




2994-11 



Fig. 4-3. Simplified DCV signal conditioner buffer amplifier. 



same voltage as the input of the buffer amplifier. Operation- 
al amplifier U11 1 0 and transistors Q1 01 7 and Q1 021 form a 
unity gain, noninverting amplifier that tracks the input of the 
DCV Signal Conditioner. Hence, the bases of Q1101 and 
Q1 1 11 follow the input signal (plus and minus 6.2 volts, re- 
spectively, as determined by VR1011 and VR1015). The 
emitters of Q1101 and Q1111 (and thus U1210's supplies) 
remain 4-5.5 volts and —5.5 volts away from the input volt- 
age, respectively. Diodes CR1111 and CR1113 allow the 
operational amplifiers supply pins to follow the buffer ampli- 
fier input under transient conditions where Q1 1 01 or Q1 1 1 1 
might become reverse biased. 



As an example, let the input to the buffer amplifier start 
at zero volts. The input to U1110 at pin 3 and, thus, the 
buffered output at pin 2 must also be at zero volts. Zener 
diodes VR1001 and VR1013 along with resistor R1011 bias 
transistors Q1001 and Q1015 on, allowing current to flow in 
Zener diodes VR1011 and VR1015. This sets the bases of 
Q1101 and Q1111 at -t-6.2 volts and —6.2 volts, respec- 
tively. Their emitters, and U1210's supplies, are at +5.5 
volts and —5.5 volts, respectively. 



If the input to the buffer amplifier goes to +15 volts, the 
input to the bootstrap buffer also goes to +15 volts. The 
output at the emitters of Q1017 and Q1021 goes positive 
until the inverting input of U1110 also reaches +15 volts. 
The bases of Q1101 and Q1111 go to +21.2 volts and 
+ 8.8 volts, respectively. The supply voltages at their 
emitters go to +20.5 volts and +9.5 volts, resp>ectively. 
The supply voltages are plus and minus 5.5 volts from the 
input voltage of the buffer amplifier, so it is operating in the 
middle of its range. 



CHARGE-BALANCING CONVERTER 

The Charge- Balancing Converter is the analog portion of 
the A/D Converter and, along with the Control Logic, Timing 
Logic, opto-isolators, and Data stages, changes the analog- 
dc voltage from the input-conditioning circuits to a digital 
representation. It derives its name from the fact that, during 
one conversion cycle, the total current added to and sub- 
tracted from the input summing node equals zero. Input 
buffer U1120 and the charge-balancing IC U1230, along 
with their associated components, comprise the Charge- 
Balancing Converter stage. Figure 4-5 shows a diagram of 
the stage with details of the converter IC added for clarity. 
The Block Diagram illustrates the major functional 
interconnections used in this description. The Block Dia- 
gram description explains some of the genera! charge-bal- 
ancing concepts that should be understood before 
proceeding with this description. 



The A/D conversion process is based upon two main 
time-dependent periods called Auto-Zero and Measure- 
ment. The Auto-Zero period involves setting a zero-refer- 
ence voltage for the Charge-Balancing Converter, The 
actual conversion on the selected input is performed during 
the Measurement period. Both are synchronized to the 
microprocessor clock by the Timing Logic. Figure 4-6 illus- 
trates some of the critical timing for each period of the con- 
version process. 



Both of the above conversion phases are based on what 
are known as measurement intervals. The Timing Logic di- 
vides the microprocessor 1 MHz clock down to a 250 kHz 



ADD JAN 1982 



4-7 





Theory of Operation — DM 5010 




Fig. 4-4. Simplified OCV signal conditioner bootstrap buffer. 



rate. Eighteen of these 250 kHz clock pulses in sequence Auto- Zero 

comprise one measurement interval. Some special counters 

and decoding logic define the beginning, middle, and end of Before a conversion is performed, an initial zero-refer- 

each interval and initiate or terminate certain conversion e™* 'Ol^age («-2 V) must be set. The Function Switch, 
fiinF-tionc ae chown in Fin 4 R Under direction of the Function and Range Control circuitry, 

tunctions as Shown ng. 4-6. ^ Conditioner buHer am- 

plifier to the high quality ground to initiate the Auto-Zero 
period. The input signal, and the output of input buffer 
U1120, goes to zero volts. 



4-8 



ADD JAN 1982 







Theory of Operation — DM 5010 



INPLTT 

BUFFER 




2994-13 



Fig. 4‘5. Simplified charge-balancing converter. 



Figure 4-7 illustrates the currents at the summing node 
when the zero-reference is being set. The node current from 
the Converter Input buffer, U1120, may be ignored since it is 
very small during the Auto- Zero period. 

As the Auto-Zero period begins, a counter in the Timing 
Logic is set to zero. The Reference Buffer input is then 
toggled by TO and T8 with a 50% duty cycle between 
and ground, injecting an average current equal to 
+ y (2 X R1231) into the summing node. The Integrator 
produces a voltage output to the Auto-Zero Buffer. The 
Auto-Zero Buffer sinks current, via R1233, of opposite po- 



larity to the current injected by the Reference Buffer until the 
current removed from the node balances the current being 
injected. This is the equilibrium state, and the voltage 
waveform at the input of the Auto-Zero Buffer is that re- 
quired to precisely track the injected current input. Resistors 
R1139, R1227, and capacitor C1139 at the Auto-Zero Buff- 
ers input integrate the integrator output waveform over a 
preset number of measure intervals. The negative Auto- 
Zero Buffer output voltage across R1233 generates a cur- 
rent equal in magnitude but of opposite polarity to the 
average injected reference current. The averaged voltage at 
the input of the Auto-Zero Buffer is the zero-reference volt- 



ADD JAN 1982 



4-9 










Theory of Operation — DM 5010 



T0 
i I 



T8 
I I 



T17 T0 
I I I 



I I 



lu/o 



ZERO 

REFERENCE 

INTEGRATOR 

OUTPUT 




A. AUTO ZERO PERIOD. 

T0 T0 



lU/O 



IMTECRATOR 

OUTPUT 

ZERO 

REFERENCE 



T0 

I 



T0 T8 T0 T8 T0 
I I I I I 



iiuimR_r 




B. HEASURENENT , OVERRIDE, AND AUTO-ZERO PERIODS. 



2994- 1<I 



Fig. 4-6. U/D control for the measurement, override, and auto-zero periods. 



age. It is stored on Cl 1 39 by opening the switch associated 
with R1227 at the end of the Auto-Zero period. The Integra- 
tor output is disconnected from the Auto-Zero Buffer and 
the zero-reference voltage is buffered to the Comparator. 

Measurement 

The Measurement period, like the Auto-Zero period, is 
based on timing signals developed by the Timing Logic. 
After the Auto-Zero period is complete, the Measurement 
period begins with TO of the next measurement interval. As 
shown in Figs. 4-6 and 4-8, the integrator's output always 



charges positive during TO and negative during T17. The 
charge direction for the entire T1 -T1 6 period depends on the 
polarity of the Comparators output at the end of time TO. 



As the measurement begins, the input current 1^^ is 
switched into the summing node along with the negative 
reference current 1^^,^^, . After a short time, the comparators 
output ICOMP (isolated comparator) goes high, indicating 
that the Integrator output is more positive than the zero- 
reference voltage set during Auto-Zero. At the next TO, the 
control Logic sets the I U/D (isolated up-down) low to 



4-10 



ADD JAN 1982 






Theory of Operation — DM 5010 




2994- '.5 



Fig. 4-7. Charge-balancing converter contiguration during the auto-zero period. 



Change charge direction and rate. This is done by switching 
^reftn Summing node. The Integrator output now 

charges negatively toward the zero-reference voltage for a 
complete number of 18-count measurement intervals (ex- 
cept for each TO as explained above). An up/down counter 
in the Data stage keeps track of the net time required by the 
ret balance the effect of 1,^ on the integrator capacitor 
by adding or subtracting a net count of 16 counts for each 
measure interval to a running total, dependent on the Com- 
parators output state. 



After the Measurement Period is completed, an “over- 
ride" period is entered, in which the integrator is allowed to 
charge back to the zero-referenced voltage while accumu- 
lating counts in the Data counter. During this period the 
DCV Signal Conditioner input is connected to the high qual- 
ity ground by Q1317. The ret balances the remaining 
charge on the integrator capacitor due to . 



ADD JAN 1982 



4-n 





Theory of Operation — DM 5010 



Figure 4-8 illustrates the override period for measure- 
ment periods ending both above and below the zero-refer- 
ence voltage. As shown in the figure, once the Comparator 
detects that the Integrator has charged below the zero- 
referenc voltage, the Data counter is disabled (all counting is 
complete), and =s3 clock cycles later the I U/D line is 
chopped at a 250 kHz rate (determined by the Control Log- 
ic). Chopping the Reference Buffer input between -nV^^^and 
ground at this high rate holds the integrators output close to 
the zero-reference voltage until the next TO. More informa- 
tion about the charge balancing sequences may be found in 
the Control Logic description. 



MEASUREMENT ENABLE 

Field effect transistor Q1514, along with R1514 and 
Cl 51 4, holds the I M/Z control line low for several hundred 
milliseconds during power-on, thus allowing the Auto-Zero 
Buffer Amplifier storage capacitor. Cl 1 39, to charge to the 



zero-reference voltage. Transistors Q1511 and_Q1512 com- 
prise a level shifting buffer that shifts the I M/Z control line 
to a level compatible with the isolated logic levels. 



ISOLATED REGULATORS 

The Isolated Regulators stages on the RMS and ADC 
boards regulate the power from the Isolated Supply stage to 
the levels required by the Isolated Section of the instrument. 
Integrated circuits U1601, U1603, U1605, U1417, U1527, 
U1525, and U1515 are 3-terminal regulation devices with 
internal current limiting. Transistor Q1613, VR1514, and 
their associated components form a series-pass regulator 
referenced at —36.9 volts. 



T17jT0j ■'■®1 T17|T0 

clock 



INTE- 

GRATOR 

OUTPUT/^ 

ZERO 

REFER- 

ENCE 

MEASURE- 

MENT 

PERIOD 



END OF MEASUREMENT 



[-* — COUNTER DISABLED | 

1© I 



OVERRIDE 

PERIOD 



250 KHi CHOP 



AUTO-ZERO PERIOD 



A. ABOVE ZERO REFERENCE VOLTAGE. 



ZERO 
REFER- 
ENCE L 
INTE- I 
ORATOR ^ 
OUTPUT Ly 

MEASURE- 
MENT —I 
PERIOD 



COUNTER 

OISABLEO 




override 

PERIOD 



2S0 KHz CHOP I 
AUTO-ZERO PERIOD 



B. BELOW ZERO REFERENCE VOLTAGE. 



0 T17 - ALWAYS CHARGES NEGATIVE. 

0 T0 - ALWAYS CHARGES POSITIVE. 

0 CHARGES TOWARD ZERO REFERENCE. 

0 CROSSES ZERO REFERENCE. 

0 CROSSES ZERO REFERENCE AND ENTERS 
CHOP MODE IF CHARGING NEGATIVELY. 




4-12 



ADD JAN 1982 






Theory of Operation — DM 5010 



FUNCTION AND RANGE 
CONTROL <iXj> 

The purpose of the Function and Range Control circuitry 
is to convert a string of serial data from the Grounded Sec- 
tion (representing function and range information) into a par- 
allel output configuration for activating transistor and relay 
switches. The combination of switches activated sets the 
measurement function and range. 



Figure 4-9 is a simplified diagram of the Function and 
Range Control stages, showing how the two boards inter- 
act. initially, all rgisters are cleared by clocking a series of 32 
lows into U1430 from the opto-isolators using the IRD (Iso- 
lated Range Data) and IRC (Isolated Range Clock) lines, 
both of which are under direct microprocessor control. The 
low IRD levels applied to U1530 hold the STB (strobe) in- 
puts of U1430 and U1330 high, allowing shifting to continue, 
no matter what serial data is being shifted out of U1300, 
Now, all registers are clear and are ready to be set with any 




Pig. 4-9. Simplified function and range control circuitry. 



REV JAN 1983 



4-13 












Theory of Operation — DM 5010 



new function and range information a new measurement 
may require. 

To set the registers, a new string of serial data must be 
clocked into the registers. Since the registers have been 
previously reset, any data clocked into the registers from 
the IRD line also results in 32 consecutive lows being ap- 
plied to U1530. This keeps the registers enabled while the 
new data is clocked into the registers. The first bit of func- 
tion and range information is always a high signal bit, indi- 
cating the beginning of the new data. As the data string is 
shifted into the registers, this high is eventually clocked into 
the 32nd position. This, in itself, does nothing: but, another 
high is applied to the IRD line, signalling the end of the func- 
tion range information. This causes U1530 to generate a 
strobe that latches the shifted data into the output registers 
of U1430, U1330, U1500, and U1300. To change the func- 
tion and range settings to any new set of conditions, the 
reset-set sequence must be followed again. 



With the exception of U1400, the remainder of the Func- 
tion and Range Control circuitry consists of current 
buffering transistors. On the ADC board, U1400, U1500, 
and the shifted I M/2 signal generate the correct timing for 
the Function Switch FETs Q1319, Q1217, Q1315, and 
Q1317. 



OHMS CONVERTER 

The Ohms Converter stage supplies a known current 
that flows through a range-dependent reference resistor, 
out the front-panel input connectors, and through an un- 
known resistance. The voltage drop across the unknown 
resistance is measured, and then the drop across the 
unknown and reference resistance is measured. The 
ratio ), multiplied by R^^ , is calculated by the 

microprocessor, and the value of the unknown resistance is 
determined. Figure 4-10 illustrates signal routing for each of 
the phases of an ohms measurement. Table 4-2 gives the 
range-dependent switching information. 



Operational amplifier U1120 is configured as a voltage 
source. The noninverting input is referenced at 0.65 V by 
VR1123 and its associated components. Feedback from the 
output at the cathode of CR1225 is through the voltage 
divider R1229, R1321, and R1225. In this configuration, the 
output voltage is approximately 1 .2 V. Depending on the 
measurement range, R1223 may be switched into the 
feedback voltage divider, increasing the stages output to 
approximately 10.2 V. 



Transistor Q1021 and its associated components pre- 
vent the open circuit output voltage of the DCV Converter 
from exceeding -(-5 V. 



Table 4-2 

OHMS CONVERTER PARAMETERS 



RANGE 


V.OUT 


IR^ VR, AT FS 




200 


10.2 V 


1 mA 


0.2 V 


10 kQ 


2k 


1.2 V 


0.1 mA 


0.2 V 


10 k2 


20 k 


10.2 V 


0,01 mA 


0.2 V 


1 Ml] 


200 k 


1.2 V 


1.0 mA 


0.2 V 


1 MO 


2 M 


1.2 V 


0.1 mA 


0.2 V 


10 MU 


20 M 


1.2 V 


40 nA 


0.8 V 


10 MU 



RMS CONVERTER <3> 

The RMS Converter stage consists of two selectable 
gain stages and a true rms-to-dc converter 1C. Operational 
amplifier U1500 is configured as a feedback amplifier with a 
selectable gain (actually an attenuation) factor. The ampifier 
is referenced to the rms LOW input applied to its 
noninverting input. The HIGH input from the front-panel 
passes through relay contact K1 633S to the amplifiers input 
when an rms measurement is to be taken. The ac signal 
passes through Cl 621 to a frequency compensation net- 
work and then to the operational amplifiers inverting input. If 
the dc component of the signal is also to be taken into ac- 
count, relay K1621 is turned on and Cl 621 is bypassed. 
The amplifiers attenuation is set by the various feedback 
networks. With switches K1405S and K1503S open, the 
input amplifiers gain is unity. Closing switch K1503S re- 
duces its gain by a factor of 1 0. Closing switch K1 405S by 
itself results in an attenuation factor of 1 000. 



The output of U1500 is then applied to R1307, the input 
of a selectable gain amplifier, also referenced to rms LOW. 
With relay switch K1201S open, gain of the amplifier is 10 
as determined by R1201 and R1307. Closing switch 
K1 201 S sets the gain factor to 1 . Table 4-3 illustrates the 
various gain switch configurations for the RMS Converter. 
Also refer to Tables 10-2 and 10-5 in the pullout pages. 



The output of the gain stage, U1200, is applied to a rms 
converter 1C. This converter, referenced to rms LOW, com- 
putes the root-mean-square value of the applied ac or 
ac-hdc input signal, and outputs at pin 8 a representative dc 
level to the Function Switch FET Q1217. Both operational 
amplifier gain stages have offset adjustments to establish 
their quiesecent operating points. 



GROUNDED POWER SUPPLIES <J> 

The Grounded Power Supplies regulate the -i-8 volts 
supply from the TM 5000-Series power module down to -i-5 
volts for the bulk of the digital circuitry in the Grounded 
Section. 



4-14 



ADD JAN 1982 




Theory of Operation — DM 5010 



Table 4-3 

RMS CONVERTER PARAMETERS 



Range 


HI or 
V. 


K1405 


K1503 


1 

K1201 ' 


U1500 

Gain 


U1200 

Gain 


1 U1100-4 


200 mV 


200 mV 


1 OPEN i 


OPEN 


OPEN 


1 


10 


I 2 V 


2 V 


2 V 


1 OPEN 


OPEN 


CLOSED 


1 


1 


2 V 


20 V 


20 V 


1 OPEN 


CLOSED 


s CLOSED 


0.1 


1 


2 V 


200 V 


200 V 


1 CLOSED 


OPEN ! 


OPEN 


0.001 


10 


! 2 V 


700 V 


700 V 


1 CLOSED 1 


OPEN 


CLOSED 


0.001 


1 


i 0.7 V 





2994- 1 8 



Fig. 4-10. Measurement switching during an Ohms conversion. 



ADD JAN 1982 



4-15 





Theory of Operation — DM 5010 



Initially, as the power module is turned on, the PWR MDL 
line is held low for a short time. This keeps Q1105 and 
Q1104 turned off, holding the output of U1000 high. This 
keeps Q1101 and the series-pass transistor in the power 
module turned off. 



Then the PWR MDL line goes high and Q1105 is turned 
on. This forward biases Q1104, allowing current to flow 
through Zener diode VR1001. The inverting input of U1000 
is now held at +5 volts and its output goes negative, turn- 
ing on Q1101. As Q1101 comes on, base current begins to 
flow in the series-pass transistor to turn it on. 



As its emitter is pulled toward the -1-8 volt supply, current 
flows in the voltage-sense network, R1005 and R1033. 
When the voltage at the noninverting output reaches -i-5 
volts, bias current to Q1 001 , and thus the series-pass tran- 
sistor, is reduced. The supply stabilizes at this point and the 
output closely approximates 4-5 volts. 



Zener diode VR1216, resistor R1217, and the associated 
power-module transistor provide an overvoltage protection 
network on the -i-5 V supply line. If the -1-5 V line exceeds 
=s5.7 V, the transistor becomes forward biased and begins 
to shunt excess current to ground. This protects the bulk of 
the circuitry in the Grounded Section of the instrument 
should a component in the -t-5 V regulator fail. 



TRANSFORMER DRIVE 

The Transformer Drive circuitry switches current from the 
TM 5000-Series power module through transformer T1311 
to drive the Isolated Supplies. With the center tap of the 



primary winding connected to the power module’s 4-25 V 
supply, the ends of the primary coil are alternately switched 
to ground at an approximate 27.78 kHz rate. This rate is 
synchronized to the A/D conversion process and minimizes 
any converter error caused by power supply ripple in the 
Isolated Section. 



Flip-flop U1325B and inverter U1520B convert the 
unsymmetrical 27.78 kHz timing signal from the Timing logic 
to a pair of symmetrical and complementary signals to drive 
the transformer switching amplifiers. Figure 4-11 illustrates 
the timing relationships of the symmetry conversion. 



The complementary squarewaves at the outputs of 
U1325B drive two identical current-switching amplifiers to 
control current flow in isolation transformer T131 1 . A pair of 
transistors in each amplifier are driven in a push-pull con- 
figuration to provide the large base currents and fast switch- 
ing times required for efficient power transfer. 



ISOLATED POWER SUPPLIES ^ 

The Isolated Supplies provide rectification and initial fil- 
tering for the power transferred from the power module to 
the isolated Section via the isolation transformer. Capcitor 
network Cl 301, Cl 401, C1403, and Cl 404 provide noise 
cancellation by summing out-of-phase currents until cancel- 
lation occurs. 



CONTROL LOGIC 

The Control Logic generates the control signals that con- 
trol the A/D conversion process. It uses time-related signals 



CK 



QC 



5&K 



0 1 2 3 4 5 


6 7 7 


8 9 10 It 12 13 14 15 15 


1 II 1 

1 _ I 1 


1 ^ 1 1 


a 


i I 1 1 = 


1 1 
1 
I 


1 

1 


1 

1 

I 


1 1 1 




1 1 1 1 


1 

1 

t 


1 

1 

1 


1 

1 

t 


1 L 




] 1 j 


PROPAGATION 






i*— DFLAY 

THROUGH 

COUNTER 







2994.19 



Fig. 4*1 1. Transformer drive timing. 



4-16 



ADD JAN 1982 






Theory of Operation — DM 5010 



generated by the Timing Logic and the comparison data 
from the Charge-Balancing Converter to automatically se- 
quence through the complex and varied measurement 
functions. 



To initiate a measurement, the microprocessor generates 
a low TRIG via the Address Decode circuitry. This TRIG 
pulse is latched by U1530A and U1530B and sets the IN 
PROGRESS line high, telling the microprocessor that the 
conversion is in progress and valid data is not available. The 
J input of U1425A is set high via U1435C and, at the begin- 
ning of the next measurement interval (falling edge of T17), 
the M/Z (measure-zero) level is set high. This signal is trans 
mitted to the Charge- Balancing Converter via the opt^ 
isolators and initiates its measurement sequence. The Q 
output of U1425A sets the J input of U1230A high via 
U1530C and, on the next 250 kHz clock (TO), the UP clock 
and DOWN clock logic, U1135A and U1135C, is enabled. 



The up/down counter now accumulates clock pulses as 
described in the Charge-Balancing Converter description 
until the Timing Logic generates an EOC (end of count) 
pulse to U1435A, signalling that the proper number of mea- 
surement intervals have been completed. This applies a high 
to the J input of the ovemide flip-flop U1330A and the next 
clock pulse (TO) sets its Q output low. This low is applied to 
U1425B and keeps any subsequent trigger from passing 
through U1435C that might re-initiate the measurement se- 
quence before it is completed. 



The measure-zero flip-flop is reset on the next clock (the 
failing edge of T1 7 coincides with rising T1 ). The low input to 
U1530C from U1330A keeps the UP counter and DOWN 
counter logic enabled during the override period by keeping 
U1230A’s J input held high. This enables the data counter 
to keep counting while the Charge-Balancing Converters in- 
tegrator makes its final charge back to the zero-reference 
voltage as explained in the Charge-Balancing Converter de- 
scription. Integrated circuits U1430C and U1435B reset the 
override flip-flop when integrating down (pin 9 of U1330B 
high) and the zero-reference voltage is crossed (COMP 
goes low). 



The next clock pulse after the override flip-flop is reset 
disables the UP clock and DOWN clock logic by clocking 
U1230A’s Q output tow. This clocks chop flip-flop U1230B 
and the 250 kHz clock is enabled through U1435D. The low 
Q output of the chop flip-flop holds U1330B in its set state, 
and the cathode of opto-isolator U1710's transmitter LED \s 
held low. This results in the 250 kHz chopping of the I U/D 
line, keeping the Charge-Balancing Converters integrator 
output very close to the zero-reference voltage as explained 
in that description. 



At the end of the next T17, T17 sets U1230B to disable 
the chopping clock and allow U1330B to distribute clocks in 
its usual manner. 

The clock enable provided by U1230A to U1135A and 
U1135C allows clock pulses to be passed to the data 
counter whenever the A/D converter is in its measurement 
or override modes. During this time, generation of either an 
UP clock or a DOWN clock is controlled b^ U1330B. T17, 
applied to U1330B's K input, always sets Q high, enabling 
UP clocks to the data counter on the next clock (TO). 

Any of four gates OR’d together by U1335A have the 
ability to generate a DOWN clock enable, depending on the 
converters operating mode. 

When generating the squarewave I U/D required for 
Auto-Zero, T17 initiates a series of UP clocks, starting at TO 
as mentioned above. Integrated circuit U1430A detects T8 
when operating in the Auto-Zero mode and applies a high to 
U1330B’s J input via U1335A. The next clock to U1330B 
(T9) initiates a series of 9 DOWN clocks. At T17, the cycle 
repeats itself. 



When in the measurement mode, clock pulses between 
T1 and T16 may be either high or low, as described in the 
Charge-Balancing Converter description, but all must be the 
same. This determination is made at the end of TO by 
U1335B. When measuring, the M/Z level at pin 12 is high. 
Pin 13 is high during all of TO, the time when the decision 
about T1-T16 must be made. If the COMP (comparator out- 
put) level from the A/D converter is high at the end of TO 
(indicating the integrators output is above the zero-refer- 
ence voltage), a high is applied to the J input of U1330B via 
U1335B and U1335A. The next clock pulse (T1) sets 
U1330’s Q output high and T1-T17 are DOWN clocks to the 
Data counter. If the COMP level were low at clock T1 , all of 
the T1-T16 clocks would be UP clocks, since U1330B did 
not change. 



In either case, T17 is always a DOWN clock as deter- 
mined by U1430D. During T16 when in the measurement 
mode, a high is applied to pin 11 of U1 330B via U1 430D and 
U1335A. The next clock (T17) clocks a high to U1330B’s Q 
output and produces a DOWN clock whether T1-T16 are 
DOWN clocks or not. 



During the override period, clocks must be enabled to the 
Data counter, but only until the integrators output charges 
beyond the zero-reference voltage, going negative (COMP 
goes high to low). Integrated circuit U1430B detects when 
this occurs and, along with U1430C, U1435B, and U1330A, 
completely disables all clocks to the data coun^r while the 
remainder of the override period chops the 1 U/D line. 



ADD JAN 1982 



4-17 



Theory of Operation — DM 5010 



At the end of the measurement and override periods, 
U1420C generates a CLR2 pulse to reset trigger latch 
U1530A and U1530B. This sets the IN PROGRESS line low 
and tells the microprocessor that the A/D conversion is over 
and valid data is available. It also sets the Data stage to 
address the first bit (LSB) of data for transfer onto the Data 
Bus. 



During the time the data is read, the Control Logic auto- 
matically initiates an Auto-Zero period after the end of over- 
ride. Then U1420A clears the interval timer and Auto-Zero 
intervals are counted. At the end of the Auto-Zero period, 
the Timing Logic generates an EDAZ (End Of Auto-Zero) to 
U1425B. This enables further measurement sequences to 
be initiated by the microprocessor TRIG line from the Ad- 
dress Decode block. 



As the next measurement cycle is initiated, U1420D 
resets the contents of the data counter to zero, and U1420A 
resets the Timing Logic's interval counter so measurement 
intervals may be counted. The cycle repeats itself as often 
as initiated by the microprocessor. 

OPTO-ISOLATORS <s> 

The opto-isolators couple digital control and data signals 
between the Grounded and Isolated Sections of the 



DM 5010 while maintaining electrical isolation between the 
two. Each isolator consists of a light-emitting diode that is 
turned either on or off by the drive circuitry, and a photo- 
detector diode and buffer to sense and buffer the transmit- 
ted signal. Each isolator buffer has an open collector output 
and pullup resistors are required. Integrated circuits U1605 
and U1613 are three-terminal regulators used to provide the 
correct output levels for the various isolators. Transistor 
Q1615 and R1615 set the ON current for U1 510’s LED. 



TIMING LOGIC ^ 

The Timing Logic stage generates the time-dependent 
signals for the A/D conversion process as well as the timing 
signals to sync the Transformer Drive circuitry to the con- 
version process (to minimize error caused by power supply 
noise). The stage is essentially a series of counters and 
some decoding logic that determines when certain phases 
of the mode-dependent conversion process should be initi- 
ated or have been completed. 



Flip-flops U1535A and U1535B comprise a -h 4 counter 
that divides the 1 MHz microprocessor clock down to a 
250 kHz rate. From there, the 250 kHz clock is divided by 
18 to generate the intervals for the charge-balancing con- 
version by U1730, U1630A, U1630B, U1320B, U1635B, 
U1635C, and U1530B. Refer to the timing diagram in Fig. 
4-12 for the following description. 




Fig. 4-12. Timing of the divide by eighteen counter. 



4-18 



ADD JAN 1982 







Theory of Operation — DM 5010 



Initially, pin 3 of U1635B is high. As the 250 kHz clock is 
applied to U1730, counting begins. When U1730's binary 
outputs equal 7, a high is applied to the J input of U1320B 
via U1635C and U1530B. The falling edge of the 250 kHz 
clock (actually rising Q) clocks the high to the Q output (T8) 
of the U1320B. The complementary lo\w at its Q output is 
applied to U1635B and disables the next clock to U1730. 
The J input of U1320B is high {U1730’s count is still 7) and 
the K input is latched high by the Q output. The T8 interval 
line at the Q output of U1320B is toggled low by the next 
250 kHz clock, re-enabling the clock to U1730 (Q goes 
high). Once again U1730 counts normally until its binary out- 
put equals 15. On the falling edge of the 250 kHz clock, a 
high is clocked to the Q output of U1320B and the comple- 
mentary low at its Q output disables the next clock through 
U1635B. 



Line T16 at pin 15 of U1730 goes high when its binary 
output equals 15 (actually count 16 because one clock is 
skipped). The next clock (17th) sets the T17 output at pin 5 
of U1630A high and, on its falling edge, clocks to U1730 are 
re-enabled. The rising edge of the next 250 kHz clock sets 
the binary outputs of U1 730 back to zero and intiates the TO 
pulse at the terminal of flip-flop U1630B. Although genera- 
tion of a TO pulse is actually dependent on the presence of a 
T17 pulse, the instrument considers T17 to be the last pulse 
of the sequence and TO to be the beginning of the next 
sequence. 



Integrated circuit U1525 is a negative-edge-triggered bi- 
nary counter that counts the number of 18-count charge- 
balancing intervals completed. As U1525 requires a 
negative clock, T17 is applied to its clock input to signal the 
end of an 1 8-count interval. 



The NAND gates connected to the binary outputs of 
U1525 generate two time-dependent control signals re- 
quired by the Control Logic to perform an A/D conversion. 
During normal 4 1/2 digit operation, U1520C detects when 
1 536 measure intervals have occurred during the Auto-Zero 
period and causes a high EOAZ (End Of Auto-Zero) at pin 3 
of U1520A, signalling that the Auto-Zero process should 
stop. At this time, the zero-reference voltage in the charge- 
balancing converter stage has been set. The counter is 
reset by CLR1 and the actual A/D measurement begins. 



A measurement requiring 4 1/2 digit acuracy requires 
that the integrator integrate over 12 or 10 periods of the 
power tine frequency for 60 or 50 Hz operation, respectively. 
Referring to Fig. 4-13, it can be seen that any noise at the 
instruments input affects the charge and discharge rates at 
the A/D Converters summing node (and thus the time at 
which the node voltage crosses the zero-reference voltage). 



In the DM 5010’s charge-balancing A/D conversion, the 
time (number of counts) that the Integrators output voltage 
is above the zero-reference voltage is subtracted from the 
time below the zero-reference voltage, and is representative 
of the input voltage. Though the magnitude of the ripple and 
the charge rates are extremely exaggerated in Fig. 4-13. a 
principle may be demonstrated. 



If, for example, a measurement is taken over time inter- 
val A, the noise (at power line frequency) added to the sum- 
ming node of the “antenna effect" of the test leads, results 
in a conversion more positive than the actual signal being 
measured. Similarly, a measurement taken over time inter- 
val B results in a conversion more negative than the actual 
signal. 



By making the A/D conversion over a complete number 
of power-line cycles (A -h B), these measurement errors 
cancel and the actual signal is accurately resolved. Since 
the DM5010 will be used in environments where either 
50 Hz or 60 Hz power is in use, the chosen time frame re- 
sults in “complete-cycle” measurements for either line 
frequency. 



For normal 4 1/2 digit measurements, U1620 detects 
when 2778 measurement intervals have occurred. This is 
equivalent to 200.02 ms of time or, in terms of “complete 
cycles", 12 cycles at 60 Hz or 10 cycles at 50 Hz. After the 
instrument measures for 200.02 ms, U1620 applies a low at 
U1635A, generating an EOC (End Of Count) pulse at its 
output. This EOC signals the Control Logic stage that the 
Measure Period of the measurement is over. 



The DM 5010 also has the capability to perform 3 1/2 
digit measurements at a faster rate. If the microprocessor 
determines that a 3 1 /2 digit measurement should be initiat- 
ed, It sets the 3 1/2 line high. This enables U1520B to gener- 
ate the EOAZ pulse after 256 measure intervals have 
occurred during Auto-Zero. Integrated circuit U1525 is reset 
and begins to count measurement intervals for a 3 1 12 digit 
conversion. 



Once again, because of the power-line noise picked up 
by the measurement leads, the A/D conversion must be per- 
formed over a number of complete power-tine cycles. Ade- 
quate resolution for a 3 1/2 digit measurement may be 
obtained by performing the A/D conversion over just one 
power-line cycle at either 50 Hz or 60 Hz. Both U1625 and 
U1720 are enabled by the high 3 1/2 line and, if operating 
from a 60 Hz power line, the 50/60 mode-select-enable to 
U1720 is also high (this is set by an internal jumper to match 
the power-line frequency). 



ADD JAN 1982 



4-19 




Theory of Operation — DM 5010 




INTEGRATOR 

OUTPUT 



A. WITHOUT RIPPLE AT ZERO VOLTS. 




B. WITH NOISE CAUSED BY MEASUREMENT LEADS 
(CLOCK GREATLY SLOWED OOWN), 



2994-21 



Fig. 4- 13. Influence of power line frequency on A/D conversion. 



When operating in a 60 Hz environment, U1720 detects 
when 231 measurement intervals have occurred. This is 
equivalent to 1 6.63 ms or one complete cycle at 60 Hz. At 
this time, U1720 causes an EOC to be generated at the 
output of U1635A, stopping the A/D conversion. 



When operating in a 50 Hz environment, the 50/60 line to 
U1720 should be set low. This disables U1720 and U1525 
counts up to 278 before the EOC is generated by U1625 
and U1635A. This equates to 20.02 ms or one complete 
cycle at 50 Hz. As can be seen, in all cases the A/D conver- 
sion takes place over a complete number of power-line cy- 
cles, minimizing conversion errors caused by noise. 



DATA 

As described earlier, the result of a charge-balancing A/D 
conversion is a sequence of pulses. The number of pulses 
generated during the conversion directly represents the con- 
ditions at the converters input. The Data stage counts these 
pulses and later transfers the accumulated results to the 
microprocessor data bus as required by the processor. 



The counter circuitry consists of four 4-bit up-down 
counters cascaded together along with a discrete-gate flip- 
flop to form a 17-bit up-down counter. The counter is reset 
at the beginning of a measurement cycle and then counts 
either up or down, depending on the polarity of the Integra- 
tors output with respect to the Comparators zero-reference 
voltage. At the end of the measurement period, the number 
of clocks accumulated by the 17-bit counter is 

representative of the input conditions to the A/D converter. 

When the conversion is complete and the results are 
stored in the counter, the Control Logic signals that conver- 
sion data is available to the microprocessor. This data is 
transferred from the counter to the Data Bus one bit at a 
time, starting with the least significant bit. 



At the time the processor is told that the data is avail- 
able, U1235 and U1230 are cleared by the Control Logic 
pulsing the CLR line low. This sets the Q output of U1320 
high to enable data to be passed through U1030A. Since 
the Q output of U1320A is low, the data path through 
U1030D is disabled and the resulting high at its output en- 
ables U1030B. 



4-20 



ADD JAN 1982 






Theory of Operation — DM 5010 



Counter U1235, set to binary zero by the CLR pulse at 
the end of the measurement period, selects the least signifi- 
cant bit of data (at the input of U1 1 25) to be output to the 
data bus via U1030A, U1030B, and the Miscellaneous buff- 
er (diagram 9). As the processor beings its reading se- 
quence, it reads this bit of data, and then generates an 
ADVANCE pulse via the Address Decode circuitry (diagram 
7) to increment the counter U1235. The next LSB of data 
(E,) is now selected by U1125 and is applied to the data 
bus. The processor continues reading data and advancing 
counter U1235 in this fashion until all 16 bits of data 
selectable by Dll 25 have been read. The next ADVANCE 
pulse generated by the processor causes a ripple-carry at 
pin 15 of U1235, and U1320 changes state. U1030A is dis- 
abled and the 17th bit of conversion data stored in the dis- 
crete flip-flop (U1135C and U1030C) is passed on to the 
data bus via U1030D, U1030B and the Miscellaneous 
buffer. 



MICROPROCESSOR 

The Microprocessor is the control center for ail instru- 
ment operations. Operating under firmware control, the var- 
ious types of data in the System are moved about and 
manipulated by the microprocessor. By addressing (select- 
ing) the various devices or memory locations in the proper 
sequence (firmware control) and by properly manipulating 
and transferring the data associated with these addresses, 
each portion of the instrument performs its correct function 
at the correct time. 



The DM5010, as do ail microprocessor systems, re- 
quires a system clock. The 4 MHz crystal, Y1221, provides 
a stable and accurate timing element for the 
microprocessor’s internal clock oscillator. All other critical 
timing signals in the instrument are derived from the inter- 
nally-divided 02 (1 MHz) clock. 

The VMA (Valid Memory Access) and R/W (read/write) 
lines control the enabling of devices o n the data bus as well 
as the flow of data on the bus. The 1^ line (interrupt re 
quest) is used in conjunction with GPIB data transfers, 
which are explained in the Handshake Process. The remain- 
ing processor control lines, with the exc eption of the 
reset, are not used. The function of the RESET line is 
explained in the following description. 

POWER-ON LOGIC 

The Power-On Logic holds the DM 501 0 circuitry in a 
reset condition for a short time after power up, or when a 



momentary power supply fault occurs. This ensures that the 
-t-5V supply has settled and that ail instrument functions 
begin from a known state. 

As instrument power is turned on, the +5V supply 
comes up from 0 V to -i- 5 V over some finite time period. 
During most of this time, the inverting input of U1230B is 
more positive than the noninverting input, k eepin g the out- 
put, at pin 7 low, and thus the system reset (PON at pin 1 of 
U1230A) at ground potential. As the supply voltage reaches 
approximately -t-4.7 V, the noninverting input at pin 5 goes 
more positive than the input at pin 6. As this occurs, the 
output transistor of comparator U1230B (an open collector 
device) is turned off. 



Capacitor Cl 223 now charges toward -i-5 V through 
R1227, As the voltage across Cl 223 charges beyond 
-1-2.75 V, the inputs to comparator U1230A change relative 
polarity and the system reset (PON) level at output pin 1 
goes high. As previously mentioned, the time delay incorpo- 
rated in this circuitry ensures that the 4-5 V supply has had 
time to settle before any operation is attempted. 



ADDRESS BUS BUFFER 

The Address Buffer stage consists of U1235 and 
U1420A. This stage provides the increased current drive re- 
quired to address the many devices on the Address Bus. 



ADDRESS DECODE 

The Address Decode circuitry may be thought of as an 
extension of the address bus. This stage looks at the six 
most-significant bits of the address bus along with two 
function-dependent signals produced by the microprocesor 
to generate many of the required enable and control signals 
for specific devices within the instrument. 



A high VMA (Valid Memory Access) signal, as does its 
inverted counterpart (low BVMA), indicates that the infor- 
mation on the address bus is pointing to a valid memory 
location. When these signals are present, decoders U1510, 
U1520, and U1620 along with U1720A. U1720B, U1730A, 
and U1730B in the logic state, generate the enable and con- 
trol signals as shown in Table 4-4. The memory map shown 
in Table 4-5 further illustrates address decoding. Those sig- 
nals associated with U1620 are all synchronized to the 
microprocessor by the 02 clock. 



ADD JAN 1982 



4-21 




Theory of Operation — DM 5010 



Table 4-4 

ADDRESS DECODING 



^2 


10 


Address Bit 
11 12 13 


14 


15 


1 Generated 

1 Output 


Equivalent 

Addresses 


Size 


X 


X 


X 


L 


L 


H 


H 


j EROMC 


CXXX 


4k 


X 


X 


X 


H 


L 


H 


H 


EROMD 


DXXX 


4k 


X 


X 


X 


L 


H 


H 


H 


EROME 


EXXX 


4k 


X 


X 


X 


H 


H 


H 


H 


EROMF 


FXXX 


4k 


X 


X 


X 


X 


X 


L 


H 


Not Decoded 


8000-BFFF 


16k 


X 


X 


X 


X 


X 


H 


L 


Not Decoded 


4000-7FFF 


16k 


L 


L 


L 


L 


H 


L 


L 


EGPIB 


2000-23FF 


Ik 


L 


L 


L 


H 


H 


L 


L 


ADVANCE 


3000-33FF 


Ik 


L 


L 


H 


L 


H 


L 


L 


Set RD low 


2800-2BFF 


Ik 


L 


L 


H 


H 


H 


L 


L 


Sets 1/2 


3800-3BFF 


Ik 


L 


H 


L 


L 


H 


L 


L 


SA STOP 


2400-27FF 


Ik 


L 


H 


L 


H 


H 


L 


L 


Set 4 1/2 


3400-37FF 


Ik 


L 


H 


H 


L 


H 


L 


L 


Set RD high 


2C00-2FFF 


Ik 


L 


H 


H 


H 


H 


L 


L 


TRIG 


3C00-3FFF 


Ik 


X 


L 


L 


L 


L 


L 


L 


ERAM 


0000-03FF 


Ik 


X 


L 


L 


H 


L 


L 


L 


NC 


1 000-1 3FF 


Ik 


X 


L 


H 


L 


L 


L 


L 


EM ISC 


0800-0BFF 


Ik 


X 


L 


H 


H 


L 


L 


L 


ECMOS 


1800-1 BFF 


1k 


X 


H 


L 


L 


L 


L 


L 


ESW 


0400-07FF 


Ik 


X 


H 


L 


H 


L 


L 


L 


NC 


1 400-1 7FF 


Ik 


X 


H 


H 


L 


L 


L 


L 


EFP 


OCOO-OFFF 


Ik 


X 


H 


H 


H 


L 


L 


L 


RC 


1C00-1FFF 


Ik 



4-22 



ADO JAN 1982 




Theory of Operation — DM 5010 



Table 4-5 

ADDRESS DECODE MEMORY MAP 



Starting 

Hexadecimal 

Address 


Signal 

or 

Enable 


Size 

(Decimal) 


0000 


ERAM 


Ik 


0400 


E5w 


Ik 


0800 


EMISC 


Ik 


OCOO 


EFP 


Ik 


1000 


1 000-1 7FF 
NOT USED 


2k 


1B00 


ECMOS 


Ik 


1C00 


RC 


Ik 


2000 


ESpib 


Ik 


2400 


SAST^ 


1k 


2800 


1 RD 


Ik 


2COO 


0 RD 


Ik 


3000 


ADVANCE 


Ik 


3400 


31/2 


Ik 


3800 


4 1/2 


Ik 


3000 


TRIG 


Ik 


4000 


4000-BFFF 
NOT USED 


32k 


COOO 


EPROMC 


4k 


DOOO 


EPROMD 


4k 


EOOO 


EPROME 


4k 


FOOD 


EPRCMF 


4k 



LOGIC 

The Logic stage works in conjunction with the Address 
Decode circuitry to generate process control signals re- 
quired by the A/D conversion circuitry. 

The set-reset latches, U1720A and U1720B, allow the 
microprocessor to set signal levels simply by addressing the 
function via the Address Decode circuitry. Table 4-4 shows 
the block of addresses that the microprocessor uses to set 
or reset the RD (Range Data) or 3 1/2 (measurement resolu- 
tion) signal lines. 



DATA BUS BUFFER <^> 

The Data Bus Buffer. U1435, provides bidirectional 
buffering of instructions and data on the data bus. Depend- 
ing on the instruction being executed, the microprocessor 
either outputs data onto the data bus or reads from the bus 
by controlling buffer direction via its R/W (read-write) control 
line. 



NOP BUFFER <^> 

By making the microprocessor execute a continuous se- 
ries of NOP (no-operation) instructions, much of the micro- 
processor kernel may be exercised and verified apart from 
devices that may be malfunctioning on the Data Bus. Mov- 
ing P1 425 to its NOP position tri-states (disables) the nor- 
mal Data Bus Buffer U1435 and, in its place, enables the 
NOP Buffer U1430. This device inverts Its hardwired inputs 
and forces a NOP instruction (00000001 ) into the processor 
with each clock to make the processor “do nothing”. In reali- 
ty, the microprocessor sequentially increments through its 
entire address field, exercising many devices connected to 
the address bus in a repeatable and predictable fashion. 
This allows for verification of the kernel and may be used as 
an aid in distinguishing data-related problems from hard- 
ware problems when troubleshooting. 



ROM <8> 

The ROM contains the operational firmware for the 
DM 501 0. Data is read from the ROM stage one byte at a 
time from any of 1 6k locations as addressed by the micro- 
processor. The Address Decode stage described earlier en- 
ables only one of the four ROM IC’s when the ROM is to be 
read. The 1 2 LSBs of the buffered address bus select one of 
the possible 4k bytes stored in the enabled 1C to be output 
to the Data Bus where it is read by the microprocessor. 



RAM 

The RAM stage, U1600 and U1505, consists of two 1k X 
4-bit RAM iCs and a small amount of enable logic. When the 
Address Decode circuitry detects an address within the 
slotted RAM space, it sets the ERAM line connected to the 
RAM ^ (Chip Select) inputs low. This enables data to be 
read from or written to RAM, depending on the level of the 
WE (Write Enable) pins. 



The RAM outputs the da ta add ressed by the b uffered 
address bits BA0-BA9 when ERAM is low and WE is high. 
Data may be written to the addressed location only when 



ADD JAN 1982 



4-23 



Theory of Operation — DM 5010 



the RAM block is enabled by ERAM low and when the write 
enable WE is also low. The write-to-RAM n^y only occur on 
a Valid Memory Access (VMA) writing B R/W to the RAM 
after the Data Bus is known to be valid {B 02) as determined 
by U 1630 A. 



CMOS RAM 

The CMOS RAM stage, U1220, contains the calibration 
constants for the DM5010. These constants, along with 
various algorithms stored in the firmware ROM, are used by 
the microprocessor to calculate measurement results. 
These constants are stored, as described below, at the time 
of initial instrument adjustment. During normal instrument 
operation, the CMOS RAM looks like ROM to the 
microprocessor. 



On power up, transistor Q1123 is turned on and the 
CMOS RAM may be enabled by a low ECMOS from the 
Address Decode stage. 



During normal instrument operation, jumper P1 1 32 is in 
the NORM position and data may only be read from the 
CMOS RAM when ECMOS is low; R/W is always high. Dur- 
ing instrument adjustment, however, new calibration 
constants must be written into the CMOS RAM. Jumper 
P1132 is moved to its CAL position and the VW (Valid 
Write) signal enables writing to the CMOS RAM in much the 
same way as writing to the normal RAM. 



To store calibration constants, a specified signal is ap- 
plied to the DM 5010 input and an A/D conversion is per- 
formed. The processor is then told to store this data as a 
calibration constant when the user presses the front-panel 
ENTER key. This routine is repeated until all calibration 
constants have been stored. Jumper P1 132 is then returned 
to its NORM position and, for all practical purposes, the 
CMOS RAM functions as a ROM. 



When instrument power is turned off, transistor Q1 1 23 is 
turned off and the CS (Chip Select) input of U1220 is pulled 
high through R1133 up to the battery supply voltage. This 
tri-states the busses of U1220 to minimize power drain from 
the Battery circuit. 



BATTERY 

A Battery circuit is employed in the DM 5010 to maintain 
the calibration contents of the CMOS RAM when the instru- 
ment is not connected to a line-power source via the power 
module. When not driving the data bus (as when the instru- 
ment is off), the CMOS RAM requires very little p)Ower and a 



small battery will maintain the calibration constants for the 
extended periods between instrument use. 



In normal operation with power applied, power for U 1 220 
comes from the - 1-8 V supply through R1135 and CR1133. 
Diode CR1235 holds the anode voltage of CR1133 at 
- 1 - 5.6 V. This results in -i-5 V being applied to pin 16 of 
U1220, the positive supply Input. This +5 V is also applied 
to R1131, charging battery BT1121 when the instrument is 
operating. With power removed, U1220 is disabled, as de- 
scribed earlier, and the current to maintain the contents of 
the CMOS RAM flows through R1 131 from battery BT1 121 . 



MISCELLANEOUS BUFFER 

This stage buffers three of the one-wide status bits and 
the serial conversion data onto the data bus so the proces- 
sor may read them when required. 



The EMiSC (Enable Miscellaneous) signal from the Ad- 
dress Decode circuitry turns on buffer U1420B. This en- 
ables the microprocessor to read the data on the four most- 
significant bits of the data bus and make decisions based on 
these status and data bits. 



Three of the four bits buffered onto the bus comprise 
status-type information. These bits affect the way in which 
the microprocessor performs its various control functions. 



Since the A/D conversion process operates in either 50 
or 60 Hz environment, the microprocessor must know which 
environment it is operating in. The 50/60 Hz jumper, PI 723, 
is set to match the line frequency of the power source. This 
status bit may be read from data bus bit 5 as the processor 
requires. 



The microprocessor continually checks the output of the 
set/reset latch, U1720C, which is buffered onto the data 
bus. If the Extrigger jumper, PI 721 , is in the enable position, 
a signal applied to the rear interface EXTRIG connector pin 
may be used to initiate triggering. In normal front-panel op- 
eration, jumper PI 721 is in its disable position and a low is 
buffered onto Data Bus bit 4 when status information is 
read. With the Extrigger jumper in its Enable position, a low 
EXTRIG from the rear interface connector pin sets the out- 
put of U1720C high and the microprocessor stops its con- 
version process after it performs one more complete con- 
version, After the conversion Is complete and the results are 
properly stored or transferred, the processor sets ESW 
(Enable Switch) low via the Address Decode circuitry and 
the output of U1720C is reset low. Normal front-panel oper- 
ation resumes until another EXTRIG occurs to initiate an- 
other triggered conversion. 



4-24 



ADD JAN 1982 




Theory of Operation — DM 5010 



The In Progress bit, when set high, informs the micro- 
processor that an A/D conversion is in process. The proces- 
sor, when controlling the conversion process, monitors this 
data bit and, when it returns low, knows that the A/D con- 
version is complete and that the serial data may be read 
onto the bus via the Data line. 



The 17-bit serial data representing an A/D conversion is 
buffered one bit at a time onto bit 7 of the buffered data bus. 
The microprocessor, by executing a sequence of read, shift, 
and store commands, re-assembles this serial data into the 
parallel format it uses most efficiently. 



SWITCHES 

The primary function of the ESW (Enable Switches) sig- 
nal is to enable the microprocessor to read the settings of 
the eight user-definable switches defining the GPIB and SA 
(Signature Analysis) configuration of the DM 5010. 



Though also used to reset the EXTRIG status bit as pre- 
viously described, a low ESW from the Address Decode cir- 
cuitry turns on buffer U1610. This buffers eight bits onto the 
data bus corresponding to the switch closures of SI 51 5, as 
defined by the user. Switches SI 51 5-2 through 8 define 
GPIB address and mode data and will be further discussed 
in the GPIB description that follows. Switch SI 51 5-1, when 
closed, causes the microprocessor to stop normal DMM op- 
eration and execute a special SA stimulation routine. 



GPIB 

The GPIB provides a communication and control link so 
that multiple instruments may interface with each other un- 
der the direction of a system controller. The TM 5000-Series 
power module provides the external GPIB connector as well 
as the internal interconnection to tie a GPIB-compatible 
plug-in to the GPIB. All GPIB interface and control functions 
of the DM 5010 and the TM 5000-Series power modules 
adhere to IEEE Standard 488-1978. 



The IEEE 488-1978 Standard 

The IEEE 488-1978 Standard defines a byte-serial, bit- 
parallel interface system electrically, functionally, and me- 
chanically as well as specifying terminology and system 
limitations. This system implements a three-wire handshake 
system with each data transfer from a ‘talker’ to one or 
more “listeners". A "talker" is a GPIB device sending data 
while a "listener" is one that receives data from a “talker”. 
All GPIB information is transferred at standard TTL levels 
using negative logic (i.e., 0 = true). 



The power module’s external GPIB interface has 16 con- 
nections that are used for three separate types of functions. 
Each of these signal lines is connected directly to the 
DM 5010 and function as described by the IEEE 488-1978 
Standard. One additional signal line TE (talk enable), is pro- 
vided for future use. 



Inputs DI01 through DI08 (data input/output) are used 
specifically for transfer of data between GPIB devices. 



Five other lines are used to manage the flow of informa- 
tion over the interface lines. The ATN (Attention) line, when 
active, disables the current talker and listeners and makes 
all devices listen to the controller. IFC (Interface Clear) line is 
used to put the interface system into a known quiescent 
state. The SRQ (Service Request) line is used to indicate to 
the controller that a device on the bus is in need of service 
and an interrupt is requested (the controller determines 
which devices may talk or listen at any time). The REN (Re- 
mote Enable) command selects either a remote or local 
source of device programming. The EOl (End Or Identify) 
line is used to signal the end of a multiple byte transfer. 



The three remaining lines are associated with the hand- 
shake process and are the DAV (Data Valid), NRFD (Not 
Ready For Data) and NDAC (Data Not Accepted) lines. Their 
timing relationships during the handshake process are 
shown in Fig. 4-14. Each data byte transferred by the inter- 
face system uses the handshake process to exchange data 
between source (typically a talker) and acceptor (typically a 
listener). The following list of events is related by number to 
the state changes shown in Fig. 4-14 and the flowchart 
shown in Fig. 4-15. 



The Handshake Process 

1. The source (talker) initializes the active low DAV (Data 
Valid) to a high level, indicating that data is not valid. 



2. The acceptors (listeners) initialize the active low 
NRFD (Not Ready For Data) level to a low (none are ready 
for data) and set the active low NDAC (Data Not Accepted) 
level to low (none have accepted data). 



3. The source checks for an error condition (both NRFD 
and NDAC at a high level) and then sets a data byte on the 
DIO (Data In/Out) lines. After the data has been placed on 
the DIO lines, the source delays to allow the data to settle 
on these lines. 



4. When the acceptors have all indicated readiness to 
accept the first data byte, the NRFD level goes high. 



ADD JAN 1982 



4-25 



Theory of Operation — DM 5010 




Fig. 4-14. QPIB three wire handshake state diagram. 



4-26 



ADD JAN 1982 



2874 149 







Theory of Operation — DM 5010 




ADD JAN 1982 



4-27 


































Theoiy of Operation — DM 5010 



5. The source, upon sensing the high NRFD level, sets 
the DAV level to a low, indicating that the data on the DIO 
lines has settled and is valid. 



6. The first (fastest) acceptor sets the NRFD level low, 
indicating that it is no longer ready for new data, and ac- 
cepts the present data. The remaining acceptors follow at 
their own rates. 



7. The first acceptor sets its NDAC level to a (passive) 
high, indicating that it has accepted the data. (NDAC re- 
mains low due to the other acceptors actively driving NDAC 
low. The term “passive" means that if any other device is 
“actively" driving this line to the opposite state, the passive 
level is overridden.) 



8. As the last (slowest) acceptor accepts the present 
data, the NDAC level goes to a (passive) high, indicating 
that all acceptors have accepted the data. 



9. The source, having sensed the high NDAC level, sets 
DAV high. This indicates to the acceptors that the data on 
the DIO lines must now be considered invalid. 



1 0. The source may change the data on the DIO lines at 
this time, and now delays to allow this data to settle if 
changed. 



11. The acceptors, upon sensing the high DAV level 
(step 9, above), set the NDAC level low in preparation for 
the next cycle. The NDAC line goes low when set by the first 
acceptor. 



12. The first acceptor indicates that it is now ready for 
the next data byte by setting its NRFD level to a (passive) 
high. (NRFD remains low due to other acceptors actively 
driving it low.) 



13. When the last acceptor indicates that it is ready for 
the next data byte, the NRFD level goes (passive) high. 



14. The source, sensing that NRFD is high, sets the 
DAV level low, indicating that the new data on the DIO lines 
has settled and is valid. 



15. The first acceptor sets the NRFD level low, indicat- 
ing that it is not ready to accept any change of data, then 
accepts the present data. The other acceptors follow at 
their own rate. 



16. The first acceptor sets its NDAC level to a (passive) 
high, indicating that It has accepted the data (as in step 7 
above). 



17. The last acceptor sets the NDAC level (passive) 
high, indicating that it has accepted the data (as in step 8 
above). 



18. The source, having sensed that NDAC is high, sets 
DAV high (as in 9). 



19. The source removes the data byte from the DIO sig- 
nal lines after setting DAV high. 



20. The acceptors, upon sensing the high DAV level, set 
NDAC to a low level in preparation for the next cycle. 



21. Note that all three handshake lines are at their initial 
states (as in steps 1 and 2 above). 



GPIB Interface 

The purpose of the GPIB Interface is to provide interface 
between the IEEE 488-1978 Standard bus and the DM 501 0 
microprocessor. The DM 5010 GPIB Interface consists pri- 
marily of a 40-pin 1C designed specifically for GPIB applica- 
tions and two bidirectional current buffer ICs. 



On the bus side of the GPIB 1C, U1 1 05, 1 6 pins are relat- 
ed directly to the 16 signal lines defined in the IEEE 488- 
1978 Standard description above. These data, control, and 
handshake signals are buffered by U1100 and U1110 either 
from U1105 to the GPIB or vice versa, depending on the 
T/R (Transmit- Receive) direction control signal. This T/R is 
also inverted by Q1121 and is provided to the TM 5000- 
Series power module for future use. 



The GPIB 1C is a register-oriented device; i.e., its function 
depends on how its various internal registers have been set. 
The various control and addressing signals that determine 
the setting of these registers are applied to the micro- 
processor side of the 1C. 



At power up, the negative PON pulse sets all internal 
registers of the GPIB 1C to predefined states. When the 
Address Decode circuitry detects that a GPIB function is to 
be performed, it sets EGPIB (Enable GPIB) low and the 
GPIB 1C is enabled. 



4-28 



ADD JAN 1982 




Theory of Operation — DM 5010 



There are 16 register locations accessible to the micro- 
processor via the address bus and data bus. These regis- 
ters store and transfer the control information for the 
various 1C functions as well as 1C status and data transfer 
information. The 16 registers (eight r^d-only and eight 
write-only) are addressed by the RA/V line along with 
buffered address bits BA0-BA2. Data is written into the 
write registers or read from the read registers via the data 
bus coincident with the B4>2 clock. 



The GPIB 1C can execute instructions from both the 
microprocessor data bus and from the General Purpose In- 
terface Bus. As these commands are executed, the various 
GPIB control and handshake sequences are automatically 
performed by the GPIB IC, including the proper direction of 
data transfer on the GPIB (controlled by T/R). 

Command sequences received via the GPIB usually re- 
quire that normal microprocessor operation be interrupted. 
An IRQ (Interrupt Request) to the microprocessor Is gener- 
ated by the GPIB IC when such conditions arise. 



FRONT-PANEL CONTROL <9> 

The Front-Panel Control stage consists primarily of 
U1605, a specialized IC designed to scan the Front-Panel 
Switches and control the Front-Panel Display. It provides 
scanning and reading functions for the various Front-Panel 
Switches as well as the storage and multiplexing functions 
required for the Front-Panel Display. 



After the PON reset at power up, a scanning sequence 
begins that checks the Front-Panel Switches for 
closures.The SC1-SC3 (Scan Column 1-3) lines are the out- 
puts of a free-running binary counter and are later decoded 
by the Front-Panel Drive circuitry (diagram 1 1 ) to scan the 
eight columns of the Front-Panel Switches matrix. As each 
column of the matrix is set low (one at a time), the five rows 
of the matrix are checked to see if a closure is present at the 
corresponding switch. If a closure is detected, a unique ad- 
dress identifying the switch is written into a temporary stor- 
age register within U1605. When the microprocessor 
executes its front-panel read routine, the register is read via 
the data bus and the instrument function is changed under 
firmware control to reflect the depressed switch. All time 
relationships for the front-panel scanning are derived from 
the B<^>2 clock. 



Data to be displayed by the Front-Panel Display is writ- 
ten from the microprocessor into eight 8-bit storage regis- 
ters internal to U1605 via the data bus. Each bit, when low, 
corresponds to an illuminated LED, either in the seven seg- 
ment displays or the individual status LEDs. The micro- 
processor formats all numeric and status information before 
writing it to U1605 so that meaningful displays will result. 



The Display is scanned in a manner similar to that of the 
switch matrix described above. As U1605 performs its con- 
tinuous scanning functions, each of the seven-segment dis- 
plays or columns of status LEDs are enabled one at a time, 
as dfetermined by the SCI -SC3 output lines from U1 605 and 
the Front-Panel Drive circuitry on diagram 1 1 . As each new 
column or digit is enabled, the contents of the correspond- 
ing display register are output onto the GDI -CDS (cathode 
drive 1-8) lines. This is the display information previously 
stored by the microprocessor. The appropriate LEDs are 
turned on to form either a decimal digit or to light the status 
indicators. 



All front-panel related data transfers occur via the Data 
Bus and are enabled by a low EFP (Enable Front Panel) 
from the Address Decode circuitry. Writing display informa- 
tion to U1605 is enabled by a low VW (Valid Write) to the IC 
and occurs coincident with the B<^i2 clock, integrated circuit 
U1630 controls the reading of the Front-Panel Switches reg- 
isters. Reading occurs coincident with the B02 clock and 
one of two registers may be read as selected by BAG, the 
least significant bit of the address bus. 



MAIN INTERCONNECT 

The Main interconnect is a printed circuit board that pro- 
vides most of the interconnection for the various boards of 
the DM 5010. Signal origin is indicated by an arrow pointing 
away from the board connector on which the signal is gener- 
ated. The Main Interconnect also provides guard and 
ground shielding. 



FRONT-PANEL DRIVE 

The Front-Panel Drive stage consists of a 1 -of-8 decod- 
er, current buffering circuitry, and a front-panel regulator. 
The front-panel regulator, U1720, and its associated com- 
ponents regulate the +8V supply from the power module 
down to -I- 5 V to provide power for the front-panel circuitry. 
By using a separate -I- 5 V supply for the front-panel circuit- 
ry, switching noise and transients generated by Front-Panel 
Switches do not affect operation of the rest of the 
instrument. 



The decoder, U1040, converts the binary scanning code 
from the Front-Panel Control IC to the eight individual lines 
required to scan the Front-Panel Switches and the Front- 
Panel Display, as explained in the Front-Panel Control de- 
scription. The buffering provides current drive levels as 
required by the switch matrix and LED displays. 



ADD JAN 1982 



4-29 




Theory of Operation — DM 5010 



FRONT-PANEL SWITCHES ^ 

The Front-Panel Switches provide a way for the user to 
control the operation of the DM 501 0. 



Forty push button switches are arranged in a 5 X 8 ma- 
trix and are continuously scanned under control of the spe- 
cial Front-Pane! Control 1C and the 1-of-8 decoder in the 
Front-Panel Drive stage. The 1-of-8 decoder sets each of 
the eight columns of the matrix low, one at a time, and then 
each of the five rows are sequentially checked by the Front- 
Panel Control 1C to see if a switch closure is present. After 
all five rows have been scanned, the next column is set low 
by the decoder and the sequence is repeated. Switch clo- 
sure data is stored by the Front-Panel Control 1C and is 
further explained in that description. 



FRONT-PANEL DISPLAY ^ 

The Front-Panel Display provides a visual indication of 
instrument status and measurement results to the user, it is 
comprised of multi-segment displays and individual light- 
emitting diodes arranged in a matrix configuration. The dis- 
play is generated in much the same way as when the Front- 
Pane! Switches are scanned. 



The Front-Panel Control 1C, along with the 1-of-8 decod- 
er in the Front-Pane! Drive circuitry, enables one of the mult- 
segment displays or one of the columns of status LEDs by 
pulling the associated anodes high through the buffering cir- 
cuitry on diagram 11 . As each group of anodes is enabled, 
an 8-bit display word associated with the particular column 
enabled is output from the Front-Panel Control IC on lines 
CD0-CD7 (Cathode Data 0-Cathode Data 7). This is the 
data stored earlier by the microprocessor representing the 
LEDs that should be turned on in any given display digit or 
status column. The data is buffered by the Front-Panel Drive 
circuitry and applied to the eight cathode rows. Any cathode 
that is low when its respective anode is held high will 
illuminate. 



4-30 



ADD JAN 1982 




TEK 



INTERFACING 

INFORMATION 



GPIB 

MADE EASY 




DM5010 Instrument 
Interfacing Guide 



This interfacing guide is designed to help you get 
started using the DM 5010 Programmable Digital 
Multimeter with a GPIB controller as quickly and 
easily as possible. This guide tells you how to set DM 
5010 switches for GPIB operation and explains how 
to communicate with the DM 5010 with a variety of 
controllers. Sample measurement programs for these 
controllers are also included. 

This guide does not take the place of the operators 
manual or other documentation supplied with the DM 
5010 and your system controller. More complete 
information in this other documentation will help you 
get the full benefit of the DM 5010's programmable 
capabilities. 

Setting Up the DM 5010 for GPIB 
Operation 

Connect the TM 5000 power module to your 
controller with a GPIB cable. The program examples 
in this guide assume that the DM 5010 and controller 
are the only instruments on the bus. 



Checking the GPIB Address and Terminator. 

The DM 5010 primary address is displayed when you 
press the INST ID button. A decimal point in the 
display indicates the message terminator switch is set 
for EOl or LF (no decimal point indicates EOl-only). A 
minus sign in the display indicates talk-only mode. 

The DM 5010 is supplied from the factory set to an 
address of 16 and to EOl-only for the message 
terminator. 

Setting the Address and Terminator Switches. 

The switches that select the GPIB address and 
terminator are located on a circuit board on the left 
side of the DM 5010. Because the DM 5010 side 
cover must be removed, allowing hazardous voltages 
to be exposed, refer address and terminator selection 
to qualified personnel only. Both a sticker on the 
inside of the side cover and Fig. 1 identify the switches 
and illustrate their meanings. Other switch or strap- 
selectable options in the DM 501 0 are explained in the 
Operators Manual. 



For additional copies, order: 
070-4603-00 
Product Group 76 
First Printing FEB 1983 



Ibktronix* 

COMMTTTED TO E*CELLE>« 




DM 5010 Instrument Interfacing Guide 



IEEE 488 

ADDRESS SELECTION 

SIGNATURE 
ANALYSIS 
TALK ONLY 
LFj EOl 
le" 



EQI ONLY 

Fab-i 

A4-I 
A3 
A2H 
AM 



ADDRESS 






BINARY 

WEIGHT 



PUSH FOR 
LOGIC D 



PUSH FOR 
LOGIC 1 



4603-2 (2994 31) 



Programming The DM 5010 

DM 5010 Power-On 

The DM 501 0 performs a self-test and goes to its 
default settings on power-on. 

Self-Test. During the self-test, all front-panel indi- 
cators are lighted. If an internal error is detected, the 
DM 5010 continuously displays a three-digit error 
code and turns on the ERROR indicator. See the op- 
erators manual for the meaning of any code displayed. 

Power-On Settings. Following a successful self- 
test, the DM 5010 goes to local state with the default 
settings shown in Table 1 (and defined in Table 2). 
These settings are restored any time the INIT com- 
mand is executed. 



Fig1. The address and message terminator switches 
are iocated on the circuit board on the left side of the 
DM 5010. 



WARNING 



Hazardous voltages exist inside the 
DM5010. The DM5010 should be 
removed and disconnected from the 
TM 5000 power module (after turning 
power off) before opening the instrument 
covers. Internal settings should only be 
made by qualified personnel. 

Valid primary addresses include the range of 0 to 
30. (31 effectively disables the DM 5010 from commu- 
nicating on the GPIB.) If your controller reserves an 
address for itself, do not set the DM 5010 to that 
address. This Is true of Tektronix 4050-Series control- 
lers, which reserve address 0 for themselves. The 
Tektronix 4041 defaults to address 30 on power-on, 
but may be programmed to use any primary address. 
The DM 5010 ignores secondary addresses. 

EOl-only is recommended as the message termina- 
tor for use with Tektronix controllers. EOl-or-LF is rec- 
ommended for use with Hewlett-Packard controllers. 
(In the latter position, the DM 5010 still recognizes 
EOl as a terminator and transmits EOl concurrently 
with the LF character to terminate a message.) 

Neither signature analysis nor talk-only modes are 
used in normal operation with a GPIB controller, so 
those switches should be set to a logic 0. 



Power-On SRQ. The DM 5010 asserts SRQ to re- 
port power-on status after completing the self-test. 
This can be handled with a serial poll, although the 
DM 5010 communicates normally on the GPIB and 
executes the commands it receives whether or not the 
SRQ is serviced. Some controllers, such as the 4051 
and 4052 when used without the 405XR14 GPIB 
rompack, require that the program contain an SRQ 
handler and begin by enabling the handler; otherwise 
the power-on SRQ will cause the program to halt with 
the error ‘NO SRQ ON UNIT.’ 



Table 1 

DM 5010 POWER ON SETTINGS 



Header 


Argument 


AVE 


2 


CALC 


OFF 


DBR 


1 


DCV 


-1.E + 3 


DIGIT 


4.5 


DT 


OFF 


LFR 


OFF 


LIMITS 


0,0 


MODE 


RUN 


MONITOR 


OFF 


NULL 


0 


OPC 


OFF 


OVER 


OFF 


RATIO 


1,0 


RQS 


ON 


SOURCE 


FRONT 


USER 


OFF 



2 

Copyright (£.' 1983 by Tektronix, Inc , Beaverton. Oregon. All rights reserved. 




DM 5010 Instrument Interfacing Guide 



DM 5010 Messages 

Commands are provided to control DM 5010 
settings, cause DM 5010 actions, or request status or 
measurement data. These commands are listed in Ta- 
ble 2. DM 5010 commands begin with a header — a 
word or abbreviation that describes the function im- 
plemented. The command may include one or more 
arguments, which are delimited from the header by a 
space: multiple arguments are delimited by a comma. 
DM 5010 commands can be combined in a message 
by separating the commands with the message unit 
delimiter (semicolon). Either upper or lower-case 
ASCII characters are accepted. 

Table 2 

DM 5010 COMMANDS AND DESCRIPTIONS 





O’ 


= Optional 


Header 


Argument 


Description 


ACDC 


<num> 


Selects the ACV-(-DCV func- 


(ACD) 




tion. Argument selects range. 
Negative or omitted argument 
selects auto-range. 


ACV 


<num> 


Selects the ACV function. Ar- 
gument selects range. Nega- 
tive or omitted argument 
selects auto-range. 


AVE 


<num> 


Sets the number of conver- 


(AVG) 




sions used in CALC AVE pro- 
gram. Argument is truncated 
to integers. 


AVE? 

(AVG?) 




Returns “AVE <num>;“. 


CALC 


AVE 


Calculates the average of the 




(AVG) 


next “N" readings. AVE com- 
mand sets the value of “N". 


CALC 


CM PR 


Compares input to limits set 




(COMP) 


by LIMITS command. SEND 
command returns: 



‘3.;’ if input is above both 
limits. 

“2.;" if input is between or 
equal to both limits. 

“1 if input is below both 
limits. 

“ ± 1 . E + 99 : ’ for overrange. 

DATA returns the out-of-limits 
measurement. 



Table 2 (cont) 



Header 


Argument 


Description 


CALC 


DBM 


Calculates power ratio, refer- 
enced to 1 mV dissipated in 
600 0. Disables CALC DBR. 


CALC 


DBR 


Calculates logarithmic ratio of 
measurement to value of 
DBR command. Disables 
CALC DBM. 


CALC 


RATIO 


Subtracts offset and divides 
by scale factor set by RATIO 
command. 


CALC 


OFF 


Disables all calculations. 


CALC? 




Returns “CALC OFF;" or list 
of enabled calculations. 


DATA 




Returns the out-of-limits mea- 
surement saved by the MONI- 
TOR command. 


DBR 


<num> 


Numeric sets value of refer- 
ence used in CALC DBR 
command. 


DBR? 




Returns ‘DBR <num>;’. 


DCV 


<num> 


Selects the DCV function. Ar- 
gument selects range. Nega- 
tive or omitted argument 
selects auto-range. 


DIGIT 

(DIG) 


3.5 


Selects FAST CONVERSION 
RATE (3.5 digit resolution). 


DIGIT 

(DIG) 


4.5 


Selects normal CONVER- 
SION RATE (4.5 digit 
resolution). 


DIGIT? 

(DIG?) 




Returns “DIGIT 3.5;' or “DIG- 
IT 4.5;’. 


DIODE 

(DIO) 




Selects DIODE TEST func- 
tion. No argument. 


DT 


TRIG 


Instrument responds to 
Group Execute Trigger 
<GET>. 


DT 


OFF 


Disables DT TRIG. Instru- 
ment will not respond to 
Group Execute Trigger 
<GET>. 


DT? 




Returns “DT TRIG;" or “DT 
OFF;“. 



3 




DM 5010 Instrument Interfacing Guide 





Table 2 (cont) 




Table 2 (cont) 


Header 


Argument 


Description 


Header 


Argument 


Description 


ERR? 




Returns error code for most 






• Rear interface trigger 






recent event reported by seri- 






(EXTRIG). Requires inter- 






al poll when RQS is ON; with 






nal jumper installation. To 






RQS OFF it returns the high- 






cause a single trigger, this 






est priority status. 






line must remain low be- 


FUNCT? 

(FUNC?) 




Returns the current function 
(DCV, OHMS, DIODE, ACV, 
ACDC) and range. Negative 






tween 0.5 and 1 0 ^sec. 
Holding this line low longer 
causes multiple readings. 






argument indicates auto- 


MODE? 




Returns “MODE RUN;" or 






range. 






“MODE TRIG;'. 


ID? 




Returns “ID TEK/ 


MONITOR 


ON 


Enables monitor SRQ. Saves 






DM5010,V79.1 FXX;’, where 


(MON) 




the measurement outside the 






XX is the firmware version 






limits set by the LIMITS com- 






number. 






mand and generates an SRQ. 


INIT 




Initializes all instrument 
settings to their power-on 
settings. See Power On 
Settings. 






Returns this measurement in 
response to DATA. Subse- 
quent out-of-limits measure- 
ments are not reported until 
the SRQ is serviced and mea- 


LFR 


ON 


Enables the LOW FREQ RE- 






surement is returned via 






SPONSE function. Instrument 






DATA command. 






computes the average of four 
ACV or ACV -h DCV 
measurements. 


MONITOR 

(MON) 


OFF 


Disables the monitor SRQ. 


LFR 


OFF 


Disables the LOW FREQ RE- 
SPONSE function. 


MONITOR? 

(MON?) 


Returns “MONITOR ON;" or 
“MONITOR OFF;’. 


LFR? 




Returns “LFR OFF;’ or “LFR 
ON;'. 


NULL 


<num> 


Sets an offset value and ap- 
plies it to subsequent mea- 
surements. Argument may be 


LIMITS 


<num>. 


Sets limits used in CALC 






any value up to 1 00% of 


(LIM) 


<num> 


CMPR program. 






range. Disable NULL by set- 


LIMITS? 

(LIM?) 




Returns 'LIMITS <num>, 
<num>;’. 






ting argument to 0, or chang- 
ing measurement function. 


MODE 


RUN 


Selects the free-run (RUN) 


NULL? 




Returns “NULL <num>;". 






trigger mode. 


OHMS 


<num> 


Selects OHMS function. Ar- 


MODE 


TRIG 


Selects TRIGGERED trigger 
mode. Triggers a conversion 
only upon receipt of one of 






gument selects range. Nega- 
tive or omitted argument 
selects auto-range. 






the following. 

• SEND command 


OPC 


ON 


Enables operation complete 
SRQ. DM 5010 asserts SRQ 
whenever a new measure- 






• Group Execute Trigger 






ment is available. 






<GET>, only if device 
trigger (DT) is enabled. 


OPC 


OFF 


Disables operation complete 
SRQ. 






• My Talk Address (MTA) 
with the output unspecified 


OPC? 




Returns “OPC OFF;’ or 
“OPC ON;’. 






(no query command). 







4 




DM 5010 Instrument Interfacing Guide 



Table 2 (cont) 



Header 


Argument 


Description 


OVER 


OFF 


Disables overrange SRQ 
(OVER ON). If overranged 
when talked, returns 
‘1.E-I-99;’ and does not gen- 
erate an SRQ. 


OVER 


ON 


Enables overrange SRQ. If 
overranged when talked, re- 
turns ‘1.E-I-99;’ and gener- 
ates an SRQ. 


OVER? 




Returns ‘OVER ON;' or 
‘OVER OFF;’. 


RATIO 

(RAT) 


<num>, 

<num> 


Sets values for offset and 
scale used in CALC RATIO 
command. First argument is 
for scale, second for offset. 


RATIO? 

(RAT?) 




Returns “RATIO <num>, 
<num>:‘. 


RDY? 




Returns ‘RDY 0;’ if a mea- 
surement Is in progress or if 
the instrument is waiting for a 
trigger. Returns “RDY 1;’ if a 
measurement is available. 
Also see OPC ON. 


RQS 


ON 


Enables instrument to gener- 
ate service requests. 


RQS 


OFF 


Disables all SRQ’s. Instru- 
ment responds to ERR? with- 
out first being serial polled. 


RQS? 




Returns “RQS OFF;" or 
“RQS ON;’. 


SEND 

(SEN) 




Returns latest measurement. 
If no measurement is avail- 



able, the instrument triggers a 
measurement and then out- 
puts it. If CALC CM PR is en- 
abled, returns 1, 2, or 3 to 
indicate relationship of mea- 
surement to LIMITS. See 
CALC CMPR. 

SET? Returns all instrument 

settings that may be queried. 
See Power On Settings. 

SOURCE FRONT Connects front panel connec- 

(SOUR) tor inputs. 



Table 2 (cont) 



Header 


Argument 


Description 


SOURCE 

(SOUR) 


REAR 


Connects rear interface con- 
nector inputs. 


SOURCE? 

(SOUR?) 




Returns ‘SOURCE FRONT;’ 
or ‘SOURCE REAR;’. 


TEST 




Returns 0 if calculation 
checksum is correct; 351 if 
erroneous. 


USER 


ON 


Enables INST ID button ser- 
vice request. 


USER 


OFF 


Disables INST ID button ser- 



vice request. 

USER? Returns 'USER ON;’ or 

‘USER OFF;’. 



Sending Messages to the DM 5010 

Most GPIB controllers provide a high-level state- 
ment that allows you to transfer device-dependent 
messages to the DM 501 0. In the 4050-Series and the 
4041, it’s the PRINT statement. 

4050-Series: 

170 PRINT ei6:'*ACV;LFR ON" 

4041: 

170 Print HUJ “ACVaFR ON" 

A useful variation assigns the DM 5010 address to 
a variable and inserts that variable in the PRINT state- 
ment in place of the number for the address. This 
works with either the 4050-Series or 4041 and allows 
you to change the program to work with the DM 5010 
set to other addresses by changing only the state- 
ment that assigns the variable. 

4050: 

200 0^16 

210 PRINT e?D:"ACV;LFR ON" 

4041: 

200 Dit^U 

210 Print Udis: "ACVILFR ON" 



5 




DM 5010 Instrument Interfacing Guide 



Notice that the DM 5010 message (what's inside 
the quote marks) is the same in all of the above exam- 
ples. The rest of each example varies to match the 
PRINT statement syntax designed into each controller 
as illustrated in Fig. 2. This suggests that once you 
understand your controller's output and input state- 
ments, it’s just a matter of plugging in the DM 5010 
commands you need. 



4050-Series BASIC 
4041 BASIC 
HP-85 BASIC 
FLUKE 1720 A BASIC 
HP 9826 BASIC 



PRINT @5:“RQS ON” 
PRINT #5:“RQS ON” 
OUTPUT 705 ; “RQS ON” 
PRINT @5%,“RQS ON” 
OUTPUT 705;”RQS ON” 

4603-5 



Fig. 2. A message to a GPIB device is contained with- 
in the controller’s GPIB output statement. The state- 
ment is composed of three parts: the keyword, the 
address or logical unit number, and the device-depen- 
dent message. AH the statements shown send the 
same standard Tektronix Codes & Formats message 
(RQS ON) that enables SRQ interrupts. AH send the 
message to an instrument with primary address 5. 
The difference lies in the syntax of the statement re- 
quired for a particular controller. 



Getting DM 5010 Current Settings 

DM 5010 queries or output commands (such as 
FUNCT?, MODE?, or SEND) prepare the instrument 
for output, but do not start such output. The DM 5010 
waits until it sees its talk address to begin sending the 
requested data. This is accomplished by the INPUT 
statement. 

4050-Series: 

280 PRINT eflAJ'TUNC?" 

290 INPUT ei6:Fi 

4041: 

290 input 1116 prospt •TUNC?'*:fnctionl 

All instrument settings can be obtained in one mes- 
sage. Just dimension a string large enough (300 char- 
acters is plenty) and input the settings string. 

4050-Series: 

330 OIN S$(300) 

360 PRINT 816? "SET?” 

350 INPUT ei6?S$ 



4041: 

330 Die settin^t to 300 

360 Input 816 pro«pt "SET?" :sett i 

You can restore the settings you input from the DM 
5010 by sending back the settings string. 

4050-Series: 

380 PRINT ei6JSt 
4041: 

380 Print 816isettin9i 



Getting DM 5010 Measurements 

Getting measurements from the DM 5010 is even 
easier than getting settings data. Sending the DM 
5010 talk address, which INPUT does, is enough to 
cause the DM 5010 to output a reading. (The DM 
5010 responds with a reading if it has not been told by 
a query command to respond with some other out- 
put.) The DM 5010 sends the reading as ASCII nu- 
meric characters, which may be input into a character 
string or numeric variable. The variable and its type 
are specified after the colon in the INPUT statement. 

4050-Series: 

630 INPUT ei6JR 
4041: 

630 Input 816:re3dind 

If a reading is not available, say the DM 501 0 was 
set to triggered mode but no reading was triggered, 
the INPUT statement causes the DM 5010 to trigger a 
reading and output it as soon as it Is available. Mean- 
while, it holds off further GPIB activity by halting the 
handshake. This may be undesirable if the DM 501 0 is 
set to average many readings before it can output a 
response. The SEND command is provided for this 
reason. Its use is illustrated in the sample measure- 
ment program later in this guide. SEND allows the 
program to handle other events or do other process- 
ing while many readings are averaged. It also avoids a 
timeout, which occurs if the DM 5010 is talked but 
cannot supply output within five seconds. 

If the program does request a long averaging oper- 
ation, does not use SEND, and attempts to INPUT the 
reading before it is ready, it can cause the DM 501 0 to 
time out. If a time out occurs, the DM 5010 does not 



6 



DM 5010 Instrument Interfacing Guide 



hold up bus traffic any longer; it outputs a byte with all 
bits set to one (FF hex) and asserts EOl concurrently. 
This does not change the value stored in the INPUT 
target variable. If the variable was undefined, it re- 
mains undefined. This causes an error if the variable is 
numeric and it is subsequently used in an output 
statement or a calculation. 

Because the DM 5010 returns a very large number 
(1.E-I-99) to indicate an overrange condition, it is nec- 
essary to define variables used for readings in the 
4041 as long floating point. Such a variable is used in 
the 4041 sample measurement program. 

Using DM 5010 Interrupts 

Programmable interrupts are provided in the DM 
501 0 to inform the controller of asynchronous events, 
such as operation complete, command errors, 
overranging, or out-of-limits reading in the compare 
mode. If the DM 5010 is set to report an event, it 
asserts SRQ when it detects that event and sets its 



status byte and error code appropriately. The status 
byte returned in response to a serial poll and the error 
code returned in response to an error query (ERR?) 
correspond to the events shown in Table 3. The error 
query obtains more detail in the case of abnormal 
events and some normal events. For instance, in the 
case of a command error, was it a problem with a 
header, argument, or delimiter? You can find out from 
the error code. 

Here are typical SRQ handlers that alert you to a 
reporting instrument's address, status, and error code 
with a message on your console. The error code is 
helpful during debugging because it identifies the spe- 
cific command or execution problem should one oc- 
cur. To use an SRQ handler, you must link it and 
enable it as shown in the statements at lines 1 20 and 
130, The sample measurement program does not use 
the error query because the information that is needed 
(operation complete) is available from the status byte. 
It prints the status byte as a failsafe measure only if it 
is other than the one expected. 



4050-Series with 405XR14 Rompack: 

120 ON SRO THEN 470 
130 CALL "SRQ0N“ 

140 REM 
150 REfI 
450 RE/1 
460 STOP 

465 REft SERIAL POLL OF ADDRESS 16 ONLY 

470 POLL ArS;16 

475 PRINT ei6;*‘ERR?" 

480 INPUT iM6fE 

490 PRINT •'STATlJS«"/S,*'ERR0R^”;E 
500 RETURN 



4041: 

120 On sr«t then sSosub dopoll 
130 Enable srn 
140 ! 

150 ! 

450 ! 

460 Stop “End of 4041 example proarem statements." 

470 Dopolls poll staby t / addr ^ 16 . 

480 Input #addr prompt "ERR? ” i errnum 

490 Print "STATUS= " / staby t ^ "ADEiRESS= " I addr # "ERR0R=" ; errnum 
500 Resume 



7 




DM 5010 Instrument Interfacing Guide 



Table 3 

ERROR QUERY AND STATUS INFORMATION 

Error Serial 

Query Poll 

Abnormal Events Response Response* 

Command Errors: 



Invalid command header 


101 


97 


Header delimiter error 


102 


97 


Argument error 


103 


97 


Argument delimiter error 


104 


97 


Missing argument 


106 


97 


Invalid message unit delimiter 


107 


97 


Execution Errors: 


Not executable in local mode 


201 


98 


Settings lost due to rtl 


202 


98 


Input and output buffers full 


203 


98 


Argument out of range 


205 


98 


Group Execute Trigger ignored 


206 


98 


Not in calibrate mode 


231 


98 


Beyond calibration or null 


capability 


232 


98 


Internal Errors: 


Interrupt fault 


301 


99 


System error 


302 


99 


Math pack error 


303 


99 


Converter time-out 


311 


99 


Front panel time-out 


317 


99 


Bad ohms calibration constant 


318 


99 


Calibration checksum error 


351 


99 



Normal Events 



System Events: 



Power on 


401 


65 


Operation complete 


402 


66 


ID user request 


403 


67 


Internal Warning: 


Over-range 


601 


102 


Device Status: 


Reading available 


0 


132 


Waiting for trigger 


0 


136 


Reading available and 


waiting for trigger 


0 


140 


Below limits 


701 


193 


Above limits 


703 


195 


No Errors or Events 


0 


128 



DM 5010 Data Processing 

Functions built into the DM 501 0 allow you to ob- 
tain answers that are already processed or corrected 
in a number of ways. For instance, ohms readings can 
be offset by NULL to take into account lead resis- 
tance. Any reading can be scaled according to the 
formula (x-b)/a; this converts a voltage reading across 
a resistor to current if b is set to zero and a to the 
resistor’s ohms value. Voltage readings can be re- 
turned in dB or dBr (dB compared to a reference). 
Just insert the processing command selected from the 
command table in this guide into set-up messages 
sent to the DM 501 0. An example using the averaging 
function is shown in the sample measurement 
program. 



DM 5010 Response to interface Messages 

The following program sequences show various in- 
terface messages transmitted to the DM 5010. 

The DM 5010 responds to DCL (and SDC if listen 
addressed) by clearing its input and Output Buffers 
and any unexecuted setting commands in its Pending 
Settings Buffer, along with any errors or events wait- 
ing to be reported (except power-on). 

GET triggers a reading in device trigger mode if the 
Instrument receives the message while listen ad- 
dressed. It is used with the MODE TRIG and DT TRIG 
commands. 

LLO locks out the operator from restoring local 
(front-panel) control when the instrument is under re- 
mote control. 

GTL restores local control if the instrument re- 
ceives the message while listen addressed. 

See the DM 501 0 Operators Manual for a full dis- 
cussion of how the instrument responds to interface 
messages. 



*lf the instrument is busy, it returns a decimal number 16 
higher than the number listed. 



8 




DM 5010 Instrument Interfacing Guide 



405XR14: 



100 


REM 






110 


REM 






120 


REM 






130 


REM 






140 


A=16 






150 


REM 




Send 


160 


FiEM 




170 


CALL 


"LISTEN"; 


A 


180 


REM 




Send 


190 


CALL 


"UNL" 




200 


REM 




Send 


210 


CALL 


"TALK"; A 




220 


REM 




Send 


230 


CALL 


"UNT" 




240 


REM 




Send 


250 


CALL 


"DCL" 




260 


REM 




Send 


270 


CALL 


"SDC" ; A 




280 


REM 




Send 


290 


CALL 


"LLO" 




300 


REM 




Send 


310 


CALL 


"GTL";A 




320 


REM 




Send 


330 


CALL 


"GET"; A 




340 


REM 




Uncts 


350 


CALL 


“LOCG" 





L I stftn Addr€;f>s (ML A) 

Uni i sten (UNL > 

Talk Address 
Unta 1 k 

Dev i c e Clear 

flLAt Selected Device Clear» 
Local Lockout 
MLAf Go to Local » UNL 
ftLA» Group Execute TriSSert 
iert REN 



UHL 



UNL 



4041: 

130 

140 

150 

160 

170 

180 

190 

200 

210 

220 

230 

240 

250 

260 

270 

280 

290 

300 

310 

320 

330 

340 



Pr i 3 ddr = 16 I 



pr imara bus address 



L i sten ! 

j 

Un I i sten 
! 

Talk: 

! 

Unta 1 k : 

! 

Devc I ear 

f 

Se I c tc I r 

i 

Lockout : 
r 



Tr 



gser ! 



wbate atn (pr i _addr+32) ! 

wbate atn (un I ) ! 

wbate atn (pr i _addr+64) ! 

wbate atn (unt) ! 
wbate dc I ! 



Send Listen Address (MLA) 
Send Un listen (UNL) 

Send Talk Address 
Send Unta Ik 
Send Device Clear 



wbate sdc(pri addr)/ 3 tn(unl) ! Send MLA/ Selected Device 

Clears UNL 

wbate llo ! Send Local Lockout 



Gt local: wbate gt I (pr I _addr ) / atn (un I > ! Send MLAf Go to Locals UNL 



Loc I stat : 



wbate Set(pri addr ) / atn (un I ) ! Send MLA/ Group Execute 

^ Tr i SSer / UNL 

wbate ren (0) /ren (1) ! Pulse unassert REN line 



9 




DM 5010 Instrument Interfacing Guide 



Sample Measurement Program 

The following program makes a series of DM 501 0 measurements to illustrate command i/o and various measure- 
ment triggering modes. 

Figs. 3 and 4 are typical output from the programs. 



405XR14: 



100 

110 

120 

130 

140 

150 

\6Q 

170 

180 

190 

200 

210 

220 

230 

240 

250 

260 

270 

280 

290 

300 

310 

320 

330 

340 

350 

360 

370 

380 

390 

400 

410 

420 

430 

440 

450 

460 

470 

480 

490 

500 

510 

520 

530 

540 

550 

560 

570 

SQO 



RErt 

REI1 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 

REM 



;;; DM 5010/4050--SERIEi5 MEASUREMENT PROGRAM :t 



8Y JiM KlMhall, 6PI Marketlndr 10/15/82» update 11/17/82 

Oopyrisht (c) 1982» Tektronixr Inc, All rights reserved. This 
software is provided on an "as Is" basis without warrants of ana 
kind. It is not supported. 

This software mbs be reproduced without prior pemlssionf In 
whole or in part. Copies must include the above coparlsht 
and warranty notice, 

RECUIIRED EQUIPMENT 

DM 5010 in TM 5000 «ainfra«e, 

Proflraw assunes no other instruments on the bus. 

4050--5eries controller with R14 GPIO Enhancement roapack 



PURPOSE? 

Inputs four readin^Sr usins four different DM 5010 acquisition 
modes. Prints readings on screen. 

OPERATING procedure; 

Connect 4050 Controller and TM 5000 mainframe with 6PIB cable. 
DM 5010 must be set for primary address of 16 or 
change line that assigns d-16. 

Enter'and run program <no other program sesment required). 

PROGRAM FUNCTIONS; 



REM 

REM Prepares DM 5010 for measurement and queries id 

REM Reads whatever measurement is available 

REM TriSSers a readinS with the INPUT statement 

REM Reads after GET trISSar in device trISSer mode 

REM Gets average of 20 DM 5010 readings usinS SEND 

REM General-purpose SRQ handler 

REM 

REM 

INIT 

PAGE 

PRINT "GDM 5010 MAKING MEASUREMENTS." 

REM AssiSn DM 5010 factory-set address of 16 



D=16 

ON SRQ THEN 950 
CALL "SRQON" 

REM 

REM Setup DM 5010? expand as needed 
PRINT 0D;"init" 



10 



DM 5010 Instrument Interfacing Guide 



590 REW Query id 

600 PRINT 8D:“id?" 

610 INPUT 8D:I$ 

620 PRINT 1$ 

630 REM 

6A0 REfI Get continuouR «ode reedinS 

650 PRINT run" 

660 INPUT 8D!N 

670 PRINT "Cont i nuouB ttodeJ ; tt 
600 RErt 

690 RErt Get tridSered re«dln^ 

700 PRINT 8DJ''ttode trid" 

710 INPUT 8D;f1 

720 PRINT “Tridilered ttodef **Jrt 
730 REft 

760 RER Get trissered reodins usind device trissier 

750 PRINT 8D»"dt tr i d" 

760 RErt Allow on to set ur for GET 

770 CALL "WAIT'S0,4 

780 CALL **det”;D 

790 INPUT 0D:n 

800 PRINT eD:”dt off" 

010 PRINT "Device Tridder Node: 

820 REft 

830 REM Get sveraded readind 

860 REft Inform operator of delay 

850 PRINT "GWaitind for everade..." 

860 PRINT 8DJ"ave 20;calc eve;opc onJsend" 

870 WAIT 

880 IF N0T(S=66 OR 8«82) THEN 870 

890 INPUT eOift 

900 PRINT eO;"opc off" 

910 PRINT "Averade of 20 readinds? "Jtl 
920 PRINT "Prodra* complete." 

930 END 

960 REH SRO handler 

950 POLL A.SJD 

960 IF 8=66 OR 8=82 THEN 980 
970 PRINT "Status="?8 
980 RETURN 



DK 5die HAKING MEASUREMENTS. 

ID TEKVDM5010,U79.1,F00; 

Continuous Mode: 0. 18&35 

Triggered Mode: -0.0413 

Device Trigger Mode: -0.13415 

Waiting for average... 

Average of 20 readings: -0.19933 

Progran complete. 

4603-3 

Fig. 3. Screen output from 4050-Series sample mea- 
surement program. 



11 





DM 5010 Instrument Interfacing Guide 



4041: 



100 

110 

120 

130 

140 

150 

160 

170 

160 

190 

200 

210 

220 

230 

240 

250 

260 

270 

280 

290 

300 

310 

320 

330 

340 

350 

360 

370 

380 

390 

400 

410 

420 

430 

440 

450 

460 

470 

480 

490 

500 

510 

520 

530 

540 

550 

560 

570 

580 

590 

600 

610 

620 

630 

640 

650 

660 

670 

680 

690 

700 

710 

720 



DH 5010/4041 MEASUREMENT PROGRAM 



Ba JiBi Kimball; GPI Marketing/ 9/24/82/ revised 11/18/82 

Copsri^ht (c) 1982/ Tektronix/ Inc. All rights reserved. This 
software is provided on an "as is" basis without warranta of ana 
kind. It is not supported. 

This software niaa be reproduced without prior per At i ss i on / in whole or 
in part. Copies must include the above coparisht and warrants notice. 

REQUIRED equipment: 

DM 5010 in TM 5000 tna inframe. 

ProSram assuBpes no other instruBpents on the GPIB. 

4041 (01. 1> console maa be either front panel or terop i na I (cobpbp : ) . 

PURPOSE: . 

Inputs four readinSs/ usinS four different DM 5010 acsuisttion modes. 

Prints readings on 4041 printer. 

OPERATING PROCEDURE: 

Connect 4041 and TM 5000 Bpainfranre with GPIB cable. 

DM 5010 Biust be set for primara address of 16 or chanse line Addr_set 

Enter and tape run (no other proSram seSment required/ contains main proSram) 

Console maa be either "FRTP:" or "COMMi" 

PROGRAM labels: 

Initset: prepares DM 5010 for BieasureBpent and sueries id 

RunBpode: reads whatever npeasureBpent is available 

Trisread: triSSers a reading with the INPUT stateBpent 

Dtread: reads on GET tr i SSer in device trigger mode 

Average: gets average of 20 DM 5010 readings using SEND 

PolldBp: general purpose srs handler 



In i t var a I I 

Print "'■'GDM 5010 iipaking measureBients. " 

Addr set: dmBp=16 ! This is factora-set primara address 

Open *10l:"prin:" ! Open LU for 4041 printer 

Long Bieasure ! Lon g floating point handles l.E+99 if DMM over ran ges 
Integer dmnp/ status /addr ess 

On srs then sosub poI I dm ! Links srs hanidler 

Enab I e srs ! Enab I es srs i nterrupt 

\ 

Initset: print *dBinp : " i n i t " ! Expand to cover measureBtent needs 

Input *dBpm prompt “id?":idi ! Quera DM i d 

Print il0l:id$ ! Print response on 4041 printer 

! 

Runnpode : print idmnp : “Biode run " 

Input tdffiBp : Bpeasur e ! Get whatever reaiding is available 

Print #10i: "Con t i nuous Mode "/ measure 

j 

Trigread: print ♦dBpm:"Bjode trig" 

Input *dB.m:measure ‘ INPUT statement talks DMM/ triggers reading 

Print #101 ! "Tr i gger ed Mode “/ measure 



Dtread : print (dsim : "dt trig' 

Na i t 0.4 I 

Nbate get (dmm) / atn (un I ) ! 

Input tdinB* : Bteasure ! 



Let DM set up for GET 

Send GET to DM 5010 to start reading 

Gets reading as soon as reada 



12 



DM 5010 Instrument Interfacing Guide 



730 Print ♦dBini:”dt off" 

740 Print #101 s "Dev i ce Trisder Mode measure 

750 ! 

760 Average! print “'^‘GWaitind for average" ! Inform operator of delay 

770 Status=0 ! Clear variable so set on I a ba next serial poll 

780 Print #dBtm:"3ve 20/calc ave/opc on/send" 

790 Wait t for OPC 

BOO If not (status =66 or 5tatus=82) then aoto 790 

810 Input #dmm : nieasure 

820 Print #dmm i "opc of f ’’ 

830 Print #101 s "Average of 20" / Hie a sure 

840 ! 

850 Stop “Program complete" 

860 ! 

870 Polldms poll status / address 

880 If not ( 5 tatus =66 or status=82) then print "Statu 5 = " J status 

890 Resume 

900 End 




Fig. 4. Printer output from 4041 sample measurement 
program. 



13 





DM 5010 Instrument Interfacing Guide 



ASCII & GPIB CODE CHART 





B7 








0 


0 


1 0 




0 




1 






1 


0 




1 






t 


1 






B6 






B 


0 




1 






1 






B 










1 


0 










B5 




0 


1 










1 






0 




1 












1 




BITS 












NUMBERS 






































CONTROL 




SYMBOLS 




UPPERCASE 


LOWERCASE 


B4 


B3 


C>l 

ID 


B1 
























































20 


40 




0 


60 




16 


100 




0 


120 




16 


140 




0 


160 




16 


B 


B 


8 


0 




NUL 


DLE 




SP 






0 






@ 






P 






1 






P 










0 


0 


10 16 


20 




32 


30 




46 


40 


64 


50 




80 


60 




96 


70 




112 












GTL 


21 LLO 


41 




1 


61 




17 


101 




1 


121 




17 


141 




1 


161 




17 


B 


B 


B 


1 


SOH 


DC1 




! 






1 






A 






Q 






a 




1 


q 










1 


1 


n 17 


21 




33 


31 




49 


41 




65 


51 




81 


61 




97 


i 71 




113 










z 




22 


42 




2 


62 




18 


102 




2 


122 




18 


142 




2 


162 




10 


B 


B 


1 


8 




STX 


DC2 




II 






2 






B 






R 






b 






r 










2 


z 


12 ia 


22 




34 


32 




50 


42 




66 


52 




82 


62 




98 


72 




114 










3 




23 


43 




3 


63 




19 


103 




3 


123 




19 


143 




3 


163 




19 


B 


8 


1 


1 




ETX 


DC3 




# 






3 






C 






S 






c 






S 










3 


3 


13 19 


23 




35 


33 




51 


43 




67 


53 




83 


63 




99 


73 




115 










4 


SDC 


24 DCL 


44 




4 


64 




20 


104 




4 


124 




20 


144 




4 I 


164 




20 


8 


1 


B 


0 




EOT 


DC4 




$ 






4 






D 






T 






d 






t 










4 


4 


14 20 


24 




36 


34 




52 


44 




68 


54 




84 


64 




100 


7* 




116 










5 


PPG 


25 PPU 


45 




5 


65 




21 


105 




5 


125 




21 


145 




5 ; 


165 




21 


B 


1 


8 


1 




ENQ 


NAK 




% 






5 






E 






U 






e 




75 


u 


117 








5 


5 


IS 21 


25 




37 


35 




53 


45 




69 


55 




65 


65 




101 












6 




26 


46 




6 


66 




22 


106 




6 


126 




22 


146 




6 


166 




22 


B 


1 


1 


8 




ACK 


SYN 




& 






6 






F 






V 






f 






V 










6 


6 


16 22 


26 




38 


36 




54 


46 




70 


56 




86 


66 




102 


76 




110 










7 




27 


47 




7 


67 




23 


107 




7 


127 




23 


147 




7 


167 




23 


B 


1 


1 


1 




BEL 


ETB 




t 






7 






G 






w 






9 






w 










7 


7 


17 23 


27 




39 


37 




55 


47 




71 


57 




87 


67 


103 


77 




119 










1 10 GET 


30 SPE 


50 




6 


70 




24 


no 




8 


130 




24 


150 




8 


170 




24 


1 


B 


8 


0 




BS 


CAN 




( 






8 






H 






X 






h 






X 










6 


e 


18 24 


28 




40 


36 




56 


46 




72 


58 




88 


68 




104 


78 




120 










1 


1 TCT 


31 SPD 


51 






71 




25 


111 




9 


131 




25 


151 




9 


171 




25 


1 


8 


8 


1 




HT 


EM 




) 






9 






I 






Y 






i 






y 






9 


9 


19 2S 


29 




41 


39 




57 


49 




73 


59 




89 


69 




105 


79 




121 










i; 


Z 


32 


52 




10 


72 




26 


112 




10 


132 




26 


152 




10 


172 




26 


1 


8 


1 


8 




LP 


SUB 




* 






0 

0 






J 






z 






i 






z 








A 


10 


1A 26 


2A 




42 


3A 




58 


4A 




74 


5A 




90 


6A 


106 


7A 




122 










r 


3 


33 


53 




11 


73 




27 


113 




n 


133 




27 


153 




11 


173 




27 


1 


8 


1 


1 




VT 


ESC 




+ 






0 

f 






K 






[ 






k 






{ 












B 


11 


IB 27 


2B 




43 


3B 




59 


4B 




75 


5B 




91 


63 




107 


70 




123 










1. 


4 


34 


54 




12 


74 




28 


114 




12 


134 




28 


154 




12 


174 




28 


1 


1 


8 


B 




FF 


FS 










< 






L 






\ 






1 






I 










C 


12 


1C 28 


2C 




44 


3C 




60 


4C 




76 


5C 




92 


6C 




108 


7C 




124 










r 


5 


35 


55 




13 


75 




29 


115 




13 


135 




29 


155 




13 


175 




29 


1 


1 


8 


1 




CR 


GS 




— 












M 






1 






m 






) 












0 


13 


ID 29 


2D 




45 


3D 




61 


4D 




77 


5D 




93 


6D 




109 


70 




125 


1 


1 


1 


0 


V 


6 

SO 


36 

RS 


56 




14 


76 


> 


30 

i 


116 


N 


14 


136 


A 


30 


156 


n 


14 


176 




30 




E 


14 


1E 30 


2E 




46 


3E 




62! 


4E 




78 


SE 




94 


6E 




no 


7E 




126 








' 


1 


7 


37 


57 




IS 


77 




unl; 


117 




15 


137 


UNT 


157 




15 


177 






1 


1 


1 


1 




SI 


US 




/ 






? 






0 













o 




{RUBOim 








IS 


tF 31 


2F 




47 


3F 




63| 


4F 




79 


5F 




95 


6F 




tn 


LIL 


_ 


127 



ADDRESSED UNIVERSAL 
COMMANDS COMMANDS 



USTEN 

ADDRESSES 



TALK 

ADDRESSES 



SECONDARY ADDRESSES 
OR COMMANDS 



(PPE) 



(PPD) 




GPIB code 
ASCII character 
decimal 



TEKTRONIX STO 062- M3S-00 4 SEP 60 

COPYRIGHT (g 1979, 1960 TEKTRONIX. INC ALL RIGHTS RESERVED 



*1 on some keyboards or systems 

Tbk tronix 

REF: ANSI STD X3.4-t977 
IEEE STD 488-1970 
ISO STD 646-1973 



14 





DM 5010 Instrument Interfacing Guide 



TEKTRONIX 

INSTRUMENTATION SOFTWARE LIBRARY 



Utility Software 
for TM 5000 Instruments 

utility Software is available from Tektronix, Inc. for 
TM 5000 Instruments. This software consists of a set 
of subroutines and subprograms that perform 
common instrument functions over the GPIB such as 
data acquisition, front-panel set-up, etc. These 
routines are designed to be easily integrated into your 
application programs. And since they are small and 
well documented, the routines are easy to modify to 
suit your particular applications. Refer to the current 
Tektronix Instrumentation Software Library Catalog 
for instrument options, ROM packs, and other 
required equipment. 

The following Utility Software was available when 
this Instrument Interfacing Guide was printed. Other 
software may be available; contact your local 
Tektronix Field Office for further information. 

Tektronix 

Description Part No. 

TM 5000/4041 Utility Software 062-6958-01 

(DC-100 tape) 

TM 5000/4052A Utility Software 062-6957-01 

(DC-300 tape) 



Ordering Utility Software 
(U.S. Only) 

Your local Tektronix Field Office has the current 
prices for software available from the Tektronix In- 
strumentation Software Library. 

Order Tektronix Instrumentation Software Library 
programs from Tektronix Central Parts Ordering by 
using the toll-free number serving your area. The fol- 
lowing map identifies the geographical regions in the 
U.S. and the toll-free number serving each region. 

Call the toll-free number serving your area and give 
the Customer Service Representative the Tektronix 
nine-digit part number and name of the software 
package you want to order. If you have any questions 
about the software, call your local Tektronix Reid 
Office. 



Taktronii Otr*ct Parti Ordar Daak ToU-Fraa Numbare 




Ordering Utility Software 
(Outside the U.S.) 

Outside of the U.S., order Tektronix Instrumenta- 
tion Software Library programs through your local 
Tektronix sales office or from the Tektronix Instru- 
mentation Software Library order point serving your 
area. Refer to the following list for the applicable li- 
brary order point. 

Africa, Europe, Middle East 

Contact local Tektronix sales office. 

Australia 

Tektronix Instrumentation Software Ubrary 
Tektronix Australia Pty. Limited 
Sydney 

80 Waterloo Road 
North Ryde, N.S.W. 2113 

Canada 

Tektronix Instrumentation Software Library 
Tektronix Canada Ltd. 

P.O. Box 6500 
Barrie, Ontario 
Canada L4M 4V3 

Caribbean, Latin America, 
and Far East (except Japan) 

Tektronix Instrumentation Software Library 
Export Marketing 
Tektronix, Inc. 

P.O, Box 500 
Beaverton, OR 97077 
U.S.A. 



15 





DM 5010 Instrument Interfacing Guide 



Japan 

Tektronix Instrumentation Software Ubrary 
Sony/Tektronix Corporation 
9-31 Kitashinagawa-5 
Tokyo 141 Japan 

Program Library 

The Tektronix Instrumentation Software Ubrary in- 
cludes over 200 software programs for a variety of 
Tektronix programmable instruments and controllers. 
The Library Catalog provides abstracts of the avail- 
able software. Programs are available as ready-to- 
load media or as listings (see Catalog). For a copy of 
the latest catalog, contact your local Tektronix Field 
Office or representative and ask for Tektronix Instru- 
mentation Software Ubrary Catalog #99W-5293. 



Program Contributions 

If you have a program which you would like to sub- 
mit to the Tektronix Instrumentation Software Ubrary, 
we will send you, in exchange, one software package 
of your choice from the Customer/User Software por- 
tion of the Program Ubrary (see current library cata- 
log). Submitted programs must use Tektronix 
programmable instruments and must meet certain 
coding and documentation standards. 

To contribute a program, submit a copy of the pro- 
gram on media along with a listing and a Tektronix 
Instrument Software Ubrary release form (see current 
library catalog). If the program was created as part of 
your employment, the release must be signed by an 
authorized representative of your employer. Accep- 
tance of the program is subject to review of the 
Tektronix Instrumentation Software Ubrary staff. 

For further information on submitting a program or 
for information about coding and documentation stan- 
dards, contact: 



Tektronix Instrumentation Software Ubrary 
Tektronix. Inc. 

Group 157, 54-016 
P.O. Box 500 
Beaverton, OR 97077 



Software Warranty 

Tektronix warrants that the media (tapes, disks, 
ROMs, etc.) on which Software Products are fur- 
nished and the encoding of the programs on the me- 
dia will be free from defects in materials and 
workmanship for a p>eriod of three (3) months from the 
date of shipment. If any such medium or encoding 
proves defective during the warranty period, 
Tektronix will provide a replacement in exchange for 
the defective medium. Except as to the media on 
which Software Products are furnished, Software 
Products are provided “as is" without warranty of any 
kind, either expressed or implied. Tektronix does not 
warrant that the functions contained in the programs 
will meet Customer’s requirements or that the opera- 
tions of the programs will be uninterrupted or error- 
free. 

In order to obtain service under this warranty, Cus- 
tomer must notify Tektronix of the defect before the 
expiration of the warranty period. If Tektronix is un- 
able to provide a replacement that is free from defects 
in materials and workmanship within a reasonable 
time thereafter, Customer may terminate the license 
for the Software Product and return the Software 
Product with the associated materials for credit or 
refund. 

Tektronix disclaims any implied warranties of 
merchantability or fitness for a particular purpose. 
Tektronix’ responsibility to replace defective me- 
dia or refund customer’s payment is the sole and 
exclusive remedy provided to the customer for 
breach of this warranty. Tektronix will not be liable 
for any indirect, special, incidental, or consequen- 
tial damages irrespective of whether Tektronix has 
advance notice of the possibility of such damages. 



383 



Tek Ut. No. 76W-5235 

Copyright © 1983 by Tektronm. tnc„ B«av«rtoo, Oregon. All rights reserved. Printed in the United States of America. The inlormation presented in this document is provided 
lor instructional purposes only. Tektronix. Inc. does not warrant or represent m any way the accuracy or completeness ol any program herein or its fitness for a user s 
particular purpose. Produced by the GPI Marketing Applications Support Group. 



Chapitre2-DM5010 



INSTRUCTIONS D’UTILISATION 



Introduction 

Ce chapitre fournit des indications sur I’installation et 
le retrait du DM 501 0 dans un chassis d'alimentation de 
la serie TM 5000 ef decrit les fonctions des commandes 
et connecteurs de ia face avant. Le paragraphs Famili- 
arisation est destine a taciliter I’utilisation de I'appareil 
en mode Local (commande manuelle), celui-ci n’etant 
pas connecte au Bus Interface General GPIB via le 
module d’alimentation. 



Des informations detaillees sur la programmation du 
DM 501 0 par rintermediaire du Bus GPIB sont donnees 
au chapitre Programmation. 



PREPARATION 

installation et retrait de i’appareil 



ATTENTION 



A la livraison, le DM 5010 doit etre mis sous ten- 
sion durant 24 heures environ, de fagon a ce que 
sa batterie interne so it suffisamment chargee. 
Sinon, il pourrait en resulter un fonctionnement 
defectueux de I'appareil, du a la perte des facteurs 
d'etalonnage memorises. Pour rappeler de la 
memoire ces facteurs d’etalonnage, se referera la 
Procedure de Reglage de ce manuel. 

NOTE 

Le DM 5010 est congu pour etre utilise dans un 
Module d’Alimentation de la Sene TM 5000. Se 
referer au manuel d'utilisatlon du module d’alimen- 
tation avant de proceder a I'installation du DM 
5010. 

Le DM 5010 est etalonne et pret a I’emploi des la It- 
vraison S’assurer que le selecteur de tension reseau 
du module d'alimentation est correctement positionne. 
De plus, le DM 5010 contient un cavalier interne de 
selection de frequence reseau. Pour une meiileure 
rejection du bruit associe a la frequence du reseau en 
mode Vitesse de Conversion Rapide (FAST 
CONVERSION RATE), la position de ce cavalier doit cor- 
respondre a la frequence du reseau. A la livraison, ce 



cavalier est positionne sur 60 Hz. Des informations sup- 
plementaires sont donnees au chapitre Maintenance de 
ce manuel. 



ATTENTION 

En vue de prevenir touie deterioration de cet 
instrument, couper Talimentation du module d’ali- 
mentation avant I’installation ou le retrait de tout 
tiroir. Installer et 6 ter le tiroir a vec precaution. 

Veiller a ce que les detrompeurs (du connecteur 
du compartiment selectionne du module d’alimen- 
tation) coincident avec les encoches du connec- 
teur du tiroir. Si ce n’est pas le cas, ne pas installer 
le DM 5010 avant d'en decouvrir la raison. Une 
fois cette condition satisfaite, aligner les rainures 
superieures et inferieures du tiroir avec les guides 
du compartiment selectionne (voir Fig. 2.1). 
Inserer le Multimetre dans le chassis et le pousser 
a fond pour que le circuit imprime se place cor- 
rectement. Mettre le module en marche (commuta- 
teur POWER). 

Pour extraire le multimetre du module d’alimen- 
tation, couper I’alimentation (commutateur 
POWER), tirer le bouton de deverrouillage (coin 
gauche a I’avant du tiroir), Tirer (’instrument hors 
du compartiment en le maintenant dans la position 
horizontale. 




ADD JUL 1986 



French 2-1 




Instructions d’utilisation • DM 501 0 



Fenetre d’affichage 

La partie gauche de la fenetre contient les mesures et 
les resultats des calculs affiches sur 4 chiffres et demi 
(dels). Les zeros a gauche du point decimal sont sup- 
primes. Un clignotement indique un depassement de 
gamme au cours d’une mesure de tension. “OC" est 
affiche pour les fonctions OHMS et DIODE TEST. 



La partie centrale indique la gamme de mesure selec- 
tionnee. Une DEL allumee en vis-a-vis de I’un des mots 
MILLI, KILO et MEGA indique I'unite de mesure affichee 
en milli, kilo, ou mega. Le point decimal est fixe a I’in- 
terieur d’une meme gamme de mesure. La DEL et I'em- 
piacement du point decimal indiquent la gamme selec- 
tionnee en modes Selection Automatique (AUTO) et 
Selection Manuelle (par increments - STEP). Voir figure 
2 . 2 . 



La partie droite de la fenetre d'affichage indique le 
mode d’utilisation de I’instrument, a savoir : 

REMOTE et ADDRESSED s’allument lorsque I'instru- 
ment fonctionne sous controle de programme a dis- 
tance via le Bus GPIB. 

ERROR s’aliume pour une erreur interne, une erreur 
decelee au cours d’un auto-test, ou une erreur d’utili- 
sation. La partie gauche de la fenetre affiche egale- 
ment les codes d'erreurs indiquant le type d’erreur. 
Se referer au tableau 2.2 du paragraphe Familiarisa- 
tion de ce meme chapitre. 



Fonction 


Multiplicateur 

eclaire 




Gamme se 


lectionnee 




DCV 


• MILLI 






200 mV 






2 V 


20 V 


200 V 


1000 V 


ACV 

et 

ACV + DCV 


• MILLI 






200 mV 






2 V 


20 V 


200 V 


700 V 










200 




OHMS 


• KILO 


2kfi 


20 kfi 


200 kQ 






•MEGA 


2 Mfi 


20 Mfi 






DIODE 

TEST 




Utilise la gamme 
2 V continus 






- 


1 • ^ 


3 1 J 


? 1 i 


1 9 






indication “hors-gamme” ; Noir quand la commande 

Clignotement pour les mesures de tension FAST CONVERSION RATE 

“OC” affiche pour les fonctions OHMS et DIODE TEST est inhibee tf2994-02 



COMMANDES ET CONNECTEURS 
DE LA FACE AVANT 



Informations generales 

Les 1 7 boutons poussoirs de la face avant indiques ci- 
dessous correspondent chacun a une fonction de 
(’instrument. Ils s'allument une fois enfonces. Les bou- 
tons de la colonne de gauche s'annulent respectivement 
: un seui bouton est allume a la fois. Les boutons de la 
colonne de droite restent allumes jusqu’a ce qu’on les 
enfonce de nouveau. 



DCV 
OHMS 
DIODE TEST 
ACV 

ACV + DCV 



NULL 

LOW FREQ RESPONSE 

AUTO 

RUN 

TRIGGERED 

FAST 

AVERAGE 

X-B 

A 

dBm 

dBr 

COMPARE 
REAR INPUT 



Les boutons poussoirs restants (23) ne s’allument 
pas. Voir figure 2.2. 



Fig. 2.2. Indications des gammes de mesure. 



French 2-2 



ADD JUL 1986 








R»i timmtm 



n 






U 


m 






Instructions d’utilisation > DM 501 0 



Commandes et connecteurs 

La liste suivante decrit !es commandes et connecteurs 
de la face avant du DM 501 0. Voir figure 2.3. 



FONCTIONS 




DCV 

Bouton aliume - le DM 5010 mesure les ten- 
sions continues appliquees aux connecteurs 
de la face avant ou de I’interface arriere. Les 
gammes de mesure utilisees avec cette fonc- 
tion sont : 200 mV, 2V. 20V, 200V, et 1 OOOV. 



OHMS 

Bouton aliume - Selectionne le mode Mesure 
de Resistances. Les resistances appliquees 
aux connecteurs de la face avant ou de I’inter- 
face arriere sont mesurees dans les gammes 
200 n, 2 Kn, 20 KH, 200 Kii, 2 Mil et 20 
Mil. 



NULL 

Opere en mode DCV (tension continue), 
OHMS, DIODE TEST, ACV (tension alternative) 
et ACV + DCV (quelle que soit la gamme selec- 
tionnee). Bouton aliume - mesure et memorise 
la valeur de la resistance ou de la tension exis- 
tent aux bornes des connecteurs de la face 
avant ou de I'interface arriere. Le decalage me- 
morise est applique aux mesures suivantes et 
aux resultats affiches. Cette valeur peut repre- 
senter jusqu’a i 100 % de la gamme. Lors- 
qu’on passe a une autre fonction ou que I’on 
inhibe la fonction NULL (appuyer sur le bouton 
NULL), ce decalage n'est plus applique. La 
valeur memorisee est conservee en memoire 
jusqu'a un autre decalage (NULL) ou jusqu’a la 
selection d’une autre fonction de mesure. 



AVERTISSEMENT 



En mode NULL, la mesure affichee peut ne pas in- 
diquer la valeur de la tension appliquee aux 
connecteurs d’entree. 




DIODETEST 

Bouton aliume - genere un courant continu de 

1 mA, disponible sur le connecteur HIGH de la 
face avant ou de [’interface arriere. Celut-ci 
passe normaiement du connecteur HIGH au 
connecteur LOW via un composant connects 
entre les deux. La tension developpee a travers 
ce composant est mesuree et affichee (gamme 

2 V continus). 




ACV 

Bouton aliume - Le DM 501 0 mesure et affiche 
des tensions alternatives efficaces vraies. Les 
tensions appliquees sont couplees interieure- 
ment (couplage alternatif) au convertisseur de 
tension efficace. Les gammes utilisees sont ; 
200 mV. 2 V, 20 V, 200 V et 700 V. 



ACV -H DCV 

Bouton aliume - Le DM 5010 mesure et affiche 
des tensions alternatives vraies elevees a un 
niveau de tension continu. Les tensions appli- 
quees sont couplees interieurement (couplage 
continu) au convertisseur de tension efficace. 
Les gammes utilisees sont ; 200 mV, 2 V, 20 V, 
200 Vet 700 V. 

LOW FREQ RESPONSE 

Bouton aliume et en mode ACV ou ACV -i- DCV 
- L’instrument moyenne quatre mesures et af- 
fiche la valeur moyenne de ces mesures, puis 
repete cette sequence d’operations. Cette 
fonction permet d’effectuer des mesures 
stables de tensions alternatives basse fre- 
quence. La limite de frequence specifiee est 
10 Hz. Toutefois, cette fonction est utiiisable 
sur toute la plage de frequences du DM 501 0. 



GAMME 




AUTO 

Bouton aliume - La selection de gamme est 
automatique. A la limite superieure d'une 
gamme, le DM 5010 selectionne automatique- 
ment la gamme superieure. Si la valeur mesu- 
ree est inferieure a 9,5 % de la gamme (pour la 
plupart des gammes), le DM 5010 selectionne 
la gamme inferieure. 



STEP ^ 

Incremente d'une gamme de mesure ; cette 
gamme est maintenue jusqu’a ce qu’on appuie 
sur la touche AUTO (Selection de Gammes 
Automatique) ou de nouveau sur la touche 
STEP. Elle ne varie pas si Ton selectionne une 
autre fonction de mesure (DCV, OHMS, DIODE 
TEST, ACV, ACV 4- DCV), sauf si la commuta- 
tion dans ia fonction OHMS fait passer dans la 
gamme maximale. Une incrementation de la 
gamme maximale fait passer dans la gamme 
minimale. 



MODE DE DECLENCHEMENT 




RUN 

Bouton aliume - Les conversions sont declen- 
chees librement a la vitesse selectionnee. 
Pour la selection de la Vitesse de Conversion, 
se referer a FAST. 



TRIGGERED 

Bouton aliume - Declenche et affiche une 
mesure. Une nouvelle pression sur ce bouton 
declenche la mesure suivante lou la reception 
du signal de decienchement EXTRIG). L'utilisa- 
tion du signal EXTRIG necessite I'installation 
d’un cavalier interne par un personnel de main- 
tenance qualifie. Le bouton TRIGGERED cli- 
gnote rapidement lors d'un decienchement 
correct. 



French 2-4 



ADD JUL 1986 



Instructions d'utilisation • DM 501 0 



PLAGE DE CONVERSION 





FAST 

Bouton allume - La vitesse de conversion (affi- 
chee) est la vitesse maximale specifiee pour la 
fonction de mesure selectionnee. La resolution 
pour cette vitesse de conversion est 3,5 
chiffres. 

Non allume - La conversion a lieu a la vitesse 
normals specifiee pour la fonction de mesure 
selectionnee. Les resultats sont affiches sur 
4,5 chiffres. 

AVERAGE 

Bouton allume - Le DM 5010 calcule la 
moyenne d'une serie de mesures. La valeur de 
la constants N determine le nombre de me- 
sures moyennees. Pour calculer la moyenne, 
I’instrument accumule les valeurs mesurees et 
divise la somme par le nombre de moyennes ef- 
fectuees. Si Ton se trouve egalement en mode 
LOW FREQ RESPONSE (Reponse en Basse 
Frequence), le nombre de mesures moyennees 
est quatre fois superieur a la valeur de la 
constants N. En mode TRIGGERED, un seui de- 
clenchement est necessaire pour initialiser 
toutes les mesures utilisees dans le calcul de 
la Moyenne. 



N 

Ce bouton est utilise pour memoriser une 
constants ou rappeler une constants utilises 
precedemment pour le calcul de la Moyenne 
(AVERAGE). Cette constants determine le 
nombre de mesures moyennees, A la mise en 
service, la valeur de N est 2, On peut lui substi- 
tuer tout nombre entier positif entre ^ 1 et ^ 
19999, 

® — 

A 

Bouton allume - Le DM 5010 soustrait d’une 
mesure une constants de decalage memorisee, 
divise le resuitat par une constants Facteur 
d’echelle memorisee, el affiche le resuitat. La 
constante Decalage est B, la constants Facteur 
d'echetle est A et la mesure est X. 



A,B 

Ces boutons sont utilises pour memoriser ou 
rappeler les constantes utilisees dans le 
calcul de X-B/A. A la mise en service, la valeur 
de A est 1 . la valeur de B est 0. II est possible 
de substituer n’lmporte quel nombre a ces 
constantes (entier, decimal, positif ou negatif), 
excepte la valeur 0 pour A. 

dBm 

Bouton allume - Le DM 5010 calcule et affiche 
le rapport de deux puissances. La reference 
est 1 mW dans une resistance de 600 ti . 

En appiiquant la formule : 



dBm = 20 \og^^ \ 



X, etant la mesure de tension. Le logarithms de 
la valeur absolue de X/v'0,6 est calcule. 



dBr 

Bouton allume - Le DM 5010 calcule et affiche 
le rapport logarithmique d'une mesure sur ia 
constante de reference memorisee (bouton 
ref), en utilisant la formule : 

dBr = 20 log^jj i x^ I 



X,, Mant la mesure. Le logarithme de la valeur 
absolue de X,/ref est calcule. 



ref 

Ce bouton est utilise pour memoriser une 
constante, ou rappeler une constante utilisee, 
dans le calcul de dBr. A la mise sous tension, 
la valeur de ref est 1 . Cette valeur peut etre 
tout autre nombre different de 0. 




COMPARE 

Bouton allume - Le DM 501 0 compare la 
mesure suivante avec les limites definies par 
les constantes LIMITS. Si la mesure comparee 
est : - algebriquement inferieure aux deux 
constantes, le mot LO est affiche ; - algebrique- 
ment superieure aux deux constantes, le mot 
HI est affiche ; - egale a Tune des constantes 
ou comprise entre les deux constantes, le mot 
PASS est affiche. 



LIMITS (2) 

Boutons utilises pour memoriser ou rappeler 
les constantes utilisees comme limites dans le 
calcul de la comparaison (COMPARE). Les va- 
leurs des constantes sont egales a 0 a la mise 
en service. 





RECALL CONST 



Une pression sur ce bouton, puis sur I’un des 
boutons d'entree/rappel d’une constante (N, A, 
B, ref, LIMITS) provoque I'affichage de la 
constante memorisee correspondante. 



REAR INPUT A 

Voir au paragraphs Familiarisation de ce 
manuel les mesures via I’interface arrtere, 
Bouton allume - Selectionne les entrees sur 
I’interface arriere au lieu des entrees en face 



avant. 




Chiffres (0 a 9), point decimal et signe. 

Ces boutons sont utilises pour entrer les va- 
leurs numenques, decimates et la polarite des 
constantes. 



CLEAR 

Lorsqu'un code d’erreur est affiche (dans la fe- 
netre d'affichage). une pression sur ce bouton 
efface ce code d’erreur. Lors de I'entree d’une 
constante, efface la valeur d’une constante 
non encore entree (par la touche ENTER). 

ENTER 

Lors de I’entree d’une constante, memorise 
cette constante et affiche la valeur memorisee. 



ADD JUL 1986 



French 2-5 




Instructions d’utilisation > DM 5010 



INST ID 

Provoque I'affichage de I'adresse primaire de 
I’instrument et, si la commande Requete de I'U- 
tilisateur (USEREQ) a ete validee, genere une 
Demande de Service (SRQ) sur le Bus GPIB, 
Le signe “moins" est eciaire en mode Emetteur 
Seulement et le point decimal droit s’aliume si 
la fin de message selectionnee est LF/EOI (et 
non EOl ONLY). 



ENTREES 



6 



Connecteur HIGH 

Entree analogique flottante haute utilisee avec 
les connecteurs LOW et GUARD pour toutes 
les mesures en face avant. 



Connecteur LOW 

Entree analogique flottante basse utilisee avec 
le connecteur HIGH. 



Connecteur GUARD 

Entree isolee reliee a un ecran entourant le cir- 
cuit analogique de I’instrument. Utilise avec un 
conducteur de garde (GUARD), cette entree 
est normalement connectee au conducteur de 
test LOW par I'utilisateur au point de mesure. 
Sinon, le connecteur GUARD est relie au 
connecteur LOW par un contact interne monte 
dans le connecteur. Ce connecteur permet 
d'augmenter la rejection en mode Common. 




Connecteur a la masse du chassis. 




Tirette de deverrouillage. Tirer pour oter le 
tiroir. 



FAMILIARISATION 



Void une description des commandes et connecteurs 
de la face avant du DM 501 0 utilises en mode Local. 



Auto-test a la mise en service 

A la mise en service, le DM 5010 execute un pro- 
gramme d auto-test. Durant I'auto-test, toutes les DELs 
de la face avant sent aliumees. Apres I’auto-test, 



I’instrument passe a i'etat Local (LOGS) ; les reglages 
(par defaut) a la mise en service sont indiques au ta- 
bleau 2.1 . 



Tableau 2.1 

Reglages a la mise en service 
(Fonctions en face avant seulement) 



Commandes en face avant 


Etat 


DCV 


Enfoncee 


OHMS 


Sortie 


NULL 


(Sortie) Constante = 0 


DIODE TEST 


Sortie 


ACV 


Sortie 


ACV+DCV 


Sortie 


LOW FREQ RESPONSE 


Sortie 


AUTO 


Enfoncee 


STEP 


Sortie 


RUN 


Enfoncee 


TRIGGERED 


Sortie 


FAST 


Sortie 


AVERAGE 


Sortie 


N 


Constante = 2 


X-B 




A 


Sortie 


A 


Constante = 0 


B 


Constante = 1 


dBm 


Sortie 


dBr 


Sortie 


ref 


Constante = 1 


COMPARE 


Sortie 


LIMITS 


Constantes = 0,0 


REAR INPUT 


Sortie 



En cas de detection d'une erreur interne durant I’auto- 
test, I’instrument affiche continCiment un code d’erreur 
sur 3 chiffres dans la fenetre d’affichage et I’indicateur 
ERROR est eciaire. Voir tableau 2.2. Pour decouvrir I'ori- 
gine d’une erreur, s’adresser a un personnel de mainte- 
nance qualifie 



French 2-6 



ADD JUL 1986 




{nstructions d’utilisation - DM 501 0 



Tableau 2.2 

CODES D’ERREURS AFFICHES EN FACE AVANT 



Code affiche 


Condition anormale 


205 


Erreurs d’execution : 
Argument hors-gamme 


231 


L’instrument n’est pas en position 


232 


etalonnee 

Hors des iimites etalonnees 


303 


Erreurs internes : 

Erreur dans !e bloc mathematique 


31 1 


Temps de conversion errone 


317 


Temps de reponse en face avant 


318 


errone 

Constants d'Malonnage erronee 


340 


RAM erronee 


341 


RAM erronee 


351 


Checksum d’etalonnage erronee 


372 


ROM COOO mal positionnee 


373 


ROM DOOO mal positionnee 


374 


ROM EOOO mal positionnee 


392 


Checksum de la ROM COOO 


393 


errone 

Checksum de la ROM DOOO 


394 


errone 

Checksum de la ROM EOOO errone 


395 


Checksum de la ROM FOOO 




errone 



Instructions generates d’utilisation 

Laisser I'instrument chauffer 30 minutes, pour obtenir 
la precision specifiee. Dans les fonctions OHMS et 
DIODE TEST, un depassement de gamme provoque I'af- 
fichage de "OC". Dans les fonctions DCV, ACV et ACV + 
DCV, un depassement de gamme est indique par un affi- 
chage clignotant. 



Connexions d’entree 

Les bornes HIGH, LOW et GUARD sont utilisees pour 
les mesures en face avant. Un contact interne (dans la 
borne GUARD) relie les bornes LOW et GUARD. Ce 
contact est ferme jusqu’a ce qu'un cordon de mesure 
soit insere dans la borne GUARD. II reste ouvert 
jusqu’au retrait de ce cordon. 



La figure 2.4 illustre trois examples d’utilisation des 
connecteurs de la face avant. La methode la plus cou- 
ramment utilisee est la methode A lorsqu’on neglige la 
tension de mode commun. Dans cet exemple, seules les 
bornes LOW et HIGH du DM 501 0 sont utilisees. Aucun 
cordon n’etant insere dans la borne GUARD, le contact 
interne (dans la borne) est ferme et relie les bornes 
LOW et GUARD. Ceci entralne le passage du courant de 
mode commun a travers le cordon LOW et la masse de 
la source d’alimentation, provoquant une erreur de 
mesure. 



La methode B permet d’obtenir une precision op- 
timate, lorsqu’on desire eliminer la tension de mode 
commun. La borne GUARD du DM 5010 est reliee a la 
borne LO de la source. Le courant de mode commun 
circule a travers le conducteur de garde (GUARD) et la 
masse de la source d'alimentation mais non a travers le 
circuit de mesure (cordon LOW). 



Methode C - La borne GUARD du DM 501 0 est reliee a 
la masse de la source. Ceci peut produire une erreur de 
mesure, du fait que le courant de mode commun circule 
dans le circuit de mesure. 



AVBRTfSSEMBNT 



ATTENTION 

Veiller a ne pas depasser la tension d’entree 
maximale. 

Pour toutes les fonctions de mesure, la selection de 
gammes peut etre automatique (AUTO) ou manueite 
(STEP). Voir au paragraphe Fenetre d affichage I’indica- 
tion de la gamme utilisee. La fonction DIODE TEST n'uti- 
lise que la gamme 2V. 

ATTENTION 



Pour eliminer tout risque d’electrocution par les 
tensions mesurees . 



1. Eviter tout contact avec la source de tension, 
si la tension mesuree depasse 42,4 V Crete. 

2. Deconnecter les cordons du circuit sous 
test avant de les debrancher du DM 5010 ou 
avant d'oter le DM 5010 du module 
d'alimentation. 



En mode Selection de Gamme Automatique. ne 
pas passer de maniere repetitive dune tension 
basse (< 200 mV crete) a une tension haute (> 
200 V Crete). Dans le cas d’alternances repetees 
de tensions extremes, utiliser la commande STEP 
pour selectionner la gamme superieure appropriee 
avant d'augmenter la tension d'enfree. Le risque 
est d'obtenir des mesures temporaires erronees 
en utilisant la gamme 200 mV. 



Mesures sur I’interface arriere 




Si le bouton REAR INPUT est enfonce (allume), les 
signaux appliques aux broches 28B (HI) et 2SA (LO) de 
[’interface arriere sont mesures. Si ce bouton est sort! 
(eteint), les signaux mesures sont ceux appliques aux 
bornes de la face avant. 



ADD JUL 1986 



French 2-7 




Instructions d’utilisation > DM 501 0 




A. Connexion (interne) entre la borne GUARD et la borne LOW du DM 5010. 
Erreur de mesure due a la tension de mode common (Emc). 




B. Connexion entre la borne GUARD et la borne basse (LO) de la source. Pas 
d’erreur due a la tension de mode common. 




C. Connexion entre la borne GUARD et la masse du chassis d’alimentation. 

Erreur minime due a la tension de mode commun, la tension de mode common 

se situant au niveau des deux masses. tf2994 04 

Pig. 2.4. Exemples de methodes de connexion en face avant. 



French 2>8 



ADD JUL 1986 




Instructions d’utilisation > DM 501 0 



ATTENTION 

Pour ne pas endommager I'appareil, ne pas appli- 
quer de tension superieure a 42,4 V alternatifs 
Crete ou a 60 V continue entre les broches 28B 
(HI) et 28A (LO) du connecteur de I’interface 
arriere PI 031 de la carte ADC (A1 7). 



ATTENTION 

Si une tension superieure a 500 V crete est ap- 
pliquee sur ies bornes de la face avant, ne pas 
valider les entrees de I'interface arriere, pour eviter 
tout risque de deterioration de !‘ instrument ou de 
fonciionnement errone. 



Mesures de tensions continues 

Une pression sur le bouton DCV valide des mesures 
de tensions continues dans les gammes : 200 mV, 2 V, 
20 V, 200 V et 1000 V. Lorsque I’entree HIGH est posi- 
tive par rapport a I'entree LOW, le signe est affiche. 
Ne pas depasser les tensions maximales autorisees en 
entree. 



Mesures de resistances 

Une pression sur le bouton OHMS valide des mesures 
de resistances dans les gammes : 200 Q, 2 Ktl, 20 Ktl , 
200 Ki>. 2 Mil et 20 Mii. Le courant passe normale- 
ment de la borne HIGH vers la borne LOW. Les courants 
et tensions maximaux entre bornes et a pleine echelle 
(sans depassement de gamme) sont indiques au tableau 
2.3. La tension maximale (en circuit ouvert) disponible 
entre la borne HIGH et la borne LOW est inferieure a 5 V. 



Tableau 2.3 

TENSIONS DE SOURCE 
(FONCTION OHMS) 



Gamme 


Courant typique 


! 

Tension max. 




(0 ii a la pleine echelle) 


(pleine 

echelle) 


200 ii 


de 1 ,02 mA a 1 mA 




2K i* 


de 0.1 2 mA a 0,1 mA ' 


1 


20 Kil 


de 9.2 ^A a 1 0 juA 


0,2 V 


200 KI* 


de 1 ,08 ^A a 1 (uA 




2 Ml> 


de 0,1 2 mA a 0,1 /U.A 




20 M (I 


de 0,1 2 ^tA a 0,04 jtiA | 


0,8 V 



Mesure de diodes 

Une pression sur le bouton DIODE TEST valide la 
generation d'un courant de 1 mA continus sur la borne 
HIGH. La variation de tension aux jonctions de la diode 



se mesure en connectant I'anode de la diode a la borne 
HIGH et la cathode a la borne LOW. Les diodes doivent. 
pour etre testees, presenter une variation de tension in- 
ferieure a 1,999 volt. C’est le cas de la plupart des 
diodes et DELS. 

Pour tester la tension inverse, inverser les conne- 
xions. "OC" doit apparaltre dans la fenetre d’affichage. 



Mesures de tensions alternatives 

II existe deux fonctions de mesure de tensions alter- 
natives : 

1 . Mesure de tensions alternatives efficaces vraies 
(ACV) 

2. Mesure de tensions alternatives efficaces vraies su- 
perposees a un niveau continu (ACV + DCV). 

Les gammes de mesure pour ces deux fonctions sont 
200 mV, 2 V, 20 V, 200 V et 700 V. Les tensions peuvent 
etre mesurees avec un facteur de crete maximal de 4 
pour la pleine echelle. Le facteur de crete est le rapport 
tension crete sur tension efficace. Veiller a ne pas 
depasser la tension maximale autorisee en entree. La 
fonction LOW FREQ RESPONSE permet d’effectuer des 
mesures stables de tensions alternative en basse fre- 
quence. Cette fonction effectue la moyenne de 4 me- 
sures de tensions alternatives. 



Vitesses de conversion 

Le DM 5010 utilise deux vitesses de conversion. La 
Vitesse FAST (bouton CONVERSION RATE allume) 
permet d’effectuer des mesures a la vitesse maximale 
specifiee pour la fonction selectionnee. La resolution de 
I’affichage est de 3,5 chiffres. Lorsque le bouton 
CONVERSION RATE est eteint, les mesures sont ef- 
fectuees a la vitesse normale specifiee pour la fonction 
selectionnee avec une resolution d’affichage de 4,5 
chiffres. 



Declenchement 

Le DM 501 0 possede deux modes de declenchement, 
les modes RUN et TRIGGERED. Une pression sur le 
bouton RUN valide des conversions en mode relaxe a la 
vitesse de conversion selectionnee. Une pression sur le 
bouton TRIGGERED valide une mesure a la fois. 

En outre, les conversions peuvent etre declenchees 
via le connecteur de I'interface arriere. broches 16A et 
1 6B (LO) sur la carte Isolation (A1 5). Ceci necessite I’in- 
statlation d’un cavalier (se referer au chapilre Mainte- 
nance). L’instaltation de ce cavalier valide la fonction de 
declenchement EXTRIG (en plus de RUN et 
TRIGGERED). Pour utiliser cette fonction. appuyer sur ie 
bouton TRIGGER pour mettre fin au declenchement 
relaxe. La fonction EXTRIG necessite un signal de de- 
clenchement interne compatible TTL, flanc negatif. Pour 
un declenchement unique, cette ligne doit etre main- 
tenue a t’etat bas pendant 0,5 ^ts (1 0 ^s max.) . Son 
maintien prolongs a I’etat bas provoquerait le de- 
clenchement de plusieurs mesures consecutives. 



ADD JUL 1986 



French 2-9 




Instructions d’utilisation - DM 501 0 



Calculs 

Cinq boutons en face avant permettent d’effectuer 
des calculs sur les mesures effectuees par le DM 5010. 
Ces calculs peuvent etre executes individuellement ou 
sequentiellement. Une sequence de calculs peut etre 
entree dans n’importe quel ordre (boutons enfonces). 
Toutefois, le DM 5010 les execute dans I’ordre suivant : 
AVERAGE, X-B/A, dBm ou dBr, COMPARE, L’instrument 
affiche le resultat de chaque calcul. Les fonctions NULL 
et LOW FREQ, si elles ont ete validees, sont executees 
en priorite, Les calculs dBm et dBr ne peuvent etre ef- 
fectues dans la meme sequence. Seule la derniere fonc- 
tion validee (dBm ou dBr) est executes. Un declenche- 
menl demarre I'execution d'un calcul unique, ou d’une 
sequence de calculs. En mode RUN (Declenchement 
Relaxe), tout calcul ou sequence de calculs est repete 
jusqu’a ce qu'il soit inhibe (bouton correspondant 
enfonce de nouveau), ou jusqu'a ce que la selection 
d'un autre mode de declenchement ou d'une autre fonc- 
tion de mesure soit effectuee. Les DELs d’affichage 
sont eteintes pendant ['execution du calcul. L'instru- 
ment affiche “OC” pour signaler un depassement de 
gamme pour un resultat de calcul. 

A I’exception de la fonction dBm, chaque calcul utilise 
une constants ou plus. La valeur numerique de chaque 
constante memorisee prend une valeur par defaut a la 
mise en service. Cette valeur peut etre remplacee par 
toute autre a I'interieur des limites specifiees. Le tableau 
2.4 contient la liste de chaque calcul et constante(s) 



associee(s), des valeurs par defaut des constantes, et 
des limites associees a chaque constante. 



Modification des valeurs des constantes 

Deux methodes permettent de changer la valeur d’une 
constante en memoire. 

1 . Utilisation du clavier numerique : 

a. Appuyer sur le bouton de la constante selec- 
tionnee. 

b. Appuyer sur les touches de clavier nume- 
riques pour afficher la nouvelle valeur de la 
constante (dans les limites specifiees tableau 
2.4). 

c. Appuyer sur la touche ENTER. 



2. Utilisation d'une mesure affichee. (Remplace la 
valeur d’une constante par la valeur de la mesure af- 
fichee). S’assurer que la mesure affichee correspond 
aux limites specifiees pour cette constante (tableau 
2.4). 

a. Appuyer sur le bouton de la constante selec- 
tionnee. 

b. Appuyer sur la touche ENTER. 



TABLEAU 2.4 

FONCTIONS CALCUL ET CONSTANTES ASSOCIEES 



Calcul 


Constante 


Valeur 
par defaut 


Plage de constantes 
valides 


AVERAGE 


N 1 


2 


+ 1 a+19999 


X-B 

A 


! 

B (decalage) i 
A (facteur 
d'echeiie) 


0 

1 


nombre entier ou decimal, -r ou -, 
nombre entier ou decimal, o, + ou - 


dBm 




; I 




dBr 


ref 


1 


nombre entier ou decimal, 0, ou -, 


COMPARE j 


LIMITS (2) 


0 





French 2-10 



ADD JUL 1986 





















Instructions d’utiiisation - DM 501 0 



Apres toute pression sur la touche ENTER, ie DM 5010 
affiche la valeur de la constante memorisee. Toute nou- 
velle vaieur valide est affichee. Sinon, la valeur affichee 
est la valeur precedemment entree. Chaque valeur 
d’une constante est conservee en memoire jusqu'a 
I’entree d'une nouvelle valeur, ou jusqu’a ce que I'ali- 
mentation du DM 501 0 soit coupee. 



Exemples de calculs 

Void quelques exemples d’appiication des fonctions 
de calcul du DM 501 0. 



Exemple 1 : Utilisation de la fonction X-B/A pour affich- 
er la difference entre la tension nominale et la tension 
Zener mesuree. 



Regler les commandes en face avant de la fapon sui- 
vante : 



DCV 

NULL 

LOW FREQ RESPONSE 
RANGE 

TRIGGER MODE 
CONVERSION RATE 

CALCULATIONS 

X-B 

A 

Toutes les autres 
REAR INPUT 



enfoncee 

sortie 

sortie 

sur la position AUTO 
sur la position RUN 
commande FAST 
sortie 



enfoncee 

sorties 

sortie 



Connecter la diode Zener, la resistance et I'alimentation 
aux entrees du DM 5010, comme indique figure 2.5. La 
valeur de la resistance et de I'alimentation determinant 
le courant Zener. 



La tension affichee est instable jusqu’a ce que le cou- 
rant traversant la diode prenne sa valeur finale. Lorsque 
I’affichage devient stable, la tension affichee est la diffe- 
rence entre la tension Zener nominale (1 5V) et la tension 
Zener mesuree. 



Pour obtenir le pourcentage correspondant a la diffe- 
rence de tension, remplacer la constante A par 0,15, A 
etant egale a B (0,01 ). 



Exemple 2 : Utilisation de la fonction dBr pour decouvrir 
le point d’un amplificateur audiofrequence -3dB (par 
rapport a la valeur milieu). 



Regler les commandes de la face avant de la fapon 
suivante : 



ACV 

NULL 

LOW FREQ RESPONSE 
RANGE 

TRIGGER MODE 
CONVERSION RATE 

CALCULATIONS 
REAR INPUT 



enfoncee 

sortie 

sortie 

sur la position AUTO 

sur la position RUN 

commande FAST 

sortie 

sortie 

sortie 



Entrer “1 ” pour la constante A. 



Entrer “1 5" pour la constante B (pour une diode Zener 
de 15V). 



Entrer “1" pour la constante de reference (ref). 
Connecter le generateur sinuso'idal, I’amplificateur audi- 
ofrequence et le DM 501 0 comme indique figure 2.6. 




TF2994-05 



Fig. 2.5. Installation necessaire au calcul de i’exemple 1 



ADD JUL 1986 



French 2-11 





Instructions d’utilisation > DM 501 0 





UUT 




1 


DM 5010 




Amplificateur 

audiofrequence 




Generateur 

sinuso'idai 


■ 


1 


HIGH 




rv-— 






■ 


■ 














1 


LOW 




— n r> - - 






■1 


■ 






OUT JN 




OUT 


m 








TF2994-06 



Fig. 2.6. Installation necessaire au calcul de i’exemple 2. 



Regler ie generateur sinusoTdal a mi-bande (dans cet 
example 5 KHz) ; regler son amplitude de fapon a lire 1 V 
sur Ie DM 501 0. 



Appuyer sur le bouton dBr. La valeur “0.0” est af- 
fichee. 



Reduire la frequence du generateur jusqu’a ce que la 
valeur “-3. 00." soit affichee sur le DM 5010 (ne pas 
retoucher I'amplitude). La frequence du generateur cor- 
respond au point -3dB de I'amplificateur audiofre- 
quence. 



Les fonctions de calcul COMPARE et X-B/A peuvent 
etre combinees dans I’exemple ci-dessus. Ceci elimine 
la necessite d’afficher les valeurs de tolerance. Seule la 
valeur nominate de la resistance et la tolerance sont uti- 
tisees comme constantes. 



Entrer “1 5000" dans B (resistance nominale). 



Entrer “1 50” dans A, A etant egale a B (.01 ). Ceci con- 
verts la difference entre la valeur nominale et la valeur 
reelle en “1 %”. 



Exemple 3 : Utilisation de la fonction COMPARE pour Entrer -2” pour une limite (LIMITS) (tolerance de 2 %). 

selectionner des resistances differant de ± 2 % de la 
valeur nominale. 

Entrer “-2” pour I'autre. 



Regler les commandes de la face avant du DM 5010 
de ia facon suivante : 



OHMS 

NULL 

LOW FREQ RESPONSE 
RANGE 

TRIGGER MODE 
CONVERSION RATE 

CALCULATIONS 
COMPARE 
Toutes iesautres 
REAR INPUT 



enfoncee 

sortie 

sortie 

sur la position AUTO 
sur la position RUN 
commande FAST 
sortie 

enfoncee 

sorties 

sortie 



Pour selectionner des resistances 15 KJi a ± 2 % de 
la valeur nominale, entrer “1 5300” pour I’une des limites 
(LIMITS) et “14700" pour I'autre. Connecter la premiere 
resistance a trier aux bornes HIGH et LOW du DM 5010. 
Le DM 5010 affiche “HI” ou “LO” pour indiquer le 
depassement de la tolerance 2 % ou I’inferiorite a cette 
tolerance. Si la resistance est comprise dans les limites 
ou egale aux limites, le DM 501 0 affiche “PASS". 



Appuyer sur la touche X-B/A. 



Le DM 501 0 affiche PASS, HI, ou LO. 



instructions de reemballage 

Si le DM 501 0 doit etre renvoye a un centre de mainte- 
nance Tektronix pour une revision ou une reparation, y 
apposer une etiquette portant le nom (et I'adresse) de la 
societe utilisatrice et le nom de la personne a y contac- 
ter, ainsi que te numero de serie complet de I'instrument 
et la description du defaut constate. 



Si I’emballage d’origine n’est plus disponible, emballer 
I’appareit de la fapon suivante : 



French 2-12 



ADD JUL 1986 




Instructions d’utiiisation - DM 501 0 



Se procurer un carton resistant dont les dimensions in- Entourer (’instrument d’une feuiile de polyethylene, 

ternes soient superieures de 15 cm aux dimensions de Tapisser le fond et les bords de mousse d’urethane 

I’appareil. La resistance de I’embailage doit etre de 90 sur une epaisseur de 7,5 cm. 
kg/cm. Fermer le carton au moyen d'une bande adhesive. 



ADD JUL 1986 



French 2-13 




BEDIENUNGSANLEITUNG 



Abschnitt 2 - DM 5010 



Einfuhrung 

Dieser Abschnitt des Handbuches gibt Hinweise zum 
Ein- und Ausbau des GerStes und beschreibt die Funk- 
tionen der Bedienungselemente und Anschlusse auf der 
Frontplatte des DM 5010. Diese Infornnationen dienen nur 
als Hilfe zum VerstSndnis der manuellen Bedienung des 
DM 5010. Es wird dabei vorausgesetzt, daB das DM 5010 
nicht uber die Versorgungseinheit mit dem GPIB 
verbunden ist. 



Votlstandige Informationen zur Programmierung des 
DM 5010 uber den GPIB (General Purpose Interface Bus) 
enthalt der Abschnitt „Programmierung“. 



VORBEREITENDE ARBEITEN 



Ein> und Ausbau 




Nach Erhalt des Gerates sollte das DM 5010 etwa 
24 Stunden lang an das Stromnetz angeschlossen 
und eingeschaltet werden, um die eingebauten 
Pufferbatterien aufzuladen. Wird dies nicht 
gemacht, kann das durch Verlust der im Speicher 
enthaltenen Kalibrierfaktoren zu fehlerhaftem 
Betrieb fuhren. Mit dem in diesem Handbuch enthal- 
tenen ..Justierungsvorgang" kbnnen die Kalibirier- 
faktoren neu in den Speicher eingegeben werden. 



ANMERKUNG 

Das DM 5010 ist nur fur den Betrieb in einer Versor- 
gungseinheit der Serie TM 5000 ausgelegt. 
Seachfen Sie vor dem Einbau des DM 5010 die 
Bedienungsanleitung der Versorgungseinheit. 



Das DM 5010 kommt kalibriert und betriebsbereitzum 
Versand. Achten Sie darauf, daB der Spannungswahl- 
schalter der Versorgungseinheit richtig eingestellt ist. 
Das DM 5010 besitzt einen internen NetzfrequenzwShler. 
Zur bestmbglichen Unterdruckung des Netzfrequenz- 
rauschens sollte bei Betrieb in FAST CONVERSION 
RATE die richtige Netzfrequenz eingestellt sein. Bei 
Versand ist das GerSt auf eine Netzfrequenz von 60 Hz 



eingestellt. Uberlassen Sie die Einstellung der Netzfre- 
quenz dem quaiifizierten Servicepersonal. 




Um Beschadigungen zu vermeiden ist vor Einbau 
des DM 5010 die Spannungsversorgung der Versor- 
gungseinheit abzuschalten. Ein- Oder Ausbau 
durfen nicht mit Gewalt erfoigen. 



Prufen Sie ob die Plastiksperren an den Verbindungs- 
steckern der ausgewShlten FScher der Versorgungsein- 
heit mit den Ausschnitten an den Steckerleisten des 
DM 5010 ubereinstimmen. ist das nicht der Fall, darf das 
DM 5010 nicht eingebaut werden bevor der Grund dafur 
festgestellt wurde. Stimmen Sie uberein, halten Sie das 
Chassis des DM 5010 an die oberen und unteren 
FCihrungsschienen der gewdhiten FScher der Versor- 
gungseinheit und drucken es fest ein, bis die riicksei- 
tigen Steckverbindungen einrasten (siehe Bild 2-1). 
Schatten Sie die Versorgungseinheit ein. 



Zum Ausbau des DM 5010 ziehen Sie den Entriege- 
lungshebe! (an der unteren linken Ecke) bis die Steck- 
verbindung ausrastet und das GerSt aus der Versor- 
gungseinheit herausgleitet. 




Bild 2-1. Ein- und Ausbau. 



ADD JUL 1986 



German 2-1 





Bedienungsanleitung - DM 5010 



BEDIENUNGSELEMENTE UND 
ANSCHLUSSE AUF DER FRONTPLATTE 

Allgemeine Hinweise 



Anzeigefenster 

Im linken Teil der Anzeige werden MeB- und Berech- 
nungsergebnisse durch eine 4 1/2stellige LED ange- 
zeigt. Nullen vor Dezimalzahlen werden nicht angezeigt. 
In den SpannungsmeBfunktionen wird durch Flackern 
ein Uberlaufen angezeigt; fur OHMS und DIODE TEST 
wird OC dargestellt. 



Die nachstehend aufgelisteten siebzehn Druck- 
schalter auf der Frontplatte aktivieren nach Eindrucken 
die jeweilige Funktion und leuchten auf. Die Druck- 
schalter im linken Teil schlieBen sich gegenseitig aus; 
d. h. es ist immer nur ein Druckschalter aktiviert 
(erleuchtet). Die Druckschalter im rechtenTeil leuchten 
auf wenn sie aktiviert werden und bleiben aktiviert und 
erleuchtet bis sie nochmals gedriickt werden. 



DCV 


NULL 


OHMS 


LOW FREQ RESPONSE 


DIODE TEST 


AUTO 


ACV 


RUN 


ACV + DCV 


TRIGGERED 




FAST 




AVERAGE 




X-B 



Im mittleren Teil der Anzeige werden die Bereichsmul- 
tiplikatoren fur die dargestellte Anzeige angegeben. Eine 
den Aufschriften MILLI, KILO und MEGA zugeordnete 
LED zeigt an, ob es sich bei der dargestellten Messung 
urn Mini-, Kilo- Oder Megaeinheiten handelt. Der Dezi- 
malpunkt istfur jeden Funktionsbereich fixiert. Die Multi- 
plikator-LED und die Position des Dezimalpunktes 
zeigen bei den Bereichswahimethoden AUTO und 
manuell (STEP) den Bereich an. Siehe Bild 2-2. 



Der rechte Teil des Anzeigefensters zeigt den 
Betriebszustand des GerStes wie folgt an: 

REMOTE und ADRESSED leuchten nur auf, wenn das 
GerSt ferngesteuert uber den GPIB arbeitet. 



A 

dBm 

dBr 

COMPARE 
REAR INPUT 



ERROR leuchtet auf, wenn ein interner, ein Selbst- 
Test-, Oder ein Betriebsfehler auftritt. Im linken Teil 
der Anzeige werden auch Fehlercodes dargestellt, 
welche die Art des Fehlers anzeigen. Siehe Tabelle 
2-2 im Abschnitt „Bedienungshinweise‘'. 



Function 


Illuminated 

Multiplier 




Selecte 


d Range 




DCV 


• MILLI 






200 mV 






2 V 


20 V 


200 V 


1000 V 


ACV 

and 

ACV + DCV 


•MILLI 






200 mV 






2 V 


20 V 


200 V 


700 V 


OHMS 








200 




•KILO 


2 kfi 


20 kO 


200 kV. 




• MEGA 


2 M^> 


20 Mfi 






DIODE 

TEST 




Uses 2 V dc 
range. 









1 1 9 1 9 1 9 1 9 



Overrange indication; Blank when 

Display flashes for voltage functions. FAST CONVERSION 

Displays “OC" for OHMS and DIODE TEST functions. RATE is enabled. 2994-02 



Biid 2-2. DM 5010 Bereichsanzeige auf der Frontplatte. 



German 2-2 



ADD JUL 1986 










l^ilQTE 






UBSf TtatT , «C¥ «»+0M 



nm TKI66Ei^: 



nr 

■1 r ■ 





Bedienungsanieitung - DM 5010 

Bedienungslemente und Anschlusse 

Nachstehend warden die Bedienungselemente und 
Anschlusse auf der Frontplatte des DM 5010 
beschrieben. Siehe Bild 2-3. 

FUNKTIONEN 
(T) DCV 

Wenn diese Drucktaste erleuchtet ist, miBt das 
DM 5010 die an die Eingangsanschlusse auf der 
Frontplatte Oder der Riickseite angelegten 
Gleichspannungen. Die MeBbereiche sind: 
200 mV, 2 V. 20 V, 200 V und 1000 V. 

OHMS 

Diese Drucktaste ist in der Betriebsart Wider- 
standsmessung erleuchtet. An den AnschluB auf 
der Frontplatte Oder den ruckseitigen Schnittstel- 
lenanschluB angelegte Widerstande warden in 
den Bereichen 200 Q, 2 kO, 20 kO, 200 kQ, 2 MO 
und 20 mO gemessen. 

NULL 

Diese Funktion arbeitet, wenn das DM 5010 auf 
DCV, OHMS, DIODE TEST, ACV + DCV eingestellt 
ist (in alien Bereichen). Wenn der Tastkopf NULL 
erleuchtet ist, miBt und speichert das GerSt den an 
einen der Eingangsanschlusse angelegten Wider- 
stands- Oder Spannungswert. Dieser gespei- 
cherle Offset wird den folgenden Messungen 
hinzugefugt und die Ergebnisse warden darge- 
stellt. Der Wert des Offset kann bis zu ±100% des 
Bereichs betragen. Wird die derzeitige Funktion 
geandert Oder die NULL Funktion abgeschaltet 
(NULL Taste gedruckt) , wird der NULL Offset nicht 
mehr hinzugefugt. Der gespeicherte Offset bleibt 
erhalten, bis ein neuer Offset durch Nullung einge- 
stellt Oder die wahrend der Nullung eingeschaltete 
Funktion verandert wird. 

^WARNUN^^ 

Bei eingeschalteter NULL Funktion kann es 
vorkommen, dad die dargestellte Messung nicht den 
Wert der an den Eingangsanschlussen angelegten 
Spannung anzeigt. 

(T) DIODE TEST 

Wenn diese Taste erleuchtet ist, wird an den posi- 
tiven Eingangsanschlussen auf der Frontplatte 
und der Ruckseite ein Gleichstrom von 1 mA 
erzeugt. Dieser Strom flieBt durch ein Bauelement 
zum negativen AnschluB. Die aabei am Bauele- 
ment entstehende Spannung wird im 2 V Gleich- 
spannungsbereich gemessen und dargestellt. 

(?) ACV 

Wenn diese Drucktaste erleuchtet ist, werden vom 
DM 5010 echte effektive Wechselspannungen 
gemessen und dargestellt. Die angelegten Span- 



nungen werden intern an einen Effektivwandler 
gekoppelt. Die MeBbereiche sind; 200 mV, 2 V, 
20 V, 200 V und 700 V. 

ACV + DCV 

Ist diese Taste erleuchtet, werden vom DM 5010 
echte effektive Wechselspannungen gemessen 
und dargestellt, die auf einen Gleichspannungs- 
pegel angehoben worden sind. Die angelegten 
Spannungen werden intern wechselspannungs- 
maBig an den Effektivwandler angekoppelt. Die 
Bereiche sind: 200 mV, 2 V. 20 V. 200 V und 700 V. 

LOW FREQ RESPONSE 

Wenn diese Drucktaste erleuchtet und die Funk- 
tion ACV Oder ACV + DCV aktiviert ist, wird aus 
4 Messungen der Mittelwert berechnet und darge- 
stellt. Dieser Vorgang wird danach wiederholt. 
Diese Funktion bietet eine stabile Anzeige bei der 
Messung von niederfrequenten Wechselspan- 
nungen und ist bis 10 Hz spezifiziert. Sie kann 
jedoch uber den gesamten fur das DM 5010 spezi- 
fizierten Frequenzbereich angewendet werden. 

BEREtCH 

(?) AUTO 

Wenn diese Taste erleuchtet ist erfoigt die 
Bereichswahl automatisch. Wird der jeweilige 
Bereich uberschritten, schaltet das DM 5010 in 
den nachst hdheren Bereich um. Betragt der 
gemessene Wert weniger als 9,5% des Bereichs, 
schaltet das Gerat in den nachst niedrigeren 
Bereich um. 

STEP ^ 

Bei Aktivierung dieser Drucktaste schaltet das 
DM 5010 in den nachsthCheren Bereich um. 
Dieser Bereich wird beibehalten, bis fUr die auto- 
matische Bereichswahl die Taste AUTO gedruckt 
Oder der Bereich nochmais erhdht wird. Bei Ande- 
rung der Funktion (DCV, OHMS, DIODE TEST, ACV, 
ACV -f DCV) bleibt der Bereich. Nur bei Wahl der 
Funktion OHMS wird in den hdchsten Bereich 
umgeschaltet. Bei Drucken der Taste wahrend der 
Arbeit im hdchsten Bereich erfoigt Umschaltung 
in den niedrigsten Bereich. 

TRIGGERUNG 

(?) RUN 

Wenn diese Taste erleuchtet ist. lautt die Konver- 
sion trei mit der gewahiten Rate. Fur die Wahl der 
Wandelrate siehe FAST. 

TRIGGERED 

Nach Drucken dieser Taste wird eine Messung 
getriggert und dargestellt. Die nachste Messung 
beginnt, wenn diese Funktion wieder aktiviert wird 
(Taste gedruckt, oder ein EXTRIG Triggersignal 
empfangen wird). Fur die Anwendung der EXTRIG 
Triggerung muB von qualifiziertem Serviceper- 
sonal ein interner AnschluB eingebaut werden. 
Wenn das Gerat getriggert wird, leuchtet die Taste 
TRIGGERED kurz auf. 



German 2-4 



ADD JUL 1986 





Bedienungsanieitung - DM 5010 



WANDELRATE 
(?) FAST 

1st diese Taste erieuchtet, entspricht die Wandel- 
(MeB-) Rate der fOr die gewShlte MeBfunktion 
spezifizierten maximalen Rate. Bei dieser Wandel- 
rate betrSgt die Aufidsung 3,5 Stellen. 



dBm = 20 logio 



/■e 



dabei ist xi die Spannungsmessung. Es wird der 
Logarithmus des absoluten Wertes von Xi/vT6 
genommen. 



Wenn die Taste FAST nicht erieuchtet ist, erfoigt 
die Wandlung mit der fur die gev^/Shlte MeBfunk- 
tion spezifizierten normalen MeBrate. Die Ergeb- 
nisse warden 4,5 stellig dargesteitt. 

(?) AVERAGE 

Wenn diese Taste erieuchtet ist, berechnet das 
DM 5010 den Mittelwert aus einer Serie von 
Messungen. Der Wert der Konstanten N bestimmt 
aus wie vielen Messungen der Mittelwert gebildet 
wird. Zur Berechnung des Mittelwertes summiert 
das GerSt die gemessenen Werte und dividiert die 
Summe durch die Anzahl der Messungen. Ist LOW 
FREQ RESPONSE ebenfalls aktiviert, entspricht 
die Anzahl der Messungen aus denen der Mittel- 
wert gebildet wird dem vierfachen Wert der 
Konstante N. In der Betriebsart TRIGGERED wird 
zum Start aller fur die AVERAGE Berechnung 
verwendeten Messungen nur eine Triggerung 
benbtigt. 

N 

Diese Taste wird zum Speichern Oder Abrufen 
einer bei der AVERAGE Berechnung verwendeten 
Konstanten benutzt. Die Konstante bestimmt, aus 
wie vielen Messungen der Mittelwert gebildet wird. 
Beim Einschalten des GerStes wird der Wert Nauf 
2 eingestellt. Dieser Wert kann auf jede positive 
ganze Zahl von 1 bis 19999 eingestellt werden. 

A 

Wird diese Taste gedriickt, subtrahiert das 
DM 5010 eine gespeicherte Offset konst ante von 
einer Messung. dividiert das Ergebnis durch eine 
gespeicherte Skalierungskonstante und stellt das 
Ergebnis dar. B ist die Offset konstante, A die 
Skalierungskonstante und X die Messung, 

A,B 

Diese Tasten werden zum Speichern Oder Abrufen 
von Konstanten verwendet, die zur Berechnung 
von X-A/B benutzt wurden. Beim Einschalten des 
Gerates wird der Wert A auf 1 und der Wert B auf 0 
eingestellt. Diese Konstanten kbnnen auf jede 
Zahl {ganze, Dezimal-, positive Oder negative Zahl) 
eingestellt werden, nur der Wert A kann nicht 0 
sein. 

® dBm 

Wenn diese Taste erieuchtet ist, wird das 
Verhaitnis einer Spannungsmessung, bezogen 
auf 1 mW und 600 Ohm nach folgender Forme! 
berechnet; 



dBr 

Ist diese Taste erieuchtet, berechnet das DM 5010 
mit der nachstehende Forme! das logarithmische 
Verhaitnis einer Messung zu einer gespeicherten 
Bezugskonstanten (Taste ref): 



dBr 



20 logio 




ref 



wobei xi die Messung ist. Es wird der Logarithmus 
des absoluten Wertes von xi/ref genommen. 



ref 

Diese Taste wird zum Speichern Oder Abrufen 
einer fur die dBr Berechnung benutzten 
Konstanten verwendet. Beim Einschalten wird der 
Wert ref auf 1 eingestellt. Der Wert von ref kann 
jede Zahl auBer 0 sein. 

@ COMPARE 

Die Aktivierung dieser Berechnung (Taste 
erieuchtet) veranlaBt das DM 5010 die nachste 
Messung mit den durch die Konstanten LIMITS 
gesetzten Grenzwerten zu vergleichen. Wenn die 
verglichene Messung algebraisch unter den 
beiden Konstanten liegt, wird das Wort LO darge- 
stellt. Ist sie algebraisch grOBer als die beiden 
Konstanten wird HI dargestellt, PASS wird darge- 
stellt, wenn die Messung gleich ist Oder zwischen 
den Konstanten liegt. 

LIMITS (2) 

Diese Tasten werden zum Speichern Oder Abrufen 
von Konstanten verwendet, die als Grenzwerte in 
der Berechnung COMPARE benutzt wurden. Beim 
Einschaitvorgang werden die Werte der 
Konstanten auf 0 eingestellt. 

® RECALL CONST 

Drucken dieser Taste und dann eine der Konstan- 
tentasten (N, A, B, ref, LIMITS) veranlaBt das Gerat, 
den fur diese Konstante gespeicherten Wert 
darzustellen. 

(@ REAR INPUT! ^ 

Siehe ^Messungen an der ruckseitigen Schnitt- 
stelle" im Abschnitt „Betriebshinweise“. Wenn 
diese Taste erieuchtet ist, werden statt der 
Eingange auf der Frontplatte die Eingange der 
ruckseitigen Schnittstelle gewShIt. 

(^ DIGITS (0 bis 9), Dezimalpunkt und Zeichen 

Diese Tasten werden fiir die Eingabe von Zahlen, 
Dezimalstellen und der PolaritSt fur die Speiche- 
rung von Konstanten verwendet. 



ADD JUL 1986 



German 2>5 




Bedienungsanleitung - DM 5010 



CLEAR 

Wenn im Anzeigefenster ein Fehlercode darge- 
stellt wird, lOscht diese Taste den dargestellten 
Fehlercode. Wird die Taste CLEAR wShrend der 
Eingabe einer Konstanten gedruckt, wird ein 
Konstantenwert, der noch nicht eingegeben 
worden ist, auf der Anzeige gelbscht. 

ENTER 

Durch Drucken dieser Taste bei der Eingabe einer 
Konstanten wird die Zaht der Konstanten gespei- 
chert und der gespeicherte Konstantenwert 
dargestellt. 

INST ID 

Die Aktivierung dieser Taste veranlaBt das Gerat 
seine Primaradresse darzustellen und, wenn 
USEREQ freigegeben ist, eine Serviceabfrage 
(SRQ) am GPIB zu erzeugen. Ferner leuchtet in der 
Betriebsart Talk Only das Minuszeichen auf und 
der ganz rechts stehende Dezimalpunkt leuchtet 
auf, wenn als Endezeichen LF/EOI gewahit wurde; 
der Dezimalpunkt leuchtet nicht, wenn das Ende- 
zeichen EOl ONLY ist. 

INPUT 

@ HIGHAnschluB 

Isolierter analoger positiver AnschluB, der mit den 
LOW und GUARD Anschlussen fur aile 
Messungen auf der Frontplatte verwendet wird. 

LOW AnschluB 

Isolierter analoger AnschluB, der mit dem HIGH 
EingangsanschluB verwendet wird. 

GUARD AnschluB 

Isolierter AnschluB, der mit der Abschirmung der 
Analogschaltkreise verbunden ist. Wird keine 
GUARD Prufleitung verwendet, ist GUARD uber 
einen internen Schalter mit dem LOW AnschluB 
verbunden. Wird eine GUARD Priifleitung benutzt, 
wird sie normalerweise vom Anwender mit der 
LOW Prufleitung am MeSpunkt angeschlossen. 
Der AnschluB GUARD wird zur Maximierung der 
Gleichtaktunterdruckung verwendet. 

(l^ Masse-AnschluB 

Chassis MasseanschluB. 

Entriegelungshebel 

Beim Herausnehmen des Einschubs ziehen. 



BEDIENUNGSHINWEISE 

Nachstehend werden die Bedienungselemente und 
Anschiusse auf der Frontplatte des DM 5010 bei Eigen- 
bedienung beschrieben. 



Selbst-Test 

Nach dem Einschalten durchiauft das DM 5010 eine 
Selbsttest-Routine. Wahrend des Selbsttests sind alle 
LED’s auf der Frontplatte erleuchtet. Nach dem Selbst- 
test schaltet das Gerat auf Eigenbedienung (LOGS) und 
nimmt die in Tabelle 2-1 enthaltenen Einstellungen an. 



Tabelle 2-1 

EINSCHALT-EINSTELLUNGEN 
(NUR FUNKTIONEN AUF DER FRONTPLATTE) 



Funktion 


Status 


DCV 


on 


OHMS 


off 


NULL 


(off) Konstante auf 0 


DIODE TEST 


eingestellt 

off 


ACV 


off 


ACV + DCV 


off 


LOW FREQ RESPONSE 


off 


AUTO 


on 


STEP 


off 


RUN 


on 


TRIGGERED 


off 


FAST 


off 


AVERAGE 


off 


N 


Konstante auf 2 


X-B 

A 


eingestellt 

off 


A 


Konstante auf 0 


B 


eingestellt 
Konstante auf 1 


dBm 


eingestellt 

off 


dBr 


off 


ref 


Konstante auf 1 


COMPARE 


eingestellt 

off 


LIMITS 


Konstante auf 0, 


REAR INPUT 


0 eingestellt 
off 



Wird wahrend des Selbsttests ein interner Fehler 
entdeckt, zeigt das Gerat im Anzeigefenster kontinuier- 
iich einen 3-steliigen Fehlercode an und das Lampchen 
ERROR leuchtet auf. Siehe Tabelle 2-2. Uberlassen Sie 
Fehlerzustande dem qualifizierten Fachpersonal. 



German 2-6 



ADD JUL 1986 




Bedienungsanleitung > DM 5010 



Tabelle 2-2 
FEHLERCODES 



Anzeige 


Fehler 




205 


Ausfuhrungsfehler: 

Argument auBerhalb des Bereichs 


231 


Nicht kaiibrierte Betriebsart 




232 


Nicht kalibrierbar 




303 


Interne Fehler: 
Rechenfehler 




311 


Konverterausfall 




317 


Frontplattenausfall 




318 


Schiechte Kalibrierkonstante 




340 


RAM Fehler 




341 


RAM Fehler 




351 


Kalibrier-Prufsummenfehler 




372 


ROM Plazierungsfehler 


COOO 


373 


ROM Plazierungsfehler 


DOOO 


374 


ROM Plazierungsfehler 


EOOO 


392 


ROM Prufsummenfehier 


COOO 


393 


ROM Prufsummenfehier 


DOOO 


394 


ROM Prufsummenfehier 


EOOO 


395 


ROM Prufsummenfehier 


FOOD 



Aligemeine Betriebshinweise 

Das GerSt erreicht seine spezifizierte Genauigkeit 
nach 30 Minuten Aufwarmzeit. Bei Bereichsuberschrei- 
tung der Funktionen OHMS und DIODE TEST zeigt das 
Gerat OC an; BereichsDberschreitung bei den Funk- 
tionen DCV, ACV und ACV 4- DCV wird durch eine b!in- 
kende Darstellung angezeigt. 




Beachten Sie die spezifizierten Maximalwerte fur 
die Eingangsspannung. Uberschreiten derMaximai- 
werte kann zu Schaden am Gerat fuhren. 



Eingangs-Anschliisse 

Die Anschlusse HIGH, LOW und GUARD werden fur 
Messungen auf der Frontplatte verwendet. Diese 
Anschlusse besitzen zwischen dem LOW und GUARD 
AnschluB einen internen Schalter. Der Schalter ist 
geschlossen, bis eine Prufleitung am AnschluB GUARD 
eingesteckt wird; er bleibt often, bis die Prufleitung 
entfernt wird. 

Bild 2-4 zeigt drei Beispiele fur Messungen mit den 
Anschliissen auf der Frontplatte. Methode A zeigt die am 
meisten verwendete Art. Sie wird benutzt, wenn Gleich- 
taktspannung nicht in Betracht kommt. In diesem 
Beispiel werden nur die HIGH und LOW Anschlusse des 
DM 5010 benutzt. Da am GUARD AnschluB keine Pruflei- 
tung eingesteckt ist bleibt der interne Schalter 
geschlossen und schlieBt LOW und GUARD kurz. 
Dadurch kann der Gleichtaktstrom durch die LOW 
Prufleitung und die Erdung der Spannungsversorgung 
flieBen und zu MeBfehlern fuhren. 

Wenn Gleichtaktspannungen ein Problem sind, liefert 
Methode B die genauesten Messungen. Der AnschluB 
GUARD am DM 5010 ist mit dem negativen AnschluB der 
Signalquelie verbunden. Der Gleichtaktstrom flieBt 
durch die GUARD Prufleitung und die Erdung der Quelle, 
aber nicht durch den MeBkreis. 

Bei Methode C ist der GUARD AnschluB am DM 5010 
mit der Erdung der Quelle verbunden. Da der zwischen 
dem negativen AnschluB der Quelle und der Erdung 
erzeugte Gleichtaktstrom in den MeBkreis flieBt, kdnnen 
MeBfehler auftreten. 



WARNUNG 



Urn die Gefahr von Stromschlagen bei Spannungs- 
messungen zu vermeiden: 



Fur alle MeBfunktionen ertolgt die Bereichswahl 
entweder automatisch (Taste AUTO eingedruckt) Oder 
es wird mit der Taste STEP ein fixierter Bereich ausge- 
wShlt Siehe auch Abschnitt „Anzeigefenster‘'. Fur 
DIODE TEST wird nur der Bereich 2 V verwendet. 




Bei der AUTO Bereichswahl darfdie Eingangsspan- 
nung nicht wiederholt zwischen einem niedrigen 
Vi/ert (< 20D mt/gj und einem hoheren Wert 
P> 200 Vs) hin und her geschaltet werden. 
Venwenden Sie fur wiederholte Messungen 
zwischen den Spannungsextremen vor Erhdhung 
der Eingangsspannung mit der Bereichswahl STEP 
einen entsprechend hoheren Bereich, da sonst 
ungenaue Messungen im 200 mV Bereich 
vorkommen kdnnen. 



1. Vermeiden Sie den Kontakt mit der Span- 
nungsquelle wenn die gemessene Spannung 
42,4 Vg ubersteigt. 

2. Trennen Sie die Prufleitungen von dem zu 
prufenden Schaltkreis bevor Sie die Leitungen 
am DM 5010 entfernen und bevor Sie das 
DM 5010 aus der Versorgungseinheit heraus- 
nehmen. 



Messungen an den riickseitigen 
Interface- Anschliissen ! 




Wenn die Taste REAR INPUT gedruckt ist (erleuchtet) 
werden Signals gemessen, die an die ruckseitigen Inter- 
face-Stifte 28B (Hi) und 28A (Lo) auf der ADC Platine 
(A17) angelegt sind. Ist dieTaste nicht erleuchtet, werden 
die Signale liber die Eingangsanschlusse auf der Front- 
platte gemessen. 



ADD JUL 1986 



German 2-7 





Bedienungsanleitung - DM 5010 



DM 5010 




A. Guard connected (internally) to DM 5010 LOW terminal — E enor present 




■o- 



B. Guard connected to source Lo terminal — No E error. 

cin 





C. Guard connected to source chassis ground. Low Ecm error, assuming the 
common error source is mostly between grounds. 




German 2>8 



ADD JUL 1986 





Bedienungsanleitung - DM 5010 




Um Besch^digung des Gerates zu vermeiden, darf 
zwischen den Stiften 28B (Hi) und 28A (Lo) am 
ruckseitigen Interface-AnschluB P1031 aufderADC 
Platine (A17) keine Spannung angefegt warden, die 
42,4 V's >AC Oder 60 V DC ubersteigt 



Messung von Dioden 

Wird die Taste DIODE TEST gedrCickt, erzeugt das 
DM 5010 am AnschluB HIGH einen Gleichstrom von 
1 mA. Zur Messung des Spannungsabfalls wird die Diode 
mit der Anode an HIGH und der Kathode an LOW ange- 
schlossen. Es kOnnen GerSte mit einem Spannungsab- 
fall unter 1,999 V gepruft werden. Das sind die meisten 
Dioden und einige LED’s. 




Schalten Sie nicht zwischen der Frontplatte unddem 
ruckseitigen Interface-AnschluB um, wahrend an 
den Eingangsanschliissen auf der Frontplatte eine 
Spannung von uber 500 angelegt ist. Betriebs- 
fehler und eine Beschadigung des Gerates konnen 
die Folge sein. 



Gieichspannungs- (DC) Messungen 

Wenn die Taste DCV gedrUckt ist, miBt das DM 5010 
Gleichspannungen in den Bereichen: 200 mV, 2 V, 20 V, 
200 V und 1000 V. Die Darstellung zeigt ein positives 
Zeichen an wenn der Eingang am HIGH AnschluB mit 
Bezug auf den LOW AnschluB positiv ist. Beachten Sie 
die Maximalwerte fOr die Eingangsspannung. 



Widerstandsmessungen 

Drucken der Taste OHMS gibt das DM 5010 frei fur die 
Messung von Widerstanden in den Bereichen: 200 Q, 
2 kO, 20 kO, 200 kO, 2 MO und 20 MO. Der normaie 
StromfluB geht vom AnschluB HIGH zum AnschluB LOW. 
Tabelle 2-3 enthSit die Strom- und maximalen Span- 
nungswerte an den Eingangsanschlussen (innerhalb 
der Bereiche). Die maximale Spannung am AnschluB 
HIGH bezogen auf AnschluB LOW liegt unter 5 V. 



Tabelle 2-3 
Funktion OHMS 



Bereich Typischer Strom V max. 

200 0 1,02 mA bis 1mA 

2 kO 0,12 mA bis 0,1 mA 
20 kO 9,2MAbis10MA 0.2 V 

200 kO 1,08 mA bis IpA 

2 MO 0,12 mA bis 0.1 pA 




Zur Prufung des umgekehrten Spannungsabfalls 
vertauschen Sie die AnschlCissf der Diode am Gerat. Die 
Darstellung solite OC anzeigen. 



MeBgeschwindigkeiten 

Das DM 5010 arbeitet mit einer von zwei MeBge- 
schwindigkeiten. Bei der Geschwindigkeit FAST (Taste 
CONVERSION RATE erleuchtet) fiihrt es Messungen mit 
der maximalen, fur die gewahite Funktion spezifizierten, 
Geschwindigkeit durch. Die MeBergebnisse werden 
3 1/2-stellig angezeigt. Ist die Taste nicht erleuchtet 
erfolgen die Messungen mit der normaten fur die 
gewahite Funktion spezifizierten Geschwindigkeit und 
die Ergebnisse werden 4 1/2-stellig angezeigt. 



Triggerung 

Das DM 5010 verf ugt von der Frontplatte aus Ober zwei 
Triggerbetriebsarten RUN und TRIGGERED. Wenn die 
Taste RUN gedriickt ist erfolgen die Messungen frei 
laufend mit der gewahiten MeBgeschwindigkeit. Bei 
jedem Drucken der Taste TRIGGERED wird eine 
Messung ausgelOst. 



Ferner kdnnen Messungen uber den ruckseitigen 
Interface-AnschluB, Stifte 16A und 16B (Lo) am Isolation 
Board (A15) getriggert werden. Dazu muB eine interne 
Uberbruckung instaliiert werden. Hinweise dazu findet 
qualifiziertes Servicepersonal im Abschnitt „Wartung“. 
Durch Einbau dieser Brucke wird die Triggerfunktion 
EXTRIG freigegeben. Zur Anwendung der EXTRIG Trig- 
gerung drUcken Sie die Taste TRIGGER und sperren 
damit die frei laufende Triggerung des Gerates. Fur die 
AuslOsung der internen Triggerung wird bei EXTRIG ein 
negatives, TTL kompatibles Signal benOtigt. Fur eine 
einzelneTriggerung muB diese Leitung zwischen 0,5 und 
10 MS gehalten werden. Wird sie langere Zeit niedrig 
gehalten, trigger! das Gerat Mehrfachmessungen. 



ADD JUL 1986 



German 2-9 




Bedienungsanleitung - DM 5010 



Berechn ungen 

Berechnungen von Messungen des DM 5010 werden 
mit fiinf Tasten auf der Frontptatte aktiviert. Diese 
Berechnungen kOnnen einzeln Oder in Folge durchge- 
ftihrt werden. Eine Foige von Berechnungen kann in 
beliebiger Reihenfolge aktiviert (Tasten gedruckt) 
werden; das DM 5010 fuhrt sie jedoch in nachstehender 
Reihenfolge durch: AVERAGE, X-B/A, dBm Oder dBr, 
COMPARE. Das GerSt fiihrt alle aktivierten Berech- 
nungen der Messung durch und stellt dann das Ergebnis 
dar. Wenn aktiviert, werden NULL und LOW FREQ 
RESPONSE vor jeder anderen Berechnung ausgefuhrt. 
Die Berechnungen dBm und dBr kbnnen nicht in der 
gleichen Folge durchgefiihrt werden. Wenn beide Tasten 
in der gleichen Berechnungsfolge gedruckt werden, 
wird nur die zuletzt gedruckte Berechnung ausgefOhrt. 
Eine Triggerung lOst die Durchfuhrung einer einzelnen 
Berechnung Oder einer Berechnungsfolge aus. In der 
Triggerbetriebsart RUN wird eine aktivierte Berechnung 
Oder Berechnungsfolge wiederholt bis sie abgeschaltet 
wird (Berechnungstasten nochmals gedruckt), Oder bis 
Triggerart Oder MeBfunktion geSndert werden. WShrend 
der Berechnung bleiben die Anzeige-LED’s dunkel. Bei 
UberflieBenderBerechnungsergebnissezeigtdasGerSt 
OC an. 



AuBer fur dBm werden fur jede Berechnung eine Oder 
mehrere Konstanten verwendet. Der fur jede Konstante 
im Speicher errthaltene numerische Wert wird beim 
Einschalten auf einen Anfangswert eingestellt. Dieser 
Wert kann auf jeden Wert, innerhatb der fur jede 
Konstante spezifizierten Grenzwerte eingestellt werden. 
Tabelle 2-4 enthSIt jede Berechnung und die zugeord- 



neten Konstanten, den Konstanten-Anfangswert und die 
Grenzwerte fur jede Konstante. 

Anderung der Konstantenwerte 

Es gibt zwei Methoden zur Anderung von Konstanten- 
werten im Geratespeicher: 

1. Mit dem numerischen Tastenfeld: 

a. Drucken Sie die Taste der gewShlten 
Konstanten. 

b. Drucken Sie die numerischen Tasten zur 
Darstellung des neuen Konstantenwertes (inner- 
halb der in Tabelle 2-4 spezifizierten Grenzwerte). 

c. Drucken Sie ENTER. 

2. Mit einer angezeigten Messung (Sndert den 
Konstantenwert auf den Wert der angezeigten 
Messung). Achten Sie darauf, daB der angezeigte 
MeBwert innerhalb der in Tabelle 2-4 fOr die gewShlte 
Konstante spezifizierten Grenzwerte liegt. 



a. Drucken Sie die Taste der gewShlten 
Konstanten. 

b. Drucken Sie ENTER. 



Tabelle 2-4 

BERECHNUNG UND KONSTANTEN 



Berechnung 


Konstanten 


1 

Anfangswert 


gultiger Konstantenbereich 


AVERAGE 


1 

N 


2 


-hi bis -F 19999 


X-B 

A 


B (Offset) 


0 


+ Oder -, ganze Zahl Oder dezimat. 




A 


1 


-h Oder -, ganze Zahl oder dezimal, 0 


dBm 


- 


- 


- 


dBr 


ref 


1 


-h Oder -, ganze Zahl Oder dezimal, ¥= 0 


COMPARE 


LIMITS (2) 


0 





German 2«10 



ADO JUL 1986 





















Bedienungsanleltung - DM 5010 



Nachdem die Taste ENTER gedrilckt wurde, zeigt das 
DM 5010 den gespeicherten Konstantenwert an. Das ist 
der neue Wert, wenn der eingegebene Wert gultig ist. Der 
vorher gespeicherte Wert wird angezeigt, wenn der 
eingegebene Wert unguitig war, Jeder Konstantenwert 
bleibt gespeichert bis ein neuer Wert eingegeben Oder 
das GerSt abgeschaltet wird, 



Berechnungsbeispiele 

Die nachstehenden Beispiele sind Anwendungsvor- 
schtage fur Berechnungen mit denn DM 5010. 



Beispiel 1: Verwendung von X>B/A zur Darstellung der 
Differenz zwischen den nominalen und aktuellen Zener- 
spannungen. 



Stellen Sie die Bedienungselemente auf der Front- 
piatte des DM 5010 wie folgt ein; 



DCV on 

NULL off 

LOW FREQ RESPONSE off 

RANGE AUTO 

TRIGGER MODE RUN 

CONVERSION RATE FAST off 

CALCULATIONS 
X-B 

A on 

alle anderen off 

REAR INPUT off 



Stellen Sie die Konstante A auf 1. 

Stellen Sie die Konstante B auf 15 (fur eine 
15 V Zenerdiode). 



Verbinden Sie die Zenerdiode, Widerstand und Span- 
nungsquelie wie in Bild 2-5 gezeigt mit den Eingangsan- 
schlussen des DM 5010. Der Wert des Widerstandes und 
die Spannung stellen den Zenerstrom ein. 



Die angezeigte Spannung ist zuerst unstabit bis der 
Strom durch die Diode den Endwert ereicht. Wenn sich 
die Anzeige stabiiisiert, zeigt die Spannung die Differenz 
zwischen der nominalen Zenerspannung (15 V/ und der 
aktuellen Zenerspannung an. 



Zur Ablesung der Spannungsdifferenz in Abwei- 
chungsprozenten, Sndern Sie die Konstante A auf .15, 
wobei A — B (.01) ist. 



Beispiel 2: Verwendung von dBr zum Finden des Punktes 
an dem ein AudioverstSrker 3 dB unterhalb des mittleren 
Bereiches liegt. 



Stellen Sie die Bedienungslemente wie folgt ein: 



ACV on 

NULL off 

LOW FREQ RESPONSE off 

RANGE AUTO 

TRIGGER MODE RUN 

CONVERSATION RATE FAST off 

CALCULATIONS off 

REAR INPUT off 



Stellen Sie die Konstante ref auf 1 . Verbinden Sie einen 
Sinusgenerator, den Audioverstarker und das DM 5010 
wie in Bild 2-6 gezeigt. 




Biid 2-5. Anordnung fur Berechnungs beispiel 1. 



ADD JUL 1986 



German 2-11 






Bedienungsanleitung - DM 5010 




Biid 2-6. Anordnung fur Berechnungsbeispiei 2. 



Stellen Sie den Sinusgenerator auf Mitte Bereich (in 
diesem Beispiel 5 kHz) ein. Stellen Sie die Amplitude des 
Sinusgenerators fur eine 1 V Anzeige am DM 5010 ein, 



Drucken Sie am DM 5010 die Taste dBr. Das Gerat zeigt 
0.0 an. 



Reduzieren Sie die Frequenz des Sinusgenerators bis 
das DM 5010 - 3.00 anzeigt. (Andern Sie nicht die Ampli- 
tude). Die Frequenz des Generators ist der niedrigere 
- 3 dB Punkt des AudioverstSrkers. 



Beispiel 3: Die Verwendung von COMPARE zur Auswahl 
von Widerstanden, die innerhalb von 2%des Nennwertes 
liegen. 

Stellen Sie die Bedienungseiemente wie foigt ein: 



OHMS 


on 


NULL 


off 


LOW FREQ RESPONSE 


off 


RANGE 


AUTO 


TRIGGER MODE 


RUN 


CONVERSION RATE 


FAST off 


CALCULATIONS 




COMPARE 


on 


alle anderen 


off 


REAR INPUT 


off 



Die Berechnungsarten COMPARE und X-B/A kOnnen 
in dem vorstehenden Beispiel auch kombiniert 
verwendet \werden. Dabei mtissen die hdchsten und 
niedrigsten Toleranzvwerte nicht angegeben warden; nur 
der Nennwert des Widerstandes und der Toieranzwert 
werden als Konstanten benutzt. 



Stellen Sie die Konstante B auf 15000 (Nennwider- 
stand). 



Stellen Sie die Konstante Aauf 150 wobeiA = B (.01) ist. 
Dadurch wird die Differenz zwischen Nennwert und 
tatsachiichem Wert in einen Prozentsatz umgewandelt. 



Stellen Sie eine LIMITS Konstante auf 2 (fOr 2% Tole- 
ranz) . 



Stellen Sie die andere LIMITS Konstante auf -2. 



Drucken Sie X-B/A. 



Das DM 5010 zeigt PASS, Hi Oder LO an 



Zur Auswahl von 15 kO Widerstanden, die innerhalb 
von 2% des Nennwertes liegen stellen Sie eine LIMITS 
Konstante auf 15300. Die andere LIMITS Konstante 
stellen Sie auf 14700. Verbinden Sie den ersten Wider- 
stand mit den HIGH und LOW Eingangsanschlussen auf 
der Frontplatte des DM 5010. Das DM 5010 zeigt HI Oder 
LO an, wenn der Widerstand oberhalboder unterhalb der 
2% Toleranz liegt. PASS wird angezeigt wenn der Wider- 
stand innerhalb der Grenzwerte liegt. 



German 2-12 



ADD JUL 1986 




Chapitre 2 > DM 501 0 



PROGRAMMATION 



Introduction 

Ce chapitre est relatif a la program mation du Multime- 
tre Numerique Programmable DM 5010, par I’intermedi- 
aire de I’interface numerique IEEE-488. Les fonctions 
de I'interface relatives au DM 5010 sont indiquees au 
chapitre 1. L’interface numerique IEEE-488 est appelee 
dans ce manuel Bus d'Interface General (GPIB). Les in- 
formations qui suivent s’adressent a un lecteur deja 
familiarise avec les communications sur le GPIB et la 
programmation des controleurs. Le protocole des 
messages transmis sur le GPIB est specific et decrit 
dans les normes IEEE 488-1978, “Interface Numerique 
Standard pour Instruments Programmables”’. Les 
instruments de la serie TM 5000 sont conpus pour com- 
muniquer avec tout contrdleur compatible GPIB trans- 
mettant et recevant des messages ASCII (commandes) 
sur le bus GPIB. Ces messages sont constitues de com- 
mandes de programmation de I'instrument ou de 
demandes d'informations issues de I'instrument. 

Les commandos des instruments ^Drogrammables de 
la serie TM 5000 sont compatibles avec d'autres types 
d’instruments. La meme commande peut etre utilisee 
par differents instruments pour le controle de fonctions 
similaires. En outre, cheque commande se presente 
sous forme d’un mnemonique decrivant sa fonction. Par 
exemple, la commande INIT reinitialise les reglages 
d’un instrument en restaurant les conditions de mise en 
service. De plus, les mnemoniques de commande 
coincident avec les appellations en face avant (program- 
mation simplifiee), 

Les commandos de I'instrument sont presentees 
dans ce manuel sous trois formes : 

■ Une illustration de la face avant - et les commandes 
ayant trait aux differents modes d'utilisation (v. fig. 
3.1). 

■ Une liste des commandes fonctionnelles - reparties 
par groupes. Chaque fonction est decrite 
brievement. 

■ Une liste de commandes detaillees - liste alphabe- 
tique des commandes. Chaque commande est 
suivie de sa description complete. 



Les instruments programmables de la serie TM 5000 
sont connectes sur le Bus GPIB par I'intermediaire d’un 
module d’alimentation TM 5003 ou TM 5006. Des infor- 
mations sur I'installation de I’instrument dans le module 
d’alimentation, ainsi que la description des diverses 
fonctions en face avant et des fonctions selectionnables 
(internes) sont donnees au chapitre Instructions d’Utili- 
sation. 



L'adresse primaire du DM 5010 (16) peut etre modi- 
fies par un personnel de maintenance qualifie, ainsi que 
la Fin de Message (v. dans ce meme chapitre le para- 
graphs Messages et Protocols de Communication). 
Cette Fin de Message est reglee sur EOl ONLY (a la 
livraison). Pour touts information sur une localisation ou 
un reglage interne, se referer au chapitre Maintenance. 
Une pression sur le bouton INST ID entrains I’affichage 
de l'adresse primaire ; le point decimal droit s’allume si 
la Fin de Message selectionnee est LF/EOI. Le signe 
“moins” s’allume si le mode Emetteur Seulement est 
valide. 



Mode Emetteur Seulement (Talk Only) 

Ce mode valide i’envoi de donnees sur le GPIB par le 
DM 501 0 a un Recepteur, sous controle local. Pour cela, 
le commutateur interne correspondent doit etre place 
sur la position Talk Only. Pour modifier la position de ce 
commutateur s'adresser a un personnel de maintenance 
qualifie (v, Chapitre Maintenance). 



En mode Emetteur Seulement, le DM 501 0 commence 
a transmettre les resultats de la mesure lorsque I'utilisa- 
teur appuie sur le bouton INST ID. Une pression sur la 
touche CLEAR met fin a I’envoi de donnees. Si, a cet in- 
stant, I’instrument est en train de transmettre une 
mesure, il termine I’operation en cours. Le voyant 
ADDRESSED demeure ailume jusqu’a ce que la derniere 
mesure ait ete transmise. 



Institute of ElectricBl and Electronic Engirwers, New York 



ADD JUL 1986 



French 3-1 




Programmation - DM 501 0 




ERR? 

ID? 

miT 

MONITOR ON 

MONITOR OFF 

MONITOR? 

ROSON 

RQSOFF 

RQS? 



DATA 

a»CON 

OPCOFF 

CH»C? 

OVER ON 

OVER OFF 

OVER? 

ROY? 

SEND 



FUNCT? 



ACDC <num> 
ACV <num> 
DCV <num> 
DIODE 

OHMS <num> 



Nl^ <mjm> 
NULL? 






DIGIT 3.S 
DIGIT 4.5 
DIGIT? 



MODE RUN 
MODE TRIG 
MODE? 



SOURCE FRONT 
SOURCE REAR 
SOURCE? 



ftVIRA&e 






CALC OFF 
CALC? 



CALC DBR CALC CMPR 



CALC AVE CALC RATIO 



CALC DBM 



LIMITS <num>,<num> 
LIMITS? 



DBR <num> 
DBR? 



RATIO <A num>,<B nuin> 
RATIO? 



AVE <num> 
AVE? 



2994.07 



Fig. 3.1 . Commandes du DM 5010 et relations avec les commandes de la face avant. 



French 3-2 



ADD JUL 1986 











Programmatlon - DM 501 0 



COMMANDES 

L’instrument est controle soit par la face avant, soit 
par les comm and es repues (envoyees par le controleur). 
Ces commandes sont de trois types ; 

Commandes de reglage - permettent de regler 
I’instrument 

Demandes d’informations - requierent des donnees 

Commandes d'utilisation - provoquent une operation 
specifique. 



ATTENTION 



Veiller a ne pas transmettre un nombre de 
caracteres inferieur a ceux du mnemonique ou de 
Targument abrege. Toute transmission a un appar- 
eil non concerne pourrait en trainer un risque d’er- 
reur ou de deterioration de Tappareil. 



Le DM 5010 repond a et execute toute commands 
lorsqu’ii est dans le mode Commands a Distance. En 
mode Local, les fonctions du DM 5010 etant sous le 
controls de la face avant, toute commands de reglage et 
de fonction transmise par le controleur donne lieu a un 
message d’erreur. Seules les demandes d’informations 
sont executees. 

Chaque commands debuts par un mnemonique - 
prefixe decrivant la fonction executes. De nombreuses 
commandes necessitent un argument a la suite du 
prefixe, pour decrire t’etat desire de la fonction 
concernee. 

ATTENTION 

En mode Selection Automatique de Gammes, ne 
pas passer de maniere repetitive d'une tension 
basse (< 200 mV Crete) a une tension elevee <> 
200 V Crete). Dans ce cas, utiliser le mode Selec- 
tion de gammes par increments (STEP) pour selec- 
tionner la gamme superieure appropriee avant 
d’augmenter la tension d’entree. En travaillant 
directement dans la gamme 200 mV on risque 
d’obtenir des mesures erronees. 



LISTE DE COMMANDES FONCTIONNELLES 



COMMANDES DE L’INSTRUMENT 

Commandes de fonctions 

ACDC <nombre> - valide la fonction Mesure d'une 
tension alternative efficace vraie superposes a un 
niveau continu (ACV -h DCV) et definit la gamme de 
mesure. 

ACV < nombre> - valide la fonction Mesure d'une ten- 
sion alternative efficace vraie (ACV) et definit la 
gamme de mesure. 

DCV <nombre> - valide la fonction Mesure d’une ten- 
sion continue (DCV) et definit la gamme de mesure. 

DIODE - valide la fonction DIODE TEST. 

FUNCT? - renvoie la fonction et la gamme actuelles, 

LFR ON - valide la fonction Reponse en basse fre- 
quence (LOW FREQ RESPONSE). 

LFR OFF - inhibe la fonction Reponse en basse fre- 
quence (LOW FREQ RESPONSE). 

LFR? - renvoie LFR ON ou LFR OFF. 

NULL <nombre> - valide la fonction Annulation 
(NULL) et la valeur de decalage utilisee. 

NULL ? - renvoie la valeur de decalage utilisee par la 
fonction NULL. 

OHMS <nombre> - valide la fonction Mesure de 
resistances (OHMS) et la gamme utilisee. 



Commandes du mode de declenchement 

MODE RUN - valide le mode Declenchement reiaxe 
(RUN). 

MODE TRIG - valide le mode Declenche 
(TRIGGERED). 

MODE? - renvoie MODE RUN ou MODE TRIG. 

RDY? - renvoie RDY 1 si une mesure est prete ; RDY 
0 si une mesure est en cours ou en attente de 
declenchement. 

DIGIT 3.5 - valide la vitesse de conversion rapide 
(FAST) 

DIGIT 4.5 - valide la vitesse de conversion normals. 
DIGIT? - renvoie DIGIT 3.5 ou DIGIT 4.5. 

Commandes de calcul 

AVE <nombre> - definit la valeur de la constants N. 

AVE? - renvoie la valeur de la constants N, 

CALC AVE - valide le calcul de la Moyenne 
(AVERAGE). 

CALC CMPR - valide la fonction Comparaison 
(COMPARE). 

CALC DBM - valide la conversion en dBm. 

CALC DBR - valide la conversion en dBr, 



ADD JUL 1986 



French 3*3 




Programmation ' DM 501 0 

CALC RATIO - valide le calcul de X-B/A. 

CALC OFF - inhibe tous les calculs. 

CALC ? - renvoie CALC OFF ou le(s) calcuKs) a 
effectuer. 

DBR SAnombreSF - definit la valeur de la con- 
stante de reference (ref). 

DBR ? - renvoie la valeur de la constante de 
reference (ref). 

LIMITS <nombre>, <nombre> - definit la 
valeur des constantes limites (LIMITS). 

LIMITS ? - renvoie la valeur des constantes li- 
mites. 

MONITOR ON - valide une Demande de Service 
lorsque la mesure excede les constantes limites 
(LIMITS). 

MONITOR OFF - inhibe la Demande de Service 
lorsque la mesure excede les constantes limites 
(LIMITS). 

MONITOR ? - renvoie MONITOR ON ou 
MONITOR OFF. 

RATIO <nombre>,<nombre> - definit la 
valeur des constantes A et B. 

RATIO ? - renvoie la valeur des constantes A et 
B. 



Commandes d’entree/sortie 

DATA - valide la sortie des donnees sauve- 
gardees par la commande MONITOR SRQ. 

SEND - valide la sortie des donnees contenues 
dans la memoire tampon de sortie. Genere un 
declenchement si necessaire. 

SOURCE REAR - selectionne les entrees de I’in- 
terface arriere. 

SOURCE FRONT - selectionne les entrees de la 
face avant, 

SOURCE ? - renvoie SOURCE REAR ou 
SOURCE FRONT, 



Commandes du systeme 

DT TRIG - valide la fonction Declenchement de 

rinstrument. . , u- 

L instrument est declenche apres 

le message d’interface <GET8F. 

DT OFF - inhibe la fonction Declenchement de 
rinstrument. 

DT ? - renvoie DT TRIG ou DT OFF. 

ERR ? - renvoie le code d’erreur approprie. 

ID ? - renvoie I’identification de rinstrument et le 
numero de la version logicielle. 

INIT - initialise les reglages de rinstrument. 

SET ? - renvoie les reglages de rinstrument. 

TEST - renvoie 0 si le controls de I’etalonnage 
est correct ; 1 si le checksum de I’etalonnage 
est errone. 

Commandes d’etat 

OPC ON - valide la Demande de Service apres 
une Operation Complete. 

OPC OFF - inhibe la Demande de Service apres 
une Operation Complete. 

OPC ? - renvoie OPC ON ou OPC OFF. 

OVER ON - valide la Demande de Service lors 
d'un depassement de gamme. 

OVER OFF - inhibe la Demande de Service lors 
d’un depassement de gamme. 

OVER ? - renvoie OVER ON ou OVER OFF. 

RQS ON - valide la generation de demandes de 
service (SRQ). 

RQS OFF - inhibe la generation de demandes de 
service (SRQ), 

RQS ? - renvoie RQS ON ou RQS OFF. 

USER ON - valide la Demande de Service 
lorsque le bouton ID est enfonce. 

USER OFF - inhibe la Demande de Service 
lorsque le bouton ID est enfonce. 

USER ? - renvoie USER ON ou USER OFF. 



French 3-4 



ADD JUL 1986 




Programmation - DM 501 0 



LISTE DES COMMANDES DETAILLEES 



ACDC (AC + DC) 

(Mesure d’une tension alternative efficace vraie 
superposee a une tension continue) 

Type : 

Reglage 

Syntaxe de reglage : 

ACDC <nombre> 

ACD <nombre> 

ACDC 

Exemples : Gamme selectionnee : 

ACDC 2 2 V 

ACDC .9 2V 

ACD -200 700 V, Selection Automatique 

ACD 700 V, Selection Automatique 

ACD 0 700 V, Selection Automatique 

Explication : 

Le prefixe selectionne ta fonction ACV -i- DCV. L’argu- 
ment selectionne une gamme determinee ou la Selection 
Automatique de Gammes. Le format des arguments 
numeriques est decrit au paragraphe Format de I'argu- 
ment numerique de ce chapitre. L’argument peut etre 
toute valeur ^ 700. Toutefois, [’instrument arrondit 
[’argument a la gamme superieure. Par exempie, si 
I’argument est 0.9, I’instrument selectionne la gamme 2 
V. 

Un argument absent, ou egat a 0 (ou moins) valide le 
mode Selection Automatique de Gammes (a partir de la 
gamme maximale). 

Si I’argument est superieur a la gamme maximale, 
I’instrument genere une "erreur" de commande (et 
valide la ligne SRQ si la commande RQS est validee 
(RQS ON)). 

Gammes : 

200 mV 2V 
20 V 
200 V 
700 V 



ACV 

(Mesure d’une tension alternative 
efficace vraie) 

Type : 

Reglage 

Syntaxe de reglage : 

ACV <nombre> 

ACV 

Exemples : Gamme selectionnee : 

ACV 18 20 V 

ACV 2 2 V 

ACV -200 700 V, Selection Automatique de 

Gammes 

ACV 700 V, Selection Automatique de 

Gammes 

Explication : 

Le prefixe selectionne la fonction ACV. L’argument 
selectionne une gamme determinee ou la Selection de 
Gammes Automatique. Le format des arguments nume- 
riques est decrit au paragraphe Format de I’argument 
numerique de ce chapitre. L’argpment peut prendre 
toute valeur. Toutefois, I’instrument arrondit [’argument 
a la gamme superieure. Par exempie, si [’argument est 
1 8, 1’instrument selectionne la gamme 20 V. 

Un argument absent, ou ega! a 0 (ou moins) valide le 
mode Selection Automatique de Gammes (a partir de la 
gamme superieure). 

Si I'argument est superieur a la gamme maximate, 
[’instrument genere une “erreur" de commande (et 
valide la ligne SRQ si la commande RQS est validee 
(RQS ON)). 

Gammes : 

200 mV 2 V 
20 V 
200 V 
700 V 



ADD JUL 1986 



ACDC 



ACV 



French 3-5 



Prog ram mat ion - DM 501 0 



AVE 

(AVERAGE (Moyenne)) 



Type : 

Reglageou interrogation 

Syntaxe de regtage 

AVE <nombre> 

AVG <nombre> 

Exemples : 

AVE 6 
AVE 2 
AVG 10 

Syntaxe d’interrogation ; 

AVE? 

AVG? 

Reponse a I’interrogation : 

AVE <nombre> 

Explication : 

Cette commande specifie le nombre de conversions 
utilisees dans le calcu! de la Moyenne. (Ceci equivaut a 
definir la valeur de la constante N en face avant). Voir 
CALC AVE. L’argument peut prendre n’importe quelle 
valeur de 1 a 1 9999. L'instrument arrondit cet argument 
a un nombre entier. 



French 3-6 



AVE 



ADD JUL 1986 



Programmation • DM 501 0 



CALC 

(Calculs) 

Type : 

Reglageou interrogation 



Syntaxe de reglage : 

CALC <argument> 

CALC <argument>, ,<argument> 



Arguments : 

AVE ou AVG 

CMPR ou COMP 

DBM 

DBR 

RATIO 

OFF 

Examples : 

CALC OFF 
CALC AVE 
CALC AVE, DBM 
CALC RATIO, AVE, DBR 

Syntaxe d’mterrogation : 

CALC? 

Reponse a [’interrogation : 

CALC OFF ; ou le(s) calcuKs) a effectuer. 



Explication : 

Lorsque [’instrument repoit une commande CALC, il 
inhibe tous les calculs exceptes ceux indiques a la 
suite du prefixe. Si le resultat d’un calcu! excede les 
capacites du bloc mathematique (±3.4028E+38), 
I’instrument genere une erreur concernant le Bloc 
mathematique {erreur 303). 

• CALC AVE ou CALC AVG valide le calcul de la 
Moyenne. L’instrument calcule la 



moyenne d’une serie de mesures. Le nombre de 
mesures moyennees est defini par la commande AVE 
<nombre>. 

Un declenchement genere un nombre suffisant de lec- 
tures pour effectuer une moyenne. Un depassement de 
gamme d’une mesure dans une sequence met fin a la 
fonction AVE. 

Si la commande LFR est egalement validee, le nombre 
de mesures defini par la commande AVE < nombre > 
est multiplie par 4. 



• CALC CMPR ou CALC COMP valide la fonction 
COMPARE. L’instrument compare la vaieur en 
entree aux valeurs definies par la commande 
LIMITS. Les commandes suivantes valident la 
sortie du resultat de la comparaison : 

SEND - renvoie 1., 2. ou 3. equivaiant a LO (in- 
ferieure), PASS (egale) ou HI (superieure) ; renvoie 
-I-1E-H99; ou -1E-F99; pour un depassement de 
gamme. 

DATA - renvoie la vaieur de la mesure 
hors-limites. 



• CALC DBM valide la conversion en dBm et inhibe 
la conversion en dBr. L’instrument calcule le rap- 
port de la puissance du signal d’entree par rapport 
a une puissance de 1 mW dissipee dans une resis- 
tance de 600 a {0,7446 V). 



• CALC DBR valide la conversion en dBr et inhibe la 
fonction CALC DBM. Le DM 5010 calcule le rap- 
port logarithmique d’une entree sur la vaieur de 
reference definie par la commande DBR 
< nombre >. 



• CALC RATIO valide la caicul de X-B/A, X etant la 
mesure, B une vaieur de decalage et A le facteur 
d'echelle. Les valeurs de A et B sont definies par 
la commande RATIO. 



• CALC OFF inhibe tous les calculs. 



ADD JUL 1966 



CALC 



French 3-7 




Programmation > DM 501 0 



DATA 

(Donnees) 

Type: 

Commande de sortie 

Syntaxe : 

DATA 

Reponse : 

DATA <nombre>; 
ou 

DATA It 1.E+99; (indication “hors-gamme") 

Explication : 

Cette commande renvoie I'une des reponses in- 
diquees ci-dessous. Elle ne declenche pas une conver- 
sion et n’attend pas pour renvoyer une nouvelle mesure, 
comme la commande SEND. 

1. Apres la mise en service, renvoie 0 jusqu’a ce 
qu’une mesure soit disponible. 

2. Si une Demande de Service a ete generee par la 
commande MONITOR SRQ, DATA renvoie la mesure a 
I’origine de la Demande de Service. 

3. Si aucune des conditions ci-dessus n’est vraie, 
DATA renvoie la lecture la plus recente. DATA renvoie la 
meme mesure jusqu'a ce qu'une nouvelle conversion 
soit declenchee et qu’une nouvelle mesure soit disponi- 
ble. 

DATA peut renvoyer un nombre de chiffres superieur 
(resolution superieure) au nombre de chiffres affiches 
en face avant ou renvoyes par la commande SEND, 



DBR 

(dB par rapport a une reference) 

Type : 

Regiage ou interrogation 

Syntaxe de regiage : 

DBR <nombre> 

Exemples : 

DBR 1 
DBR .707 
DBR 2E-3 

Syntaxe d’interrogation : 

DBR? 

Reponse a Tinterrogation : 

DBR <nombre>; 

Explication ; 

L'argument de cette commande definit la valeur de la 
constante utilises par la commande CALC DBR. Cette 
fonction est equivalents a la commande ref en face 
avant. L'argument peut etre tout nombre different de 0. 



French 3-8 



DATA 



DBR 



ADD JUL 1986 



Prog ram mat ion - DM 501 0 



DCV I DIGIT 

(Mesure d’une tension continue) I (Resolution numerique) 



Type : 

Reglage 

Syntaxe de reglage ; 

DCV <nombre> 

DCV 

Exemples : Gamme selectionnee : 

DCV 1.5 2 V 

DCV 1000 V, Selection Automatique 

de Gammes 

DCV -1 .E+3 1000 V, Selection Automatique 

de Gammes 

Explication : 

Le prefixe selectionne la fonction DCV, L'argument 
selectionne une gamme de tension determinee. Le 
format de l’argument est decrit dans ce chapitre au 
paragraphs Format de l'argument numerique. L'argu- 
ment peut etre n’importe quelle valeur. Toutefois, 
I’instrument arrondit l’argument a la gamme immediate- 
ment superieure. Par example, si l'argument est 1,5, 
I’instrument choisit la gamme 2V. 

Un argument manquant ou egal a 0 (ou moins) valide 
la Selection de Gammes Automatique (a partir de la 
gamme maximale). 

Si l’argument est superieur a la gamme maximale, 
I'instrument genere une erreur de commands (et une 
Demands de Service si la commands RQS a ete validee 
(RQS ON)), 

Gammes : 



Type : 

Reglage ou interrogation 

Syntaxe de reglage : 

DIGIT 3.5 
DIGIT 4.5 
DIG 3.5 
DIG 4.5 

Syntaxe d'interrogation ; 

DIGIT? 

DIG? 

Reponse a I’interrogation : 

DIGIT 3.5; 

DIGIT 4.5; 

Explication : 

Cette commands selectionne la vitesse de conversion. 
L’argument 3.5 valide la Vitesse de Conversion Rapide 
(FAST) (resolution d’affichage de 3,5 chiffres). Une 
mesure de tension dure environ 35 ms. Une mesure de 
resistance dure environ 1 30 ms, 

L’argument 4.5 valide la Vitesse de Conversion 
Normals (resolution d’affichage de 4,5 chiffres). Une 
mesure de tension dure environ 310 ms. Une mesure de 
resistance dure environ 620 ms. 



200 mV 
2 V 
20 V 
200 V 
1000 V 



ADD JUL 1986 



DCV 



DIGIT 



French 3-9 



Programmation - DM 5010 



DIODE 

(Test de diode) 

Type : 

Regiage 

Syntaxe de regiage ; 

DIODE 

DIO 

Explication : 

Cette commande selectionne la 
TEST. Elle n’accepte pas d’argument. 



DT 

(Declenchement de I’instrument) 



Type : 

Regiage ou interrogation 



Syntaxe de regiage : 

DT TRIG 
DTOFF 



fonction DIODE 



Syntaxe d’interrogation : 

DT? 



Reponse a I’interrogation : 

DTTRIG; 

DTOFF; 



Explication ; 

Cette commande valide ou inhibe ia fonction Dec- 
lenchement de i’instrument. Cette commande provoque 
une mesure a i’arrivee du message <GET> de I’inter- 
face IEEE 488. 

Si <GET> est regu aiors que ie processeur de 
messages est occupe (ou si ia commande DT n’a pas 
ete vaiidee), I’instrument genere une “erreur”, qui in- 
dique que Ie message <GET > est ignore. 



French 3-10 



DIODE 



DT 



ADD JUL 1986 



Programmation • DM 501 0 



ERR? 

(Erreur) 

Type : 

Interrogation 

Syntaxe d’interrogation : 

ERR? 

Reponse a I’ interrogation : 

ERRgpsp <nombre> 

Exempte : 

ERRgp ' 

Explication : 

L'interrogation ERROR est utilisee pour s’informer de 
i’etat de I’instrument. 

L'interrogation ERROR renvoie un code indiquant 
I'evenement a I'origine de la Demande de Service. Se 
reterer au paragraphe Indications d’erreurs et d’etats. 



FUNCT? 

(Fonction) 

Type : 

Interrogation 

Syntaxe d’interrogation : 

FUNCT? 

FUNC? 

Exemples de reponse a (’interrogation : 

DCV2.; 

ACV 20.; 

DIODE; 

ACDC 200.; 

OHMS-2.E+6; 

Explication ; 

Cette commande renvoie la fonction de mesure uti- 
iisee. L'argument specific la gamme. Si I’instrument est 
en mode Selection Automatique de Gammes, un argu- 
ment negatif est renvoye. 



ADD JUL 1986 



ERR 



FUNCT 



French 3-11 



Programmation - DM 501 0 



ID? 

(Identification) 

Type : 

Interrogation 

Syntaxe d’interrogation : 

ID? 

Reponse a I’interrogation : 

ID TEK/DM5010,V79.1 Fxx; 

Explication : 

L’interrogation ID? renvoie la reponse ci-dessus. 

TEK/DM5010 Identifie le Constructeur et le 
type de I’lnstrument. 

V79.1 Identifie la version des Codes et 

Formats Standard Tektronix a 
laquelle I’instrument est con- 
forme. 

Fxx Identifie la version logicielle de 

I’instrument. 



INIT 

(initiaiisation) 

Type : 

Commande d'utilisation 

Syntaxe : 

INIT 

Explication : 

Cette commande restaure les conditions de reglage 
de I’instrument a la mise en service. Ces reglages sont 
indiques au tableau 3.3. 



French 3-12 



ID 



INIT 



ADD JUL 1986 



Programmation - DM 5010 



LFR 

(Reponse en Basse Frequence) 

Type : 

Reglageou interrogation 

Syntaxe de regtage : 

LFR ON 
LFR OFF 

Syntaxe d’interrogation : 

LFR? 

Reponse a [’interrogation : 

LFR ON; 

LFR OFF; 

Explication : 

Cette commande vaiide ou inhibe ia tonction LOW 
FREQ RESPONSE (utilisee avec les fonctions ACV et 
ACV+DCV). Lorsque cette fonction est validee, ['instru- 
ment calcule la moyenne de quatre mesures. 

Si la fonction CALC AVE est egalement validee, le 
nombre de mesures defini par la commande AVE <nom- 
bre> est multiplie par 4. 



LIMITS 

(Limites) 

Type : 

Reglage ou interrogation 

Syntaxe de reglage : 

LIMITS <nombre>,<nombre> 

LIM <nombre>,<nombre> 

Exempies ; 

LIMITS 3.2, -2 
LIMITS -1, -6.5 
LIM 6,1 

Syntaxe d’interrogation : 

LIMITS? 

LIM? 

Reponse a [’interrogation : 

LIMITS <nombre>,<nombre>; 

Explication : 

L’argument de cette commande definit la valeur des li- 
mites utilisees par la fonction COMPARE et la Demande 
de Service du moniteur. Le premier argument definit la 
valeur de la iimite qui correspond au bouton LIMITS du 
haut (face avant), Le deuxieme argument definit la 
valeur de la Iimite qui correspond au bouton LIMITS du 
bas. 



ADD JUL 1986 



LFR 



LIMITS 



French 3-13 



Programmation - DM 501 0 



MODE 



Type : 

Reglageou interrogation 

Syntaxe de reglage : 

MODE RUN 

MODE TRIG 

MOD RUN 

MOD TRIG 

Syntaxe d’interrogation ; 

MODE? 

MOD? 

Reponse a I’interrogation : 

MODE RUN; 

MODE TRIG; 

Explication : 

Cette commande selectionne le mode de de- 
clenchement. L’argument RUN definit le mode De- 
clenchement Relaxe, 

L’argument TRIG definit le mode Declenche. Dans ce 
mode, un declenchement se produit a la reception de : 

- une commande SEND 

- un message <GET> (Declenchement simultane 
de tous les instruments) de I’interface (seulement 
si le Declenchement de I'instrument (DT) a ete 
valide) 

- Mon adresse en tant qu’Emetteur (MTA), la sortie 
n’etant pas specifiee (pas de commande 
d’interrogation) 

- un declenchement par I'interface arriere (EXTRIG) 
(necessite I'lnstallation d’un cavalier interne - voir 
chapitre Maintenance). Pour I’obtention d’un de- 
clenchement unique, cette ligne doit etre main- 
tenue a I'etat bas entre 0,5 et 10 /xsec. Son 
maintien prolongs a I'etat bas entraine le de- 
clenchement de mesures multiples. 

Si le signal mesure est excessif ou insuffisant, en 
modes Declenche (MOD TRIG) et Selection Automatique 
de Gammes, I’instrument change de gamme et effectue 
une autre mesure. 



MONITOR 

(Moniteur) 

Type : 

Reglage ou interrogation 

Syntaxe de reglage : 

MONITOR ON 
MONITOR OFF 
MON ON 
MON OFF 

Syntaxe d’interrogation : 

MONITOR? 

MON? 

Reponse a I’interrogation : 

MONITOR ON; 

MONITOR OFF; 

Explication : 

Cette commande valide ou inhibe la Demands de Ser- 
vice du moniteur. Si celle-ci est validee, I’instrument 
sauvegarde la premiere mesure hors-limites (cf. com- 
mande LIMITS) et genere une Demands de Service 
(SRQ). Ceci est valable pour la premiere mesure hors- 
limites mais non pour les autres jusqu’a ce que la 
Demands de Service ait ete executee, et que la mesure 
ait ete renvoyee au controleur en reponse a la com- 
mande DATA. 

Si I’instrument effectue un depassement de gamme 
alors que ia commande MON ON a ete generee, il ren- 
voie une erreur "hors-gamme”, meme si OVER n’est pas 
valide (OVER OFF). 



French 3-14 



MODE 



MONITOR 



ADD JUL 1986 



Programmation • DM 501 0 



NULL 

(Annulation) 



Type : 

Reglageou interrogation 

Syntaxe de reglage : 

NULL <nombreTj 

Examples : 

NULL. 2 
NULLO 

Syntaxe d’interrogation : 

NULL ? 

Reponse a I’interrogation : 

NULL < nombre>: 

Explication : 

Cette commande valide la fonction NULL. L’argument 
(en volts ou en ohms) specifie la valeur du decatage. 
Cette valeur peut etre toute valeur jusqu’a 100 % de la 
gamme. 

La fonction NULL est inhibee a la selection d'une 
autre fonction de mesure ou avec I’argument 0. (La 
selection d'une autre fonction met egalement I’argument 
aO). 



AVERTISSEMENT 

Lorsque la fonction NULL est validee, la mesure 
peut ne pas indiquer la valeur de la tension ap~ 
pliquee aux connecteurs d’entree. 



OHMS 

(Mesure d’une resistance) 



Type : 

Reglage 



Syntaxe de reglage ; 

OHMS <nombre> 
OHMS 



Exemples ; Gamme selectionnee : 



OHMS 

OHMS 100 
OHMS-2E+7 

OHMS 1E+4 



20 Mil, selection automatique de 

gammes 

200 il 

20 Mil, selection automatique de 

gammes 

20Kil 



Explication : 

Le prefixe selectionne la fonction OHMS. L’argument 
selectionne la gamme. Se referer au paragraphe Format 
des arguments numeriques de ce chapitre. L’argument 
peut etre n’importe quelle valeur, Toutefois, I’instrument 
arrondit I'argument a la gamme immediatement su- 
perieure. 



Par example, si ('argument est 1 00, (’instrument selec- 
tionne la gamme 200 il . 



Un argument manquant, ou egal a 0 (ou moins) valide 
la Selection Automatique de Gammes (a partir de la 
gamme maximale). 



Si i'argument est superieur a la gamme maximale, 
('instrument genere une “erreur" de commande (et 
valide la ligne SRQ si la commande RQS est validee 
(RQSON)). 



Gammes : 

200 il 
2Kil 
20Kil 
200 K a 
2 Mil 
20 Mil 



ADD JUL 1986 



NULL 



OHMS 



French 3-15 



Programmation - DM 501 0 



OPC 

Operation Complete) 



Type : 

Reglageou interrogation 

Syntaxe de regtage : 

OPC ON 
OPC OFF 

Syntaxe d’interrogation : 

OPC? 

Reponse a I’interrogation : 

OPC ON; 

OPC OFF; 

Explication : 

Cette commande valide ou inhibe la Demande de Ser- 
vice Operation Complete. L'instrument valide la ligne 
SRQ lorsqu une nouvelte mesure est disponible si OPC 
et RQS sont validees (RQS ON)). 



OVER 

(Hors-gamme) 



Type : 

Reglage ou interrogation 

Syntaxe de reglage : 

OVER ON 
OVER OFF 

Syntaxe d’interrogation : 

OVER? 

Reponse a I’interrogation : 

OVER ON; 

OVER OFF; 

Explication ; 

Cette commande valide ou inhibe la Demande de Ser- 
vice lors d'un depassement de gamme. ^instrument 
valide la ligne SRQ lors d’une mesure hors-gamme (si 
OVER et RQS sont validees (RQS ON)). 

Si ia Demande de Service est inhibee, l’instrument 
renvoie °1.E-i-99 lorsqu’il est Emetteur, pour indiquer un 
depassement de gamme (et ne valide pas ia ligne SRQ). 



French 3-16 



OPC 



OVER 



ADD JUL 1986 



RATIO 

(Rapport de mesures) 

Type: 

Reglageou interrogation 

Syntaxe de reglage : 

RATIO <nombre>, <nombre> 

Examples : 

RATIO 100,15 
RATIO 10,2 

Syntaxe d’interrogation : 

RATIO? 

Reponse a I’interrogation : 

RATIO <nombre>,<nombre>: 

Explication ; 

Les arguments de cette commande definissent la 
valeur du decalage et le facteur d’echelle utilise dans le 
calcul de X-B/A. Se referer a la commande CALC 
RATIO. Le premier argument definit la valeur du facteur 
d’echelle (bouton A en face avant). Le second definit la 
valeur du decalage (bouton B). Les arguments peuvent 
prendre n’importe quelle valeur, a (’exception de 0 pour 
le facteur d’echelle. 



Programmatlon - DM 501 0 

RDY? 

(Pret) 

Type : 

Interrogation 

Syntaxe d'interrogation : 

RDY? 

Reponse a [’interrogation : 

^^YgpgpO, 
gpl , 

Explication : 

Cette commande renvoie RDY 0 si une mesure est en 
cours ou si I’instrument attend un dectenchement ; RDY 
1 indique qu’une donnee est disponible. 



ADD JUL1986 



RATIO 



RDY? 



French 3-17 




Programmatlon - DM 501 0 



RQS 

(Demande de Servics) 

Type : 

Reglage ou interrogation 

Syntaxe de reglage : 

ROSON 
RQS OFF 

Syntaxe d’interrogation : 

RQS? 

Reponse a I’interrogation : 

RQS ON; 

RQS OFF; 

Explication : 

Cette commande valide la generation de Demandes 
de Service. L’argument OFF inhibe toutes les Demandes 
de Service. Se referer au paragraphe Indications d’etats 
et d'erreurs. 



SEND 

(Envoi) 

Type: 

Commande de sortie 

Syntaxe : 

SEND 

SEN 

Reponse : 

<nombre>; (pas de prefixe) 

Exemple : 

±1.E+99; 

±3.2E+3; (depassementde gamme) 

Explication : 

Cette commande valide la sortie de la mesure la plus 
recente. Si aucune mesure n’est disponibie, I’instrument 
declenche une mesure puis affiche celle-ci. 

Si la fonction COMPARE est validee (CALC CMPR), 
I’instrument affiche I'un des nombres suivants, qui indi- 
quent la relation entre la valeur entree et la limite definie 
par la commande LIMITS. 

3.; si I’entree est superieure aux limites. 

2.; si I'entree est comprise entre les limites ou egate 
a I’une des deux limites. 

1 si I’entree est inferieure aux limites. 

+ 1 .E+99; ou -1 .E+99; dans le cas d’un depassement 
de gamme 



French 3-18 



RQS 



SEND 



ADD JUL 1986 



SET? 

(Reglages?) 

Type : 

Interrogation 

Syntaxe d’interrogation : 

SET? 

Exemple de reponse a [’interrogation (reglages a la 
mise en service) : 

DCV -1.E+3;AVE 2, -RATIO 1.O.; DBR 1.;LIMITS 
0.,0.;CALC OFF;NULL 0.;DIGIT 4.5;LFR OFF;MODE 
RUNiSOURCE FRONT;DT 0FF;M0N1T0R OFF;OPC 
OFF;OVER OFF;USER OFF;RQS ON; 

Explication : 

Cette commande renvoie les reglages actuels de 
toutes ies commandes. 

La reponse la plus longue comprend 225 caracteres. 



Programmation - DM 501 0 
SOURCE 



Type ; 

Regtage ou interrogation 

Syntaxe de reglage : 

SOURCE FRONT 
SOURCE REAR 
SOUR FRONT 
SOUR REAR 

Syntaxe d’interrogation : 

SOURCE? 

SOUR? 

Reponse a I’interrogation : 

SOURCE FRONT; 

SOURCE REAR; 

Explication : 

SOURCE FRONT selectionne les entrees de la face 
avant pour la mesure. SOURCE REAR selectionne les 
entrees de I’interface arriere. 

ATTENTION 

Si une tension superieure a 500 V Crete est ap- 
pliquee sur les connecteurs de la face avant, ne 
pas valider les entrees de Tinier face arriere, pour 
eviter tout risque de deterioration ou de fonction- 
nement errone de Tinstrument. 



ADD JUL 1986 



SET? 



SOURCE 



French 3-19 




Programmatlon - DM 501 0 
TEST 

Type ; 

Commande de sortie 

Syntaxe : 

TEST 

Reponse : 

TESTO; 

TEST 351; 

Explication : 

Renvoie un nombre indiquant I’etat du checksum {test 
d'erreur) d'etalonnage : 0 si celui-ci est correct ; 1 si 
celui-ci est errone. 



USER 

(Utilisateur) 

Type : 

Reglage ou interrogation 

Syntaxe de reglage : 

USER ON 
USER OFF 

Syntaxe d’interrogation : 

USER? 

Reponse a t'interrogation : 

USER ON; 

USER OFF; 

Explication : 

Cette commande valide ou inhibe ia Demande de Ser- 
vice associee au bouton INST ID. Si celle-ci est validee, 
I’instrument valide la ligne SRQ lorsque le bouton INST 
ID en face avant est enfonce. 



French 3*20 



TEST 



USER 



ADD JUL 1986 



Programmation - DM 501 0 



MESSAGES ET 
PROTOCOLE DE 
COMMUNICATION 

Delimiteur de commande 

Un message consiste en une commande ou une serie 
de commandes, suivies d'une fin de message. Dans le 
cas de messages constitues de plusieurs commandes, 
celles-ci doivent etre separees par des points virgules. 
Un point vtrguie n’est pas obligatoire en fin de message. 
Chacune des lignes ci-dessous est un message : 

INIT 

TEST;[NiT;RQS ON;USER OFF;ID?;SET? 

TEST; 



Fin de message 

Les messages peuvent etre termines par EOl ou le 
caractere ASCII de saut de ligne (LF). Certains contro- 
leurs valident la ligne EOl concurremment avec la trans- 
mission du dernier octet de donnees : d’autres n’utili- 
sent que le caractere LF comme fin de message. L’un ou 
i’autre peut etre seiectionne a I’interieur du DM 501 0. Si 
EOl ONLY est seiectionne, I’instrument interprete 
comme fin du message entre tout octet de donnees 
requ. De meme, il valide la ligne EOl concurremment 
avec ia transmission du dernier octet du message sorti. 
Si LF/EOI est seiectionne, I’instrument interprete le 
caractere LF comme fin du message entre si la ligne EOl 
est inhibee (ou tout octet de donnees recu lorsque la 
ligne EOl est validee). II transmet un retour chariot (CR) 
suivi d'un saut de ligne (LF avec la ligne EOl validee) 
pour mettre fin aux messages en sortie. Lire le chapitre 
Maintenance avant la selection manuelle interne (per- 
sonnel quaiifie) de la fin de message. Les instruments 
de la serie TM 5000 sont livres avec la fin de message 
EOl ONLY selectionnee. 



Formattage d’un message 

Pour etre comprises, les commandes transmises aux 
instruments de la serie 

TM 5000 doivent avoir le format (ou syntaxe) approprie. 
Toutefois, ce format est tres souple et peut subir de 
nombreuses variations. Une description de ce format et 
des variations admises est donnee ci-apres. 

Toutes les commandes doivent etre en code ASCII. 
Toutefois, les minuscules et majuscules sont acceptees. 
Toute donnee sortie doit etre en majuscules. 

Comme explique precedemment, une commande 
consiste en un prefixe suivi, si necessaire, par des argu- 
ments Une commande suivie d’arguments doit posseder 
un delimiteur, le caractere SP (SPACE = espace), entre 
le prefixe et ['argument. 

RQSspON 

Si ies caracteres formattes speciaux, SP, CR, et LF 
(LF ne pouvant etre utilise si le mode LF/EOI est seiec- 
tionne) sont ajoutes entre le delimiteur de prefixe et 



[’argument, ils sont ignores par le DM 501 0. (SP) (CR) et 
(LF) sont indlques en indices dans les examples qui sol- 
vent : 

Exemple 1 : RQSgpON; 

Exemple 2 : RQSgpgpON; 

Exemple 3 : RQSgp^jpLF 



Dans la liste des commandes, certains prefixes et 
arguments sont presentes sous une forme complete et 
sous une forme abregee. L'instrument accepts tout 
prefixe ou argument contenant au moins les caracteres 
de la forme abregee. Les caracteres ajoutes a celle-ci 
doivent etre ceux de la forme complete. Pour documen- 
ter ses programmes, I'utilisateur peut ajouter des 
caracteres alphanumeriques a un mot complet. Des 
caracteres alphanumeriques peuvent egalement etre 
ajoutes a une interrogation, a condition d’etre places 
avant le point d'interrogation. 

USER? 

USERE? 

USEREQ? 

USEREQUEST? 



De nombreux arguments sont separes par une virgule 
; toutefois, l’instrument accepters comme delimiteur un 
(ou des) espace(s). 

2,3 



NOTE 

Dans le dernier exemple, Vespace est traJte 
comme un caractere formatte parce qu'il suit la 
virgule (delimiteur de I’argument). 



Format des arguments numeriques 

L’instrument accepts les nombres suivants comme 
arguments numeriques : 

- Les nombres entiers avec ou sans signs (y 
compris -f-0 et -0). Les nombres entiers sans signs 
sont interpretes comme des nombres positits. 
Exemples : -M , 2, -1 , -10 

- Les nombres decimaux avec ou sans signs. Les 
nombres decimaux sans signes sont interpretes 
comme des nombres positifs. Examples : -3.2, 
+5.0, 1 .2 



ADD JUL 1986 



French 3-21 




Programmation - DM 501 0 



- Les nombres a virgule flottante exprimes en nota- 
tion scientifique. Examples : +1.0E-2, 1.0E-2, 
0.01 E+O 

L’argument le plus long autorise est ±3.4028E+38. 



Protocole des messages 

Tout message repu par le DM 501 0 est stocke dans la 
Memoire Tampon d’Entree, traTte, puis execute. Le 
traltement d’un message consiste en le decodage des 
commandes, la detection des delimiteurs, et la verifica- 
tion de la syntaxe. En ce qui concerne les commandes 
de reglage. I’instrument consigne les modifications in- 
diquees dans ia memoire Reglages en Attente. Si une 
erreur est detectee en cours de traitement, I’instrument 
fait passer la ligne SRQ a I’etat bas, ignore le reste du 
message, et reinitialise la memoire Reglages en Attente. 
Ceci evlte toute condition de fonctionnement incorrecte 
pouvant resulter de I’execution partielle des commandes 
de reglage contenues dans un message. 

L’execution d'un message consiste en I'execution des 
actions specifiees par la (ou les) commandets) qu’il 
contient. S'agissant des Commandes de Reglage, ceci 
signifie la remise a jour des reglages de i’instrument, et 
leur stockage dans la memoire tampon Reglages Ac- 
tuals. Les commandes de reglage sont executees par 
groupes - une serie de commandes de reglage est 
trattee et consignee dans la memoire Reglages en At- 
tente avant leur execution. Ceci permet a I’utilisateur de 
specifier de nouveaux reglages sans avoir a se preocup- 
per de la validite d’une sequence particuliere. Leur exe- 
cution survient lors du traltement de la fin du message 
par I’instrument, d'une commande d'interrogation en 
sortie, ou d'une commande d’utilisation contenue dans 
un message. 

Lors du traTtement d'une commande d’interrogation 
en sortie (contenue dans un message), I’instrument 
execute toutes les commandes de reglage qui precedent 
(remise a jour de ses conditions de fonctionnement). II 
execute alors la commande d’interrogation en extrayant 
ia donnee appropriee et en la placant dans la Memoire 
Tampon de Sortie. Puis il traTte et execute le reste du 
message. Lorsque i'instrument est designs comme 
Emetteur, cette donnee est transmise au controleur. 

Lors du traltement d'une commande d’utilisation (con- 
tenue dans un message), I’instrument execute d'abord 
toutes les commandes de reglages precedentes avant 
de I’executer. 



Messages multiples 

La Memoire Tampon d’Entree a une capacite limitee 
et un message unique peut etre assez long pour la rem- 
plir. Dans ce cas, une partie du message est traitee 
avant que I’appareil accepte une entree supplementaire. 
Durant un traltement de commande, ii rejette toute autre 
donnee (en validant la ligne NRFD) jusqu'a ce que de 
I’espace soit disponibie en memoire tampon. 



L’instrument pourra alors accepter un second message 
avant que le premier ne soit traTte compietement, mais 
non un troisieme (signal NRFD). 



Apres I’execution d'une commande d’interrogation de 
sortie, I'instrument garde la reponse dans sa Memoire 
Tampon de Sortie jusqu’a ce qu’il soit designe comme 
Emetteur par le controleur. S’il repoit un nouveau 
message avant la lecture de toute ia sortie du precedent, 
il annule le contenu de la Memoire Tampon de Sortie 
avant d’executer ce nouveau message. Ceci evite au 
controleur de recevoir des donnees indesirees issues 
d’anciens messages. 



Autre situation pouvant annuler une sortie : I’execu- 
tion d’un long message peut remplir compietement les 
memoires tampons d’entree et de sortie. Dans ce cas. 
I'instrument ne peut finir i’execution du message avant 
que le controleur ait lu les donnees transmises. Mais le 
controleur ne peut lire ces donnees avant d’avoir fini de 
transmettre son message. La Memoire Tampon 
d’Entree, etant pleine, rejette le reste du message du 
controleur (signal NRFD), Cette situation suspend 
I’activite du systeme, le controleur et I'instrument s'at- 
tendant reciproquement. Le DM 5010 genere alors un 
message d’erreur, fait passer la ligne SRQ a I’etat bas, 
et annule le contenu de la Memoire Tampon de Sortie. 
Cette action permet au controleur de transmettre le 
reste de son message, puis I’informe de I’execution du 
message et de la disparition des autres donnees en 
sortie. 



Un instrument de la serie TM 5000 peut etre designe 
comme Emetteur sans avoir repu de message lui 
specifiant ce qu’il doit transmettre. Dans ce cas, les 
instruments d'acquisition (compteurs et muttimetres 
numeriques) renvoient une mesure (si elle est prete). 
Sinon, ils renvoient un message unique sur un octet 
dont tous les bits sont egaux a 1 (avec une Fin de 
Message) ; les autres instruments de la serie TM 5000 
ne renverront que ce message. 



Reponse de rinstrument aux messages de Tinter- 
face IEEE-488 

Les messages de I'interface et leurs effets sur les 
fonctions de I'interface de I'instrument sont definis 
dans les normes IEEE 488-1 978. Ce paragraphe, qui en 
decrit les effets sur le fonctionnement de I’appareii, uti- 
lise des abreviations de ces normes. 



UNL - Unlisten - N'est pas Recepteur (63 avec la ligne 
ATN) 

UNT - Untalk - N’est pas Emetteur (95 avec la ligne 
ATN) 



La commande UNL fait passer le Recepteur a I'etat inactif 
(non adresse) ; I’instrument n'accepte pas de commande 
duGPlB. 



French 3-22 



ADD JUL 1986 




Programmation - DM 5010 



La commande UNT fait passer I’Emetteur a I’etat 
inactif ; I'instrument ne peut transmettre de donnees sur 
leGPIB. 

Le voyant ADDRESSED est eteint lorsque ces deux 
fonctions sent a I'etat inactif. il est altume si I’instrument 
est adresse soil en tant qu’Emetteur, soit en tant que 
Recepteur. 

IFC - Interface Clear (Initialisation de [’Interface) 
(brocheQduGPIB) 

Ce message a ligne unique a le meme effet que les 
messages UNT et UNL. Le voyant ADDRESSED (face 
avant) est eteint. 

DCL ' Device Clear (Initialisation de I’instrument) (20 
avec la ligne ATN) 

Ce message reinitialise ies communications entre 
I'instrument et le Controleur. En reponse a ce message, 
I'instrument annule tout message en entree et en sortie 
et toute commande de reglage dans la memoire tampon 
Reglages en Attente. II en est de meme pour toute erreur 
ou tout evenement non encore transmis, a I’exception 
de la Mise en Service. Si la ligne SRQ est a I'etat bas 
(validee) pour une autre raison que la mise en service, 
elle passe a I'etat haut a la reception du message DCL. 

SDC > Selected Device Clear (Initialisation Particuliere 
de I’instrument) (4 avec la ligne ATN) 

Ce message execute la meme fonction que DCL ; tou- 
tefois, seuls les instruments adresses comme Recep- 
teurs repondent a ce message. 

GET - Group Execute Trigger (Declenchement Simul- 
tane de Tous les Instruments par ie Controleur) (8 
avec la ligne ATN) 

L’instrument n’execute cette commande que s’il est 
adresse comme Recepteur et si la fonction Device Trig- 
ger (Declenchement de I’instrument par le Controleur) a 
ete validee par la commande Device Trigger (DT). Le 
message <GET > est ignore et une Demande de Service 
est generee si la fonction DT est inhibee (DT OFF), si 
I’instrument est en mode Local, ou si un message est en 
cours de traltement a la reception de <GET8F, 

SPE - Serial Poll Enable (validation de I’appel seiectif) 
(24 avec la ligne ATN) 

SPD - Serial Poll Disable (inhibition de i’appel seiectif) 
(25 avec la ligne ATN) 

Le message SPE valide la generation par I'instrument 
de mots d'etat (en reponse a un appel seiectif en serie) 
lorsqu'il est adresse comme Emetteur (Talk), Le 
message SPD ramene I'instrument en mode d’utilisation 
normal (transmission de donnees issues de la Memoire 
Tampon de Sortie). 

MLA - My Listen Address (Mon adresse en tant que 
Recepteur) 

MTA - My Talk Address (Mon adresse en tant qu’Emet- 
teur) 

Les adresses primaires “Talk" et “Listen” sont deter- 
minees par I'adresse des instruments sur le GPIB 
(selectionnee a I’interieur), L’adresse GPIB actueile est 
affichee en face avant lorsque le bouton ID est enfonce. 



Lorsque I’instrument est designs comme Emetteur ou 
comme Recepteur, le voyant ADDRESSED en face avant 
s’allume. 

LLO - Local Lockout (ne fonctionne plus en mode 
Local) (1 7 avec la ligne ATN) 

En reponse a LLO, I’intrument passe a I’etat “bioque” - 
de LOGS a LWLS ou de REMS a RWLS. 

REN - Remote Enable (Commande a Distance) 

Si la ligne REN est a I’etat bas (validee), I'instrument 
passe en mode Controls a distance (de LOCS a REMS 
ou de LWLS a RWLS) une fois recue son adresse Recep- 
teur. Si la iigne REN est a I’etat haut (inhibee). I'instru- 
ment passe en mode Local (LOCS). et y reste tant que la 
ligne REN est a I’etat haut. 

Cette transition REN peut se produire apres le debut 
du traltement d'un message. Dans ce cas, [’execution de 
celui-ci n’est pas aftectee par une transition. 

GTL - Go To Local (Controle Local) (1 avec la ligne 
ATN) 

Seuls les instruments adresses comme Recepteurs 
repondent a cette commande en passant en mode 
Local. Les transitions Controle a Distance-Contrdle 
Local provoquees par cette commande n'affectent pas 
I’execution du message en cours de traltement (quand 
GTL est recu). 

Remote (Controle a Distance) - Local Operation (Con- 
trole Local) 

Les lignes qui precedent decrivent les transitions 
d'un etat a I'autre provoquees par ies messages GTL et 
REN. La plupart des commandes en face avant provo- 
quent une transition entre REMS et LOCS en validant le 
message “Retour en mode Local" (rtl). Cette transition 
peut se produire durant I'execution d’un message ; 
mais, par opposition aux transitions GTL et REN. elle en 
affecte I'execution. Dans ce cas, I’instrument genere 
une erreur s'il subsiste des commandes de reglage ou 
d’utilisation non executees, Les commandes en face 
avant n'affectant que I’affichage (telle INST ID) n'ont pas 
d’incidence sur les etats “A distance-Local" - seules les 
commandes agissant sur les reglages (a I’exception des 
commandes de declenchement) generent le message 
rtl. Celui-ci est valide par t’entree de plusieurs com- 
mandes au clavier, et est inhibe apres le traltement de 
ces commandes. Le message rtl prevenant toute transi- 
tion dans I'etat REMS, I'instrument inhibe le message rtl 
si une sequence de commandes n'a pas ete executee 
dans un delai raisonnable (environ 5 a 1 0 secondes). 

L’instrument conserve une copie de ses reglages 
dans la memoire tampon Reglages Actuels ; ceux-ci 
sont remis a jour par tous nouveaux reglages issus de la 
face avant ou du Controleur. De plus, les fonctions de la 
face avant sont remises a jour pour retleter tout nouveau 
reglage. Ces reglages ne sont pas affectes par une tran- 
sition de I’un des quatre etats (“A distance - Local”) 
precedemment definis a I’autre, L’indicateur REMOTE 
s'altume lorsque I’instrument est dans I’etat REMS ou 
RWLS. 



ADD JUL 1986 



French 3-23 



Programmatlon - DM 501 0 



Local State (LOGS) > (Etat Local) 

Les reglages de I’instrument sont controles en face 
avant par I’operateur. Seules les commandes du bus 
n’agissant pas sur les reglages sont executees (interro- 
gations) ; toutes les autres commandes du bus (de 
reglage et d’utilisation) generent une erreur car leurs 
fonctions sont controlees en face avant. 

Local With Lockout State (LWLS) - (Etat Local avec 
biocage de I’Etat Local) 

L’instrument opere de la meme fapon qu’en mode 
LOGS, excepte que le message rtl n’inhibe pas le 
passage dans I’etat RWLS. 

Remote State (REMS) - (Etat Commande a Distance) 

L’instrument execute toutes ses commandes. Tout 
changement d'une commande en face avant (sauf d'une 
commande de declenchement) genere un message rtl et 
provoque le retour en mode Local (LOGS). 



Remote With Lockout State (RWLS) - (Controle a Dis- 
tance avec blocage de TEtat Local) 

Identique a REMS excepte que le message rtl est 
ignore. 



ERREUR Indique que I’instrument a recu 

D’EXECUTION une commande qu'il ne peut 

executer. Geci peut provenir 
d’arguments errones, ou de 
reglages contradictoires. 



ERREUR INTERNE Indique que I’instrument a 
detecte une condition (ma- 
terielie ou logicieile) empe- 
chant une operation. 



EVENEMENTS DU Evenements commons a tous 
SYSTEME les elements d’un systeme 

(Mise en Service, Requete Utili- 
sateur, etc..). 



AV E R T I S S E M E N T Indique que I’instrument a 
INTERNE detecte un problems, II rests 

operationnel, mais le problems 
doit etre resolu (ex. : attenua- 
tion non etalonnee). 



ETAT DE 

L’INSTRUMENT 



Evenement relatif a un Instru- 
ment particulier. 



INDICATIONS D’ETATS 
ET D’ERREURS 



En utiiisant la fonction Demands de Service (definie 
dans les normes IEEE-488), I’instrument peut adresser 
une demands de service au controleur. Gette demande 
de service permet egaiement de signaler qu’un evene- 
ment (changement d’etat ou erreur) est survenu. En 
reponse a une demande de service, le controleur ef- 
fectue un Appel Selectif en Serie. Ghaque instrument 
renvoie alors un mot d'etat (STB) indiquant s’il est, ou 
non, a I'origine de la demande de service, Ge mot d’etat 
peut egaiement contenir une information Isuccincte) 
sur la tache requise. Le format de cette information est 
indique tableau 3.2. 

Lorsque ie bit de donnee 8 est present, le STB 
contient une information sur I’etat de I'instrument qui 
est tournie par les bits 1 a 4. Le bit 4 indique 
si ie DM 501 0 attend un declenchement. Le bit 3 indioue 
qu'une mesure est disponible. 

Parce que le STB convoie une information iimitee 
concernant un evenement, les evenements sont divises 
en deux types : le Mot d’Etat definit le type. Les types 
d’evenements se definissent de la fapon suivante : 

ERREUR DE Indique que I’instrument a repu 

COMMANDE une commande qu’il ne peut 

comprendre. 




Tableau 3.2. Definition des octets du mot d’etat 



Par une Demande de Service, un instrument a la 
possibilite de fournir des informations supplementaires 
sur de nombreux evenements, particulierement les er- 
reurs signalees dans le Mot d'Etat. Apres avoir deter- 
mine d’ou est issue la Demande de Service (en exami- 
nant le STB), le controleur peut requerir ces informa- 
tions en transmettant I'interrogation ERR?. En reponse. 
I’instrument renvoie un code definissant I’evenement (v. 
tableau 3.1 ). 



French 3-24 



ADD JUL 1986 




Programmation > DM 501 0 



Tableau 3.1 . 

INDICATIONS O’ERREURS ET D’ETATS 



Evenements anormaux 


Reponse a 
I’interro- 
gation 


Appel 
selectif" 
en serie 
(decimal) 


Erreurs de commande 






Prefixe errone 


101 


97 


Delimiteur de prefixe errone 


102 


97 


Argument errone 


103 


97 


Delimiteur d'argument errone 


104 


97 


Argument non numerique 


105 


97 


(nombre requis) 






Argument manquant 


106 


97 


Delimiteur de I’unite du 




j 


message invalide 


107 


i 97 

1 


Erreurs d’execution 




1 

1 


Commande non executable en 




i 


mode Local 


201 


98 


Reglages perdus du fait du 




i 


retour en mode Local (rt!) 


202 


1 98 


Memoires d'E/S pleines. 






donnees de sortie 






“dechargees” 


203 


1 98 


Argument hors-gamme 


205 


98 


Declenchement de groupe 






ignore (GET) 


206 


98 


L’instrument n'est pas en 






position etalonnee 


231 


98 


Au dela des limites 






d'etalonnage ou de la capa- 






cite de la fonction NULL 


232 


98 


Erreurs internes 






Erreur d’interruption 


301 


99 


Erreur du systeme 


302 


99 


Erreur dans le bloc mathe- 






matique 


303 


99 


Temps de conversion errone 


31 1 


99 


Temps de reponse en face 






avant errone 


317 


99 


Constants d’etalonnage (en 






ohms) erronee 


318 


99 


Checksum d’etalonnage errone 


351 


99 


Evenements normaux 






Evenements du systeme 






Mise en service 


401 


65 


Operation Complete 


402 


66 


Requete de I’utilisateur 


403 


67 


Depassement de gamme 


601 


102 


Etat de (’instrument^ : 






Mesure disponible 


0 


132 


Attend un declenchement 


0 


136 


Mesure disponible et 






attend un declenchement 


0 


140 


< limites 


701 


193 


> limites 


703 


195 


Ni erreur ni evenement 


0 


128 



*Si I'instrument est occupe, il renvoie le nombre indique 
auquel il ajoute 1 6. 

^La commande POLL du controleur de la Serie 4050 renvoie 
0 en reponse aux Appeis Selectifs en Serie entre 1 26 et 1 92 



Tableau 3.2 
CODES D’ERREUR 
VISUALISES EN FACE AVANT 



Erreurs d’execution : 

205 Argument hors-gamme 

231 L’instrument n’est pas en position 
etalonnee 

232 Au dela des limites d’etalonnage 


Erreurs internes : 


303 


Erreur dans le bloc mathematique 


311 


Temps de conversion errone 


317 


Temps de reponse en face avant errone 


318 


Constante d’etalonnage (en ohms) 
erronee 


340 


RAM erronee 


341 


RAM erronee 


351 


Checksum d’etalonnage errone 


372 


ROM COOO mal positionnee 


373 


ROM DOOO mal positionnee 


374 


ROM EOOO mal positionnee 


392 


Checksum de la ROM COOO errone 


393 


Checksum de la ROM DOOO errone 


394 


Checksum de la ROM EOOO errone 


395 


Checksum de la ROM FOOO errone 


521 


Le commutateur d’adresse GPIB (Analyse 
de signatures) est valide 



Dans le cas de plusieurs evenements, I’instrument 
maintient la ligne SRQ a I’etat bas jusqu’a ce que tous 
ies evenements aient ete signales au controleur. Une 
fois que celui-ci en a pris connaissance (par un Appel 
Selectif en Serie), chaque evenement est annule auto- 
matiquement. Le message de I’interface Device Clear 
(DCL) peut etre utilise pour annuler tous Ies evene- 
ments, sauf la Mise en Service. 

Certaines commandes valident la transmission 
d’evenements individuals au Controleur et inhibent les 
Demandes de Service. Par exemple, la commande User 
Request (USER) permet a i'utilisateur de communiquer 
I'evenement “Requete de I’utilisateur” a partir de la face 
avant (bouton INST ID enfonce). La commande RQS 
controle I'utilisation de demandes de service pourtrans- 
mettre des evenements au Controleur. 

RQS OFF inhibe toutes les demandes de service (sauf 
la Mise en Service). Dans ce mode, I’interrogation ERR? 
permet au Controleur de s’intormer des evenements 
sans executer un Appel Selectif en Serie. II peut emettre 
cette interrogation a tout instant ; I'instrument lui trans- 
met aiors tout evenement en attente d'etre communique. 
Le Controleur peut annuler tous les evenements, soit en 
transmettant I’interrogation ERR? jusqu'a ce que le 
code zero (0) soit renvoye. soit par I’intermediaire du 
message DCL de I’interface (Mise en Service exceptee). 

En mode RQS OFF, le Controleur peut executer un 
Appel Selectif en Serie, mais le mot d'etat obtenu ne 
contient que I'indication d’Etat propre a I’appareil, En 
mode RQS ON, le STB (mot d’etat) contient le type de 
I’evenement. Une interrogation “Erreur” ulterieure ren- 
voie une information supplementaire sur cet evenement. 

; ies reponses indiquees peuvent etre obtenues a I’aide des 
instructions WBYTE et RBYTE. 



ADD JUL 1986 



French 3-25 




Programmation - DM 501 0 



TRANSMISSION DE MESSAGES REGLAGES EFFECTUES A LA 
DE CONTROLE DE L’INTERFACE MISE EN SERVICE 



Les commandes qui suivent sont utiMsees par les 
controleurs de la serie 4050 Tektronix et utilisabies par 
les autres controleurs. 

Les commandes ASCII sont transmises au DM 501 0 a 
I’aide des instructions PRINT. La reception par le 
Controleur des reponses ASCII s'effectue par I’interme- 
diaire des instructions INPUT. 

PRINT 16:“SET?” 

INPUT 16:A$ 

16 etant I’adresse GPIB du DM 5010 (selectionnee en 
usine). 



A la mise en service, le DM 5010 execute un pro- 
gramme d'auto-test permettant de verifier le bon fonc- 
tionnement des RAMs et des ROMs. Si aucune erreur 
n’est detectee, I’instrument passe a I'Etat Controls 
Local (LOCS), avec les reglages indiques au tableau 
3.3. La ligne SRQ du GPIB est egalement validee. 



Les messages de controle du Bus Interface sont 
transmis par I’intermediaire des commandes WBYTE du 
Controleur. Dans les examples suivants, A et B sont les 
adresses “Emettre" et “Recevoir". A = 32 plus I’adresse 
de i’instrument, et B = 64 plus I'adresse de I'instrument, 



Listen (Recevoir) 

Unlisten (Ne pas recevoir) 
Talk (Emettre) 

Untalk (Ne pas emettre) 
Device clear (DCL) (initialisa- 
tion de I’instrument) 

Selective device clear (SDC) 
(initialisation particuliere de 
i’instrument) 

Go to local (GTL) 

(retour en mode Local) 
Remote with lockout 
(controle a distance avec 
blocage) 

Local with lockout 
(blocage du controle local) 
Group Execute Trigger (GET) 
(declenchement groupe) 
Serial Poll Enable 
(Valmidation de I’appel 
selectif en serie (SPE) 

Serial Poll Disable 
Inhibition de I'appel 
selectif en serie (SPD) 



WBYTE A: 
WBYTE @ 63: 
WBYTE @ B: 
WBYTE @ 95: 

WBYTE @ 20: 



WBYTE (Ql A, 4: 
WBYTE @ A,1: 

WBYTE (g) A, 17: 
WBYTE @ 17: 
WBYTE @ A, 8: 

WBYTE (@ 24: 

WBYTE @ 25: 



Des informations sur les Controleurs de la Serie 4050 
sont donnees dans le manuel d’utilisation correspon- 
dant. 



Ces reglages sont egalement restaures lors de I'exe- 
cution de la commande INIT. La gamme de mesure de la 
fonction DCV n’est vaiable que pour le premier affi- 
chage, I’instrument se trouvant en mode Selection de 
Gamme Automatique. 



Tableau 3-3 

REGLAGES EXISTANTS A LA MISE SOUS TENSION 



Prefixe 


Argument 


AVE 


2 


CALC 


OFF 


DBR 


1 


DCV 


-1.E+3 


DIGIT 


4.5 


DT 


OFF 


LFR 


OFF 


LIMITS 


0.0 


MODE 


RUN 


MONITOR 


OFF 


NULL 


0 


OPC 


OFF 


OVER 


OFF 


RATIO 


1.0 


RQS 


ON 


SOURCE 


FRONT 


USER 


OFF 



French 3-26 



ADD JUL 1986 




Programmation - DM 501 0 



TABLE DE CONVERSION ASCII ET IEEE 488 (GPIB) 



0 0 0 0 





®0, 0 


1« ®i 
0 


1 


1 


0 


1 

0 




^0 ^ 








NUMBERS 
















CONTROL 


SYMBOLS 




UPPER CASE 


LOWER 






20 40 


60 






rioo 




, 1120 


140 


160 




NUL 


OLE 


SP 


0 






P 


\ 


P 


I (0) 


10 116) 70 


(32) 30 




(48) 


40 




(64) SO 


(BO) 80 


(961 70 


(112) 


BTL 


21 LLO 


1 






101 




121 


141 


161 




SDK 


DC1 


1 


I 






A 




Q 


a 


q 


HI 


11 (17) 21 


(331 31 




(491 


41 




(65) 51 


(B1I 61 


(971 71 


(113) 




n 42 








102 




122 


142 


162 




SIX 


DC2 




2 






B 




R 


b 


r 


(2I 


12 (18) 22 


(34) 32 




(50) 


42 




(661 52 


<B2I 62 


198) 72 


11141 




23 43 


ii 63 






103 




123 


143 


163 




ETX 


DCS 


# 


3 






C 




s 


C 


s 


(3) 


13 IIS) 23 


135) 33 




(511 


43 




(67) 53 


(83) 63 


(991 73 


(115) 


SDC 


24 44 


» 64 






104 




124 


144 


164 




EOT 


r DC4 


5 


4 






0 




T 


d 


t 


I4I 


14 (20) 24 


(36) 34 




(52) 


44 




(68) 54 


(84) 64 


(100) 74 


1116) 


PPC 


25 


0/ 






106 




125 


145 


165 




ENO 


NAK 




5 






E 




u 


e 


u 


I5I 


15 1211 26 


137) 3S 




(S3) 


45 




(69) 55 


(85) 65 


(101) 75 


(117) 




K 46 


O 66 






106 




126 


146 


166 




ACK 


SYN 


& 


6 






F 




V 


f 


V 


IS) 


16 (22) 26 


<381 36 




(54) 


46 




(70) 56 


(86) 66 


(102) 76 


(118) 




27 47 


. 67 






107 




127 


147 


167 




BEL 


ETB 




7 






G 




w 


g 


w 


' (7) 


17 (23) 27 


(391 37 




(551 


47 




(71) 57 


(87) 67 


(103) 77 


1119) 


5 BET 


3B 8^ 50 


1 






110 




130 


150 


170 




BS 


CAN 


( 


8 






H 




X 


h 


X 


(B) 


18 1241 28 


(40) 38 




(56) 


48 




(72) 58 


(88) 68 


11041 78 


1120) 


> TCT 


31 SPD 51 








111 




131 


151 


171 




HT 


EM 


) 


9 






1 




Y 


1 


y 


(Bl 


19 (25) 29 


(41) 39 




157) 


49 




(731 59 


(891 69 


(105) 79 


(121) 


2 


32 52 


72 






112 




132 


152 


172 




IF 


SUB 


* 


• 

• 






J 




z 


i 


z 


L (10) 


1A (26) 2A 


(42) 3A 




(58) 


4A 




(741 5A 


(90) 6A 


(1061 7A 


(1221 


1 


33 53 


73 






113 




133 


r 153 


173 


r 


VT 


ESC 


+ 


a 

9 






K 




[ 


k 


1 


(111 


IB (27) 2B 


(43) 38 




(59) 


46 




(751 SB 


(911 68 


(1071 78 


(123) 


1 


34 54 


74 






114 




134 


. 154 


174 


1 


FF 


FS 


? 






L 




\ 


1 


1 


<121 


1C (28) 2C 


(44) 3C 




(60) 


4C 




(76) 5C 


(921 6C 


1108) 7C 


(124) 


s 


35 55 


75 






115 




135 


155 


175 




CR 


GS 


— 


— 






M 




] 


m 


} 


(13) 


ID <291 2D 


(45) 3D 




(611 


4D 




(77) 5D 


(93) 6D 


(109) 7D 


(125) 




36 56 


76 






116 




136 


A 


176 




SO 


RS 


m 


> 






N 




A 


n 




114) 


IE (30) 2E 


(46) 3E 




(63) 


4£ 




(78) 5E 


(94) 6E 


(1101 7E 


(126) 


f 


37 57 


/ 




UNL 


117 




137 


UKT 1S7 


l; RUBOUT 


Si 


US 


/ 


f 






0 






0 p (DEL) 


115) 


IF (31) 2F 


(47) 3F 




(63l| 


4F 




(79) 5F 


(95) 6F 


(1111 7F 


(127) 



Commandes adressees 



j Adresse ‘•recevoir” 

Commandes universelles 



I Adresses 

secondaires 

Adresse *transmettre' qu commandes. 



KEY TO CHART 

octal PPU GWB code 

NAK ASCII character 

haa -tS (211* — - decimal 




ADD JUL 1986 



French 3-27 





Programmation - DM 501 0 

EXEMPLES DE PROGRAMMES 

Programmes de Transmission et de Reception pour 
Controleurs Tektronix de la Serie 4050. 

7 00 REM PROGRAMME DE 

TRANSMISSION/RECEPTION DM5010 
110 REM LADRESSE PRIMAIRE DU DM 501 0 EST 16 
120 INIT 

130 ON SRQ THEN 260 
140 DIM AS (200) 

150 PRINT “ENTRER LE(S) MESSAGE(S): 

160 INPUT C$ 

170 PRINT 16:0$ 

180 REM RECHERCHER LES INTERROGATIONS 
190 IF POS(C$/'?’\1)<>OTHEN 220 
200 REM RECHERCHER ’SEND ' 

210 IF P0S(C$, “SEND", 1)^0 THEN 150 
220 REM ENTREE ISSUE DE L'INSTRUMENT 
230 INPUT 16: AS 
240 PRINT AS 
250 GOTO 150 

260 REM SOUS-PROGRAMME D’APPEL SELECTIF EN 
SERIE 

270 POLLX,Y;16 

280 PRINT “MOT D’ETAT: Y 

290 RETURN 



Ces exemples de programmes sont destines a aider 
I’utilisateur a transmettre des commandos au DM 5010 
pour la modification de ses reglages et le renvoi des 
donnees generees. 



Une aide supplementaire pour le devetoppement de 
logiciel necessaire a une application speciftque est four- 
nie dans les manuals Tektronix suivants : 



070-3985-00 - GPIB Programming Guide {Guide de Pro- 
grammation du GPIB). Manuei decrivant les applications 
de cet instrument dans des systemes compatibles 
IEEE-488. Ce manuei contient des instructions et con- 
seils de programmation, ainsi que des exemples de pro- 
grammes soecifiques. 



070-2270-00 - 4051 GPIB Hardware Support Manual 
(Manuel d’utilisation du GPIB avec le controleur 4051 ). 
Manuel contenant une description detaillee du fonction- 
nement du Bus IEEE-488, des differentes operations 
sur le Bus, et des circuits de I'lnterface. 



Programme de Transmission et de Reception pour 
Controleurs Tektronix de la Serie 4040 

90 REM PROGRAMME DE 

TRANSMISSION/RECEPTION DM5010 
95 REM ADRESSE PRIMAIRE DUDM5010% 16 
1 00 OPEN 1 : “GPIB (PRt% 1 6. EOM§ <>):“ 

110 ON SRQ THEN GOSUB 240 
115 ENABLE SRQ 
120 DIM AS TO (200) 

130 PRINT “ENTRER LA (OU LES) 
COMMANDE(S)/INTERROGATION” 

140 INPUT C$ 

145 IFC$§“EX" THEN GOTO 230 
150 PRINT 1:C$ 

1 60 REM RECHERCHER LES INTERROGATIONS 
1 70 IFPOS(C$,“?", 1)o0 THEN GOTO 200 
180 IFPOS(C$,“SEND’\1)^0 THEN GOTO 130 
190 REM ENTREE ISSUE DE L'INSTRUMENT 
200 INPUT 1:A$ 

210 PRINT AS 

220 GOTO 130 

230 STOP 

240 POLLSB.P,S;16 

250 PRINT “SRQ VUE. MOT DETAT:",SB 

260 RETURN 



070-2058-01 - Programming in Basic (Programmation 
en Basic). 

070-2059-01 - Graphic programming in Basic (Pro- 
grammation graphique en Basic). 

062-5971-01 - 4050-Series programming aids, T1 
(Aide a la programmation des controleurs de la Serie 
4050 - logiciel inclus). 

062-5972-01 - 4050-Series programming aids. T2 
(Aide a la programmation des controleurs de la Serie 
4050 - logiciel inclus). 

070-2380-01 - 4907 File manager operators manual 
(manuei d'utilisation du systeme de gestion de fichiers 
4907). 

070-21 28-00 - 4924 Users manual (manuei d'utilisation 
du 4924). 

070-1940-01 - 4050-Series graphic system operators 
manual (manuei d'utilisation des systemes graphiques 
de la Serie 4050). 

070-2056-01 - 4050-Series graphic system reference 
manual (manuei de reference des systemes graphiques 
de la Serie 4050). 

070-3918-00 - 4041 Operators manual (manuei d'utili- 
sation du 4041 ). 

061-2546-00 - 4041 Programming reference manual 
(manuei de reference pour la programmation du 4041 ). 



French 3*28 



ADD JUL 1986 



Programmation • DM 501 0 



AIDE A LA PROGRAMMATION DU 
DM 5010 

Ces indications, illustrees d’exemples precis, sont 
destinees a aider I'utilisateur a developper ses propres 
programmes de controle du DM 5010. Les exemples de 
programmes ont ete realises a I’aide d’un Controleur de 
la Serie 4050 et du DM 5010. Certains exemples utili- 
sent d’autres instruments de la Serie TM 5000. Avant 
d’effectuer la programmation du DM 5010, selectionner 
la Fin de Message, I’adresse GPIB, et !e mode Emetteur 
Seulement, a I’aide des commutateurs correspondents. 
Pour afficher ces reglages en cours d’utiiisation, 
appuyer sur le bouton INST ID. Le nombre affiche est I’a- 
dresse primaire GPIB. Le nombre decimal de droite {de 
I’affichage) s'allume si la Fin de Message selectionnee 
est LF/EOI. Le stgne "moins" s’allume si le mode Emet- 
teur Seulement est selectionne. Pour modifier ces 
reglages internes, s'adressera un personnel de mainte- 
nance quaiifie {v. chapitre Maintenance). 

Dans les exemples de programmes, la variable D est 
affectee a I’adresse primaire GPIB du DM 5010 (16 a la 
iivraison). L’utilisation d'une variable alphabetique eli- 
mine la necessite de repeter le numero d’adresse, et 
permet de changer aisement celle-ci. 



Traitement des Demandes de Service 

A la mise en service, le DM 5010 valide la ligne SRQ. 
La Demande de Service (SRQ) informe le controleur de 
I’interruption de la source d’alimentation durant le de- 
roulement du programme, cetle-ci pouvant nuire a sa 
bonne execution. 

Le DM 501 0 peut egalement valider la ligne SRQ pour 
d’autres evenements {v. tableau 3.1, Indications d'er- 
reurs et d’etats). Certains controieurs ont la possibilite 
d’ignorer les Demandes de Service. D’autres doivent les 
executer toutes. Si des Demandes de Service doivent 
etre executees dans le programme, penser a valider son 
interruption. 

Programme de traitement des interruptions - pro- 
gramme executant les Demandes de Service survenant 
en cours d'execution d’un programme. 11 se compose es- 
sentiellement d'une instruction SRQ ON (en debut de 
programme), et d’un sous-programme d’Appel Selectit 
en Serie (POLL) (en un point quelconque du pro- 
gramme). A I’occurence d'une Demande de Service, 
I’instruction ON SRQ transmet le controle du programme 
au sous-programme POLL. Cette instruction se trouve a 
la ligne 110 des exemples 1 et 3. Line interruption en- 
tralne done I’execution par le controleur d’un Appel Se- 
lects en Serie (POLL). Dans une instruction POLL, la 
premiere variable renvoie la position des instruments 
dans la liste des adresses GPIB. La seconde renvoie le 
Mot d’Etat. Voir I’exemple d’Appel Selectif (par un seut 
apparei! sur le Bus) a la ligne 1000 de I’Exemple 3 . La 
ligne 400 de I’exemple 4 "interroge” trois instruments 
sur le Bus en utiiisant pour chaque adresse une variable 
alphabetique, Dans chaque exemple, I’Appel Selectif 



renvoie le Mot d’etat de I’instrument a I’origine de la De- 
mande de Service. Les lignes 150, 160, et 170du pro- 
gramme 9 comprennent un Appel Selectif en Serie utiii- 
sant les instructions WBYTE et RBYTE de la Serie 4050. 

Le sous-programme d’Appel Selectif en Serie peut 
etre etendu au decodage des informations de I’evene- 
ment occasionnant la Demande de Service. Dans 
I’exemple 1, les lignes 510 et 520 annulent le bit 
“occupe" (busy) du Mot d'Etat, Les lignes 530 a 560 de- 
codent le Mot d’Etat et les lignes 1000 a 7030 affichent 
sur t’ecran du controleur le type de I’evenement. 

L'exemple 7 utilise la Demande de Service du Moni- 
teur pour detecter les mesures superieures ou infe- 
rieures aux limites definies par la commande LIMITS, ou 
les depassements de gamme. Les lignes 1 020, 1 040, et 
1045 decodent le Mot d’Etat et initialisent I’affichage 
correspondant sur le controleur. 

La ligne 130 de l’exemple 2 “interroge" (poll) I’instru- 
ment a I’adresse 1 6 pour annuler la Demande de Service 
de la mise sous tension. La ligne 160 annule toute de- 
mande de service ulterieure (RQS OFF). Apres la gene- 
ration de RQS OFF, [’interrogation ERR? peut etre inse- 
ree dans le programme chaque fois qu’ii s’avere neces- 
saire de determiner I’etat d’un evenement. 



Blocage de la face avant 

La face avant peut etre inhibee de fapon a ce que seui 
le Controleur puisse agir sur les reglages de I’instru- 
ment. Pour cela, valider la ligne REN (etat Vrai) le temps 
necessaire. Avec les controieurs de la Serie 4050, 1’ins- 
truction RUN valide automatiquement la ligne REN. 
L’instruction END Inhibe la ligne REN. Puis transmettre 
le message de I’interface LLO (17 en decimal avec la 
ligne ATN). Avec un controleur de la Serie 4050, ceci 
s’effectue a i’aide de I’etat WBYTE. Finalement, 
adresser I’instrument en envoyant un regtage ou une in- 
terrogation, en utiiisant I'etat PRINT D ou envoyer 
seulement I'adresse "Recevoir” a I’aide de I’instruction 
WBYTE, Apres ces trois etapes, la face avant est blo- 
quee et le demeure jusqu’a ce que le signal REN passe 
a I'etat Faux, ou qu’un message <GTL> (1 en decimal 
avec la ligne ATN) soit transmis. Voir les lignes 150 et 
190 de I’exemple 4. Voir egalement les lignes 130 et 
220 de l’exemple 5. 



Utilisation de la commande INIT 

Cette commande simplifie ie programme du fait 
qu’elle diminue le nombre des commandos de reglage 
individueiles. A la ligne 150 de l’exemple 6, le DM 5010 
repoit la commande INIT suivie d’une serie de com- 
mandes modifiant I'etat des reglages initiaux (a la mise 
en service). 



Invalidation d’une mesure en attente 

Lorsque le signal entre est modifie par rapport a la 
mesure en attente, il peut etre necessaire d’invalider 



ADD JUL 1986 



French 3-29 




Programmatlon - DM 501 0 



celle-ci, du fait qu’elle ne reflate plus les conditions 
actuelles. Ceci peut etre realise en envoyant a I’instru- 
ment une commande de reglage, qui annulera le contenu 
de ta Memoire Tampon de sortie. Ou bien en transmet- 
tant une mesure au Controleur et en ignorant celle-ci, 

Les mesures invalides peuvent etre evitees en utili- 
sant le mode Declenche (MODE TRIG) pour controler 
I’occurence de cheque mesure. 

Temps d’etablissement 

Un temps d’etablissement peut etre amenage dans un 
programme, pour s'assurer de la vaiidite de la mesure 
renvoyee au controleur. Se referer au chapitre Carac- 
teristiques (Commande incrementielle du Temps de 
Reponse). 

Les lignes 230-250 de i'exempie 4 utilisent une 
boucle FOR.. .NEXT pour entrer cinq mesures dans la 
variable R. A la fin de la boucle, la variable R contient la 
cinquieme mesure. 

Les lignes 290-320 de I’exempie 5 effectuent la com- 
paraison entre deux mesures du DM 5010. Si la diffe- 
rence est superieure a 0,001 , la comparaison s’effectue 
avec une autre mesure. Celle-ci se repete jusqu’a I’ob- 
tention de deux mesures pratiquement identiques. 

Mesures par declenchement 

Pour declencher une conversion simple, utiliser le 
mode Declenche (MODE TRIG) et initialiser un 
declenchement a I'aide de I’une des methodes suivantes 

1 . Adresser I’instrument en tant qu'Emetteur. Voir la 
ligne 1 80 de I’exempie 2. 

2. Transmettre une commande SEND. 

3. Transmettre une commande DT TRIG, Puis dec- 
lencher te DM 5010 en lui envoyant le message 
de i’interface <GET> (8 en decimal avec la ligne 
ATN). Voir les lignes 1 20 et 5 de I'exempie 9. 

4. Si le mode Declenchement Externe (EXTRIG) est 
vaiide, maintenir ia ligne P1031-16A de la carte 
d'isolation a I’etat bas durant 1 0 ^S (max.). 



5. Aviser I’operateur d’appuyer sur le bouton 
TRIGGERED en face avant. 

Pour un declenchement repetitif (relaxe), utiliser 
la commande MODE RUN. Si le mode EXTRIG est 
vaiide, maintenir la ligne P1031-16A (carte d’iso- 
lation) a I’etat bas. 



Disponibilite d’une mesure 

II n'est pas necessaire de determiner si une mesure 
est disponible torsque I’instrument est adresse en tant 
qu’Emetteur ou lors de I’utilisation de la commande 
SEND pour le renvoi de donnees. Pour ces deux 
methodes, le DM 5010 declenche une conversion si 
aucune mesure n'est en attente. Pour les autres 
methodes, il existe plusieurs fapons de determiner si 
une mesure est disponible ; 

1. Transmettre la commande d’interrogation RDY?. 
La reponse “1" indique qu’une mesure est prete. 
Voir ia ligne 1 40 de I'exempie 3. 

2. Generer les commandes OPC ON et RQS ON. 
L’instrument vaiide la ligne SRQ lorsqu’une 
mesure est disponible. Voir la ligne 1 50 de I’exem- 
ple 8. 

3. Repeter le programme d’Appel Selectif en Serie 
(POLL) en utiiisant les instructions WBYTE, 
jusqu’a ce que le Mot d’Etat soit 1 32, 1 48, 1 40, ou 
1 56. Voir les lignes 1 50 et 200 de I’exempie 9. 

Utiliser les commandes RDY?, OPC ON, et le pro- 
gramme d’Appei Selectif dans le cas de plusieurs 
taches simultanees. 



Transmission de mesures a un Recepteur 

Avant ie transfert d'une mesure du DM 5010 a un 
Recepteur sur le Bus GPIB, “adresser” cet instrument 
en tant que Recepteur. Puis adresser le DM 501 0 
comme Emetteur pour transmettre les mesures. Les 
donnees transmises a un Controleur peuvent etre lues 
sous forme d’une chaine de caracteres ou d une variable 
numerique. Voir ia ligne 180 de I’exempie 2 et la ligne 
1 50 de I'exempie 3. 



French 3-30 



ADD JUL 1986 




PROGRAMMIERUNG 



Abschnttt 3 - DM 5010 



Einfiihrung 

Dieser Abschnitt des Handbuches inform iert fiber die 
Programmierung des TEKTRONIX Programmierbaren 
Digital Multimeters DM 5010 fiber die IEEE>488 Digital- 
Schnittstelle. Die IEEE-488 Interface-Funktionszeichen 
fur das DM 5010 sind in Abschnitt 1 aufgelistet. In diesem 
Handbuch wird die IEEE-488 Digital-Schnittstelie als 
General Purpose Interface Bus (GPIB) bezeichnet. Die 
nachstehenden Informationen setzen voraus, daB der 
Leser mit der GPIB-Kommunikation vertraut ist und 
einige Erfahrungen mit der Programmierung von 
Controllern hat. Mitteilungs-Protokoile uber den GPIB 
sind in der Norm lEEE-488-1978, ..Standard Digital Inter- 
face for Programmable Instrumentation""* beschrieben 
und spezifiziert. TM 5000 GerSte wurden fiir die Kommu- 
nikation mit alien GPIB-kompatiblen Controllern ent\«ik- 
kelt, die ASCII Mitteilungen (Befehle) fiber den GPIB 
senden und empfangen. Diese Befehle programmieren 
das Gerat Oder fragen Informationen vom GerSt ab. 



Die Befehle fur prog ram mierbare Gerate der Serie 
TM 5000 wurden fur KompatibiltSt unter den GerSte- 
typen entwickelt. Der gleiche Befehl wird bel verschie- 
denen Geraten ffir die Steuerung Shnlicher Funktionen 
verwendet. Ferner sind die Befehle in Mnemoniken 
spezifiziert, die sich auf die jeweilige Funktion beziehen. 
Der Befehl INT z. B. stellt das GerSt auf seinen Einschalt- 
Zustand ein. Zur weiteren Erleichterung der Program- 
mierung entsprechen die Befehls-Mnemoniken in den 
meisten FSIIen denen auf der Frontplatte. 



Die GerSte-Befehle werden in drei Formaten darge- 
stellt; 

• Eine Abbildung der Frontplatte - die die Bezie- 
hung der Befehle zu den Bedienungselementen 
auf der Frontplatte zeigt. Siehe Bild 3-1. 

• Liste der funktionellen Befehle - eine Liste, die in 
Funktionsgruppen mit kurzen Beschreibungen 
aufgeteilt ist. 

• Detailiierte Befehlsliste - eine alphabetische 
Auflistung der Befehle mit vollstandiger Beschrei- 
bung. 



^ Veroffentiicht durch das Institute of Electrical 
and Electronics Engineers, Inc., 345 East 47th Street, 
New York, N. Y. 10017. 



Program mierbare Gerate der Serie TM 5000 werden 
fiber eine Versorgungseinheit TM 5000 mit dem GPIB 
verbunden. Der Abschnitt Bedienungsanleitung in 
diesem Handbuch gibt Hinweise ffir den Einbau des 
Gerates in die Versorgungseinheit. Dieser Abschnitt 
macht Sie auch mit den VorsichtsmaBnahmen, den 
Bedienungselementen auf der Frontplatte und den 
intern wahibaren Geratefunktionen vertraut. 



Die GPIB Primaradresse ffir dieses Gerat kann intern 
durch qualifiziertes Servicepersonal verandert werden. 
Bei Versand ist das DM 5010 auf die Adresse mit dem 
Dezimaiaquivalent 16 eingestellt. Auch das Endezeichen 
kann intern durch qualifiziertes Servicepersonal ausge- 
wahlt werden. Endezeichen werden in diesem Hand- 
buch im Abschnitt ..Mitteilungen und Kommunikations- 
protokoll" beschrieben. Bei Versand von TM 5000 
Geraten ist dieses Endezeichen auf EO! ONLY einge- 
stellt. Hinweise ffir qualifiziertes Servicepersonal, wo 
und wie die Einstellung erfoigt, sind in diesem Handbuch 
im Abschnitt Wartung enthalten. Eindrficken der Taste 
INST ID veranlaBt das Gerat seine gewahite GPIB-Prima- 
radresse darzustellen; der Dezimalpunkt ganz rechts 
leuchtet auf, wenn das gewahite Endezeichen LF/EOI ist. 
Das Minuszeichen leuchtet auf, wenn die Betriebsart 
Talk Only eingeschaltet ist. 



Betriebsart Talk Only 

In der Betriebsart Talk Only kann das DM 5010 uber 
den GPIB unter lokaler Steuerung Daten an einen HOrer 
(Listener) senden. Fur die Wahl dieser Betriebsart wird 
ein interner Schalter auf die Stellung Talk Only gesetzt. 
Hinweise dazu findet qualifiziertes Servicepersonal im 
Abschnitt Wartung. 



In der Betriebsart Talk Only beginnt das DM 5010 mit 
dem Senden von Mefldaten wenn auf der Frontplatte 
die Taste INST ID gedrCickt wird; es stoppt das Senden 
von Daten wenn auf der Frontplatte die Taste CLEAR 
gedrflckt wird. Wird CLEAR wShrend der Ubertragung 
eines MeBergebnisses gedrflckt, stoppt das GerSt erst 
nach dessen vollstandiger Ubertragung. Das Lampchen 
ADDRESSED bleibt erleuchtet, bis die Ubertragung der 
letzten Ablesung beendet ist. 



ADD JUL1986 



German 3-1 




Programmierung - DM 5010 







ERR? 

ID? 

INIT 

MONITOR ON 
MONITOR OFF 
MONITOR? 
RQSON 
RQSOFF 



DATA 

OFCON 

OPCOFF 

OPC7 

OVER ON 

OVER OFF 

OVER? 

RDY? 

SEND 



FUNCT? 



ACDC <num> 
ACV <iwjni> 
DCV <num> 
DIODE 

OHMS <num> 






USER ON 
USER OFF 
USER? 



NUU. <renn> 
NULL? 



mu 



DIGIT 3^ 
DIGIT 4.5 
DIGIT? 



MODE RUN 
MODE TRIG 
MODE? 






SOURCE FRONT 
SOURCE REAR 
SOURCE? 






CALC OFF 
CALC? 



CALC DBR CALC CMPR 



CALC AVE CALC RATIO 



CALC DBM 



LIMITS <num>,<num> 
LIMITS? 



DBR <num> 
DBR? 



RATIO <A num>,<B num> 
RATIO? 



AVE <num> 
AVE? 



29M-07 

Bild 3-1 Geratebefehle und ihre Beziehung zu den Bedlenungselementen auf der Frontplatte. 



German 3>2 



ADD JUL 1986 









Programmierung - DM 5010 



BEFEHLE 

Das Gerat wird Ciber die Bedienungselemente auf der 
Frontplatte Oder iiber Befehle vom Controller gesteuert. 
Es gibt drei Befehlsarten: 



Einstell-Befehle - steuern die Einstellung des 
Ger^tes. 

Abfrage-Befehle - fragen narh Oaten. 

Betriebs-Befehle - veranlassen eine bestimmte 
T&tigkeit. 




Vorsicht bei der Verwendung von weniger Zeichen 
ats im abgekurzten Kopfteit Oder Argument 
enthalten sind. Falsche Ergebnisse and Beschadi- 
gungen kbnnen auftreten wenn diese Oaten an das 
falsche Gerat gesendet warden. 



1st das Gerat auf Fernbedienung eingestellt, werden 
alle Befehle beantwortet und ausgefuhrt. Bei Eigenbe- 
dienung, erzeugen „Einstellungs-" und „Betriebs- 
Befehle" Fehler, da die Geratefunktionen uber die Bedie- 
nungselemente auf der Frontplatte gesteuert werden; 
nur „Abfrage-Befehle“ werden beantwortet. 

Jeder Befehi beginnt mit einem Kopfteil - einem Wort 
das die jeweilige Funktion beschreibt. Viele Befehle 
mussen durch ein Argument nach dem Kopfteil erganzt 
werden - einem Wort Oder einer Zahl, die die 
gewunschte Funktion naher beschreibt. 




Wenn das Ger^t in der Betriebsart AUTO arbeitet, 
soil die Eingangsspannung nicht wiederholt 
zwischen einem niedrigen Wert (< 200 mVs) und 
einem hoheren Wert (> 200 Vs) bin und her 
geschaltet werden. Fur wiederholte Messungen, die 
zwischen den Spannungsextremen alternieren, 
verwenden Sie vor Erhdhung der Eingangsspan- 
nung zur Wahl eines entsprechenden hoheren 
Bereichs die Betriebsart STEP, da sonst zeitweise 
Ungenauigkeiten bei Messungen im 200 m VBereich 
auftreten konnen. 



LISTE DER FUNKTIONELLEN BEFEHLE 



DERATE BEFEHLE 

Funktions-Befehie 

ACDC <num> - Stellt ACV -f- DCV Funktion und 
Bereich ein. 

ACV <num> - Stellt ACV Funktion und Bereich ein. 

DCV <num> - Stellt DCV Funktion und Bereich ein. 

DIODE - Stellt DIODE TEST Funktion ein. 

FUNCT? - Abfrage nach Funktion und Bereich. 

LFR ON - Gibt die Funktion LOW FREQ RESPONSE 
frei. 

LFR OFF - Sperrt die Funktion LOW FREQ 
RESPONSE. 

LFR? - Abfrage nach LFR ON Oder LFR OFF. 

NULL <num> - Gibt die Funktion NULL und den 
Offsetwert frei. 

NULL? - Abfrage nach NULL Offsetwert. 

OHMS <num> - Stellt OHMS Funktion und Bereich 
ein. 



Trigger-Befehle 

MODE RUN - Gibt die Triggerbetriebsart RUN frei. 

MODE TRIG - Gibt die Triggerbetriebsart TRIGGERED 
frei. 

MODE? ~ Abfrage nach MODE RUN Oder MODE TRIG! 

RDY? - Abfrage nach RDY 1, wenn eine Messung 
beendet ist; RDY 0, wenn eine Messung durchge- 
fuhrt wird Oder auf Triggerung wartet. 

DIGIT 3,5 - Gibt die Ubertragungsrate FAST frei. 

DIGIT 4,5 - Gibt die normale Ubertragungsrate frei. 

DIGIT? - Abfrage nach DIGIT 3,5 Oder DIGIT 4,5. 

Berechnungs-Befehie 

AVE <num> - Stellt den Wert der Konstanten N ein. 
AVE? - Abfrage nach dem Wert der Konstanten N. 
CALC AVE - Gibt die AVERAGE Berechnung frei. 
CALC CMPR - Gibt die COMPARE Berechnung frei. 
CALC DBM - Gibt die dBm Berechnung fret. 

CALC DBR - Gibt die dBr Berechnung frei. 



ADD JUL 1986 



German 3*3 




Prog ram mierung - DM 5010 



CALC RATIO - Gibt die X-B/A Berechnung frei. 

CALC OFF - Sperrt alle Berechnungen. 

CALC? - Abfrage nach CALC OFF Oder der freigege- 
benen Berechnungsart. 

DBR <num> - Stellt den Wert der Betriebskonstanten 
ein. 

DBR? - Abfrage nach dem Wert der Bezugskon- 
stanen. 

LIMITS? <num>, <num> - Stellt die Werte der 
Konstanten LIMITS ein. 

LIMITS? - Abfrage nach den Werten der Konstanten 
LIMITS. 

MONITOR ON - Gibt SRQ frei wenn die Messung die 
LIMITS Konstanten ubersteigt. 

MONITOR OFF - Sperrt SRQ wenn die Messung die 
LIMITS Konstanten ubersteigt. 

MONITOR? - Abfrage nach MONITOR ON Oder 
MONITOR OFF 

RATIO <num>, <num> - Stellt die Werte der 
Konstanten A und B ein. 

RATIO? - Abfrage nach den Werten der Konstanten A 
und B. 



EINGANG/AUSGANGS-BEFEHLE 

DATA - Ausgangsdaten werden durch MONITOR SRQ 
gespeichert. 

SEND - Ausgangsdaten im Ausgangspuffer; triggert 
falls erforderlich, 

SOURCE REAR - WShlt den ruckseitigen Interface- 
EingangsanschluB. 

SOURCE FRONT - WShlt den EingangsanschluB auf 
der Frontplatte. 

SOURCE? - Abfrage nach SOURCE FRONT Oder 
SOURCE REAR. 



SYSTEM-BEFEHLE 

DT TRIG - Gibt die GerSte-Triggerfunktion frei. Das 
Gerat triggert nach der Interface-Mitteilung 
<GET>. 

DT OFF - Sperrt die Ge rat e -Trigg erfunkt ion. 

DT? - Abfrage nach DT TRIG Oder DT OFF. 

ERR? - Abfrage nach dem Fehlercode. 

ID? - Abfrage nach Gerate-ldentifikation und Firm- 
ware Version. 

INIT - Stellt auf die Einschalt-Bedingungen ein. 

SET? - Abfrage nach den Gerate-Einstellungen. 

TEST - Zeigt 0 bei richtiger, 351 bei unrichtiger Kali- 
brierungs-Prufsumme an. 

STATUS-BEFEHLE 

OPC ON - Gibt die Bedienungsabfrage nach OPERA- 
TION COMPLETE frei. 

OPC OFF - Sperrt die Bedienungsabfrage nach 
OPERATION COMPLETE. 

OPC? - Abfrage nach OPC ON Oder OPC OFF 

OVER ON - Gibt die Bedienungsabfrage nach Uber- 
schreiten des Bereichs frei. 

OVER OFF - Sperrt die Bedienungsabfrage nach 
Uberschreiten des Bereichs. 

OVER? - Abfrage nach OVER ON Oder OVER OFF. 

RQS ON - Gibt die Bedienungsabfragen (SRQ) frei. 

RQS OFF - Sperrt die Bedienungsabfragen (SRQ). 

RQS? - Abfrage nach RQS ON Oder RQS OFF 

USER ON - Gibt SRQ frei wenn die Taste ID gedruckt 
wird. 

USER OFF - Sperrt SRQ wenn die Taste ID gedruckt 
wird. 

USER? - Abfrage nach USER ON Oder USER OFF. 



German 3*4 



ADD JUL 1986 



Program mierung - DM 5010 



DETAILLIERTE BEFEHLSLiSTE 



ACDC 

(AC und DC Spannungsfunktionen) 

Art: 

Einstellung 



Einstellsyntax: 

ACDC <number> 

ACD<number> 

ACDC 



Beispiele: Gewahiter Bereich 

ACDC 2 2 V 

ACDC, 9 2 V 

ACDC - 200 700 V, AUTO-Bereich 

ACD 700 V, AUTO-Bereich 

ACD 0 700 V, AUTO-Bereich 



Beschrelbung: 

Das Kopfteil w&htt ACD + DCV Funktion; das Argu- 
ment wShlt einen fixierten Bereich Oder den AUTO- 
Bereich. Das Format fur numerische Argumente wird im 
hinteren Teil dieses Abschnittes beschrieben. Das Argu- 
ment kann jeder Wert S 700 sein; das GerSt rundet 
jedoch das Argument fur den nSchsten Bereich auf. Zum 
Beispiel fur ein Argument 0,9 wShtt das GerSt den 
Bereich 2 V. 



Wenn das Argument weggelassen wird Oder sein Wert 
weniger als 0 ist, geht das GerSt automatisch die 
Bereiche durch, beginnend mit dem hochsten Bereich. 



Wenn das Argument uberdem hochsten Bereich liegt, 
erzeugt das GerSt einen Befehisfehler (und gibt bei 
RQS ON ein SRQ aus). 



Bereiche 
200 mV 
2 V 
20 V 
200 V 
700 V 



ACV (AC Spannungsfunktion) 



Art: 

Einstellung 



Einstellsyntax: 

ACV <number> 
ACV 



Beispiele: Gewahiter Bereich: 

ACV 18 20 V 

ACV 2 2 V 

ACV - 200 700 V. AUTO-Bereich 

ACV 700 V, AUTO-Bereich 



Beschrelbung: 

Das Kopfteil wShIt die ACV Funktion; das Argument 
wahit einen fixierten Bereich Oder den AUTO-Bereich. 
Das Format fur numerische Argumente wird im hinteren 
Teil dieses Abschnittes beschrieben. Das Argument 
kann jeder Wert sein ; das Gerat rundet jedoch das Argu- 
ment fur den nachsten Bereich auf. Zum Beispiel fur das 
Argument 18 wahit das Gerat den 20 V Bereich. 



Wenn das Argument weggelassen wird Oder sein Wert 
weniger als 0 ist, geht das Gerat automatisch die 
Bereiche durch, beginnend mit dem hbchsten Bereich. 



Wenn das Argument uberdem hbchsten Bereich liegt, 
erzeugt das Gerat einen Befehisfehler (und gibt bei RQS 
ON ein SRQ aus). 



Bereiche; 
200 mV 
2 V 
20 V 
200 V 
700 V 



ADD JUL 1986 



ACDC 



ACV 



German 3>5 



Programmierung - DM 5010 

AVE (Mitteiwert) 



Art: 

Einstetiung Oder Abfrage 



Einstellsyntax: 

AVE <number> 
AVG <number> 



Beispiei: 

AVE 6 
AVE 2 
AVG 10 



Abfragesyntax: 

AVE? 

AVG? 



Abfrage-Antwort: 

AVE <number> 



Beschreibung: 

Dieser Befehl spezifiziert die Anzahl der Messungen 
fur die AVERAGE (Mitteiwert) Berechnung. (Entspricht 
der Einstellung des Wertes fOr die Konstante N auf der 
Frontplatte), Siehe CALC AVE. Das Argument kann jede 
Zahl von 1 bis 19999 sein. Das GerSt rundet das Argument 
auf ganze Zahlen ab. 



German 3-6 



AVE 



ADD JUL 1986 



Programmierung - DM 5010 



CALC (Berechnung) 



Art: 

Einstellung Oder Abfrage 



Einstensyntax: 

CALC <argument> 

CALC <argument>, <argument> 



Argumente: 

AVE Oder AVG 

CMPR Oder COMP 

DBM 

DBR 

RATIO 

OFF 



EineTriggerung erzeugt genug Ablesungen fCirein 
Mittelwertergebnis. Wird fur elne Messung in einer 
Folge der Bereich uberschritten, wird die AVE 
Berechnung unterbrochen. 

Wenn LFR auch freigegeben ist, wird die mit dem 
Befehl AVE <number> eingestellte Anzahi der 
Messungen mit 4 multipliziert. 

• CALC CMPR Oder CALC COMPgibt die COMPARE 
Berechnung frei. Das Gerat vergieicht den 
Eingang mit den durch den Befehl LIMITS einge- 
stellten Werten. Der Text zu den nachstehenden 
Befehlen gibt an, weicher Ausgangsvergleich 
daraus resultiert: 

SEND - zeigt 1., 2., Oder 3. fur LO, PASS, Oder HI 
an; bei Bereichsuberschreitung + 1E+99; Oder 
-1E+99. 



DATA - zeigt einen MeBwert auBerhalb der 
Grenzberelche an. 



Beispieie: 

CALC OFF 
CALC AVE 
CALC AVE, DBM 
CALC RATIO, AVE, DBR 



Abfragesyntax; 

CALC? 



Abfrage-Antwort: 

CALC OFF; Oder Liste der freigegebenen 
Berechnung(en). 



• CALC DBM gibt die dBm Berechnung frei und 
sperrt die dBr Berechnung. Das Gerat berechnet 
das LeistungsverhSitnis der Eingangsspannung, 
bezogen auf 1 mW in 600 Ohm (0,7746 V). 



dBm = 20 logio 



X 

^6 



• CACLC DBR gibt die DBR Berechnung frei und 
sperrt die dBm Berechnung. Das DM 5010 
berechnet das logarithmische VerhSItnis des 
Eingangs zu dem mit dem Befehl DBR <number> 
eingestellten Wert. 



dBr = 20 logic 



X 

ref 



Beschreibung: 

Wenn das GerSt einen CALC Befehl empfangt, 
schaltet es alle Berechnungen ab mit Ausnahme derje- 
nigen, die hinter dem CALC Kopfteil stehen. Ubersteigt 
das Ergebnis einer Berechnung die FShigkeiten der 
Recheneinheit (± 3,4028E+38) , erzeugt das Gerat einen 
Recheneinheit-Fehler (303). 



• CALC RATIO gibt die X-B/A Berechnung frei, 
wobei X die Messung, B ein Offsetwert und A der 
Skaiierungsfaktor ist. Die Werte von A und B 
werden mit dem Befehl RATIO eingestellt. 

• CALC OFF sperrt alle Berechnungen. 



• CALC AVE Oder CALC AVG gibt die AVERAGE 
Berechnung frei. Das GerSt berechnet den Mittel- 
wert aus einer Reihe von Messungen. Die Anzahl 
der Messungen wird mit dem Befehl AVE <num- 
ber> eingestellt. 



ADD JUL 1986 



CALC 



German 3-7 




Program mierung - DM 5010 

DATA 



DBR 



Art: 

Ausgabe 



Syntax: 

DATA 



Antwort: 

DATA <number>; 

Oder 

DATA±1.E+99; (bei BereichsCiberschreitung) 



Beschreibung: 

Auf diesen Befehl erfoigt eine der nachstehend ange- 
gebenen Antworten. Er Idst keine Ubertragung aus und 
wartet nicht auf eine neue Messung, wie es der Befehl 
SEND tut. 



1. Nach dem Einschalten wird 0 angezeigt, bis eine 
Messung zur Verfugung steht. 



2. Wenn ein MONITOR SRQ ausgegeben wurde, zeigt 
DATA die Messung an, die das SRQ veranlaBt hat. 



3. Wenn keine der vorstehenden Bedingungen giiltig 
ist, zeigt DATA die letzte Messung an. DAJA zeigt die 
gleiche Ablesung an, bis die nSchste Obertragung 
ausgeldst wird und eine neue Ablesung zur Verfugung 
steht. 



Art: 

Einstellung Oder Abfrage 

Einstellsyntax: 

DBR <number> 

Beispiel: 

DBR1 
DBR .707 
DBR 2E-3 

Abfragesyntax: 

DBR? 

Abfrage-Antwort: 

DBR <number>: 

Beschreibung: 

Dieses Befehlsargument steitt den Wert der 
Konstanten ein, die fur den Befehl CALC DBR verwendet 
wird. Er entspricht der Einstellung des Konstanten- 
wertes auf der Frontplatte. Das Argument kann jede Zahi 
auBer 0 sein. 



DATA kann fur eine Messung eine hdhere Aufldsung 
angeben als sie auf der Frontplatte dargestellt Oder 
durch den Befehl SEND angezeigt wird. 



German 3>8 



DATA 



DBR 



ADD JUL 1986 



Programmierung - DM 5010 



DCV (DC Spannungsfunktion) 



Art: 

Einstellung 



Einstellsyntax: 

DCV <number> 
DCV 



Beispiele: Gewahiter Bereich 

DCV 1.5 2V 

DCV 1000 V, AUTO-Bereich 

DVV -1.E+3 1000 V, AUTO-Bereich 



Beschreibung: 

Das Kopfteil wShIt die DCV Funktion; das Argument 
wShlt einen fixierten Spannungsbereich. Das Format fur 
numerische Arguments wird im hinteren Teil dieses 
Abschnittes beschrieben. Das Argument kann jeder 
Wert sein; das GerSt rundet jedoch das Argument auf 
den nSchst hPheren Bereich auf. Zum Beispiel fur das 
Argument 1,5 wShlt das GerSt den 2 V Bereich. 



Wenn das Argument weggelassen wird Oder sein Wert 
weniger als 0 ist, geht das GerSt automatisch die 
Bereiche durch, beginnend mit dem hOchsten Bereich. 



Wenn das Argument iiberdem hPchsten Bereich liegt, 
erzeugt das GerSt einen Befehlsfehler (und gibt bei RQS 
ON ein SRQ aus). 



Bereiche: 
200 mV 
2 V 
20 V 
200 V 
1000 V 



DIGIT (Digitale Aufidsung) 



Art: 

Einstellung Oder Abfrage 



Einstellsyntax: 

DIGIT 3.5 
DIGIT 4.5 
DIG 3.5 
DIG 4.5 



Abfragesyntax: 

DIGIT? 

DIG? 

Abfrage-Antwort: 

DIGIT 3.5; 

DIGIT 4.5; 

Beschreibung: 

Dieser Befehl wShIt die Ubertragungsrate. Das Argu- 
ment 3.5 stellt die FAST Ubertragungsrate ein (3.5 
Stellen AufIGsung). Bei den Spannungsfunktionen benp- 
tigt eine Messung etwa 35 ms, bei der Ohm-Funktion 
etwa 130 ms. 



Das Argument 4.5 stellt die normals Ubertragungsrate 
ein (4.5 Stellen AusfIPsung). Bei den Spannungsfunk- 
tionen benPtigt eine Messung etwa 310 ms, bei der Ohm- 
Funktion etwa 600 ms. 



ADD JUL 1986 



DCV 



DIGIT 



German 3-9 




Programmierung - DM 5010 

DIODE (Diodentest) 

Art: 

Einstellung 

Einstellsyntax: 

DIODE 

DIO 

Beschreibung: 

Dieser Befehl wShlt die Funktion 
Argument wird nicht akzeptiert. 



DT (Geratetrigger) 



Art: 

Einstellung Oder Abfrage 



Einstellsyntax: 

DT TRIG 
DT OFF 



DIODE TEST. Ein 



Abfragesyntax: 

DT? 



Abfrage- Antwort : 

DT TRIG; 

DT OFF; 



Beschreibung: 

Mit diesem Befehl wird die GerSte-Triggerfunktion 
gesperrt Oder freigegeben. Wenn die GerStetriggerung 
freigegeben ist, Ibst die IEEE 488 Interface-Mitteilung 
<GET> eine Triggerung aus. 



Wenn <GET> empfangen wird wShrend der Mittei- 
lungs-Prozessor arbeitet Oder wenn DT OFF ist erzeugt 
das GerSt einen Fehler der anzeigt, daB die Mitteilung 
<GET> ignoriert wurde. 



German 3-10 



DIODE 



DT 



ADD JUL 1986 



Programmierung - DM 5010 



ERR? (Fehler) 

Art: 

Abfrage 

Abfragesyntax; 

ERR? 

Abfrage- Antwort : 

ERRsp sp <number> 

Beispiel: 

ERRsp sp 401; (eingeschaltet) 

Beschreibung; 

Die Abfrage ERROR wird verwendet, um Informa- 
tionen uber den Status des GerStes zu erhalten. 



Auf die Abfrage ERROR wird ein Code dargestellt der 
anzeigt, welches Ereignis ein SRQ veranlaBt hat. Weitere 
Informationen finden Sie im Status- und Fehlerbericht. 



FUNCT? (Funktion) 



Art: 

Abfrage 

Abfragesyntax: 

FUNCT? 

FUNC? 

Abfrage-Antwort Beispiele: 

DCV2.; 

ACV20.; 

DIODE; 

ACDC 200.; 
OHMS-2.E+6; 



Beschreibung: 

Auf diesen Befehl wird die derzeitige MeSfunktion 
angezeigt. Das Argument spezifiziert den jeweils 
verwendeten Bereich. Bei AUTO-Bereich wird ein nega- 
tives Argument angezeigt. 



ADD JUL 1986 



ERR? 



FUNCT? 



German 3-11 




Programmierung - DM 5010 

ID? 



INIT 



Art: 

Abfrage 

Abfragesyntax; 

ID? 

Abfrage-Antwort : 

ID TEK/DM50l0,V79.1Fxx: 

Beschreibung: 

Auf die Abfrage ID? wird die o. g. Antwort angezeigt. 

TEK/DM5010 - Identifiziert das GerSt, 

Hersteller und Typ. 



V79.1 - Identifiziert die Art der Tektronix Codes und 
Formate, denen das GerSt entspricht. 

Fxx - Identifiziert die Firmenversion des GerStes. 



Art: 

Betrieb 



Syntax: 

INIT 



Beschreibung: 

Dieser Befehl stellt die GerStefunktionen auf Ihre 
Einschaltbedingungen zuriick, wie sie in Tabelle 3-3 
angegeben sind. 



German 3*12 



ID? 



INIT 



ADD JUL 1986 



Programmierung - DM 5010 



LFR 



Art: 

Einstellung Oder Abfrage 



Abfragesyntax: 

LFR? 

Abfrage-Antwort: 

LFR ON; 

LFR OFF; 

Beschreibung: 

Mit diesem Befehl wird die Funktion LOW FREQ 
RESPONSE gesperrt Oder freigegeben (wird mit den 
Funktionen ACV und ACV+DCV verwendet). Wenn frei- 
gegeben, berechnet das GerSt den Mittelwert aus vier 
Messungen. 

Wenn CALC AVE auch freigegeben ist, wird die mit 
dem Befehl AVE <num> eingestetite Anzahl der 
Messungen mit 4 multipliziert. 



LIMITS 



Art: 

Einstellung Oder Abfrage 



Einstell syntax: 

LIMITS <number>, <number> 
LIM <number>, <number> 



Beispiel: 

LIMITS 3.2, -2 
LIMITS -1, -6.5 
LIM 6. 1 



Abfragesyntax: 

LIMITS? 

LIM? 



Abfrage- Antwort: 

LIMITS <number>, <number>; 



Beschreibung: 

Die Argumente fur diesen Befehl stelien die Grenz- 
werte ein, die fur die COMPARE Berechnung und das 
MONITOR SRQ verwendet werden. Das erste Argument 
stellt den Grenzwert ein, weicher der oberen Taste 
LIMITS auf der Frontplatte entspricht; das zweite Argu- 
ment stellt den Konstantenwert ein, weicher der unteren 
Taste LIMITS entspricht. 



Einstellsyntax: 

LFR ON 
LFR OFF 



ADD JUL 1986 



LFR 



LIMITS 



German 3-13 



Programmierung - DM 5010 

MODE 



MONITOR 



Art: 

Einsteliung Oder Abfrage 



Einsteli syntax: 

MODE RUN 
MODE TRIG 
MOD RUN 
MOD TRIG 



Abfragesyntax: 

MODE? 

MOD? 



Abfrage^Antwort: 

MODE RUN; 
MODE TRIG; 



Beschreibung: 

Dieser Befehl wShlt dieTrigger-Betriebsart. Das Argu- 
ment RUN stellt dieTrigger-Betriebsart RUN (freilaufend) 
ein. 

Das Argument TRIG stellt die Betriebsart TRIGGERED 
ein. In dieser Betriebsart erfoigt nach Empfang einer der 
folgenden Mitteilungen eine Triggerung: 



• Einem „SEND“ Befehl. 

• Einer Interface Mitteilung<GET> (nur wen DT frei- 
gegeben ist). 

• My Talk Address (MTA) mit nicht spezifiziertem 
Ausgang (kein Abfrage-Befehl). 

• EXTRIG ruckseitige Interface-Triggerung (erfor- 
dert Einbau einer internen Uberbruckung - siehe 
Abschnitt Wartung). Fur eine einzelne Triggerung 
muB diese Leitung zwischen 0,5 und 10 ^isec 
gehalten werden, Wird sie uber einen langeren 
Zeitraum niedrig gehalten, lOst das GerSt Mehr- 
fachmessungen aus. 

Wenn in der Betriebsart MODE TRIG und wShrend das 
Gerat in AUTO-Bereich arbeitet ein Uber- Oder Unter- 
schreiten des Bereichs vorkommt, andert das Gerat den 
Bereich und fuhrt eine weitere Messung aus. 



Art: 

Einsteliung Oder Abfrage 



Einstellsyntax: 

MONITOR ON 
MONITOR OFF 
MON ON 
MON OFF 



Abfragesyntax: 

MONITOR? 

MON? 



Abfrage-Antwort: 

MONITOR ON; 
MONITOR OFF; 



Beschreibung: 

Mit diesem Befehl wird das MONITOR SRQ gesperrt 
Oder freigegeben, Ist MONITOR SRQ freigegeben, spei- 
chert das Gerat die erste Messung auBerhalb der Grenz- 
werte (die mit dem Befehl LIMITS eingestellt wurden) und 
generiert ein SRQ. Fur nachfotgende Messungen 
(auBerhalb der Grenzwerte) werden keineSRQ’serzeugt 
bis die Bedienungsabfrage erledigt ist und die Messung 
in Beantwortung des Befehls DATA an den Controller 
berichtet wurde. 



Wenn das Gerat bei MON ON den Bereich Qber- 
schreitet, gibt es eine Fehiermeldung aus, auch wenn 
OVER OFF ist. 



German 3-14 



MODE 



MONITOR 



ADD JUL 1986 



Program mierung - DM 5010 



NULL 



OHMS 



Art: 



Art: 



Einstellung Oder Abfrage 



Einstellung 



Einstellsyntax: 



Einstellsyntax: 



NULL<number> 



OHMS <number> 
OHMS 



Beispiele: 

NULL2 

NULLO 



Abfragesyntax: 

NULL? 



Abfrage- Antwort: 

NULL <number> 



Beschreibung: 

Dieser Befehl gibt die Funktion NULL frei; das Argu- 
ment ( in Volt Oder Ohm) gibt den Wert des Offset an. 
Dieser Wert kann jede Zahl bis zu 100% des Bereichs 
sein. 



Die Funktion NULL ist gesperrt, wenn die MeBfunktion 
geandert wird Oder das Argument 0 ist. {Die Anderung 
der MeBfunktion stellt auch das Argument auf 0.) 



WARNUNG 



Wenn die NULL Funktion freigegeben ist, kann es 
vorkommen, daB die Messung nicht den an die 
Eingangsanschlusse angelegten Spannungswert 
anzeigt. 



Beispiele: 



Gewahiter Bereich: 



OHMS 
OHMS 100 
OHMS-2E+7 
OHMS 1E-H4 



20 MO, AUTO-Bereich 
200 0 

20 MO, AUTO-Bereich 
20 kO 



Beschreibung: 

Das Kopfteil wahlt die Funktion OHMS; das Argument 
wShIt den Bereich. Das Format fur numerische Argu- 
mente wird im hinteren Teil dieses Abschnittes 
beschrieben. Das Argument kann jeder Wert sein; das 
GerSt rundet jedoch das Argument auf den nachst 
hbheren Bereich auf. Zum Beispiel fur das Argument 100 
wahlt das Gerat den Bereich 200 O. 



Wenn das Argument weggelassen wird Oder sein Wert 
weniger als 0 ist, geht das Gerat automatisch die 
Bereiche durch, beginnend mit dem hdchsten Bereich. 



Wenn das Argument uberdem hdchsten Bereich liegt, 
erzeugt das Gerat einen Befehisfehler (und gibt bei RQS 
ON ein SRQ aus). 



Bereiche: 



200 


0 


2 


kO 


20 


kO 


200 


kO 


2 


MO 


20 


MO 



ADD JUL 1986 



NULL 



OHMS 



German 3-15 




Programmierung - DM 5010 

OPC (Operation Complete) 



OVER 



Art: 

Einsteliung Oder Abfrage 

Einsteltsyntax: 

OPC ON 
OPC OFF 

Abfragesyntax: 

OPC? 

Abfra ge*Antwort : 

OPC ON; 

OPC OFF; 

Beschreibung: 

Mit diesem Befeh! wird die Bedienungsabfrage 
Operation Complete gesperrt Oder freigegeben. Wenn 
freigegeben und RQSistON.gibtdasGerateinSRQaus, 
wenn eine neue Messung zur Verftigung steht. 



Art: 

Einsteliung Oder Abfrage 

Einstelisyntax: 

OVER ON 
OVER OFF 

Abfragesyntax: 

OVER? 

Abfrage-Antwort: 

OVER ON; 

OVER OFF; 

Beschreibung: 

Mit diesem Befehl wird die Bedienungsabfrage fOr 
Bereichsuberschreitung gesperrt Oder freigegeben. 
Wenn freigegeben und RQS ist ON, gibt das GerSt ein 
SRQ aus, wenn es eine Messung auBerhalb des Bereichs 
durchfuhrt. 

Bei OVER OFF gibt das GerSt zur Anzeige einer 
Bereichsuberschreitung ±1.E+99 aus (es gibt kein SRQ 
aus). 



German 3-16 



OPC 



OVER 



ADD JUL 1986 



Programmierung - DM 5010 



RATIO 



RDY? 



Art: 

Einstellung Oder Abfrage 



Art: 

Abfrage 



Einstef [syntax: 

RATIO <number>, <number> 



Abfragesyntax: 

RDY? 



Beispiel: 



Abfrage-Antwort: 



RATIO 100, 15 
RATIO 10, 2 



RDYsp spO; 
RDYsp spi; 



Abfragesyntax: 

RATIO? 



Abfrage-Antwort: 

RATIO <number>, <number>: 



Beschreibung: 

Wenn eine Messung durchgefiihrt wird Oder das 
GerSIt auf elne Triggerung wartet, wird auf diesen Befehl 
RDY 0 angezeigt. RDY 1 zeigt an, daB Daten zur Verfugung 
stehen. 



Beschreibung: 

Die Argumente zu diesem Befehl stellen den Offset- 
wert und den Skaiierungsfaktor fur die X-B/A Berech- 
nung ein. Siehe CALC RATIO. Das erste Argument stellt 
den Wert des Skalierungsfaktors ein (Taste A auf der 
Frontplatte}; das zweite stellt den Offsetwert ein (Taste B 
auf der Frontplatte). Die Argumente kPnnen jede Zah) 
sein, nur der Skaiierungsfaktor kann nicht 0 sein. 



ADD JUL 1986 



RATIO 



RDY? 



German 3-17 



Programmierung - DM 5010 

RQS 



SEND 



Art: 

Einstellung Oder Abfrage 

Einstell syntax: 

RQS ON 
RQS OFF 

Abfragesyntax; 

RQS? 

Abfrage-Antwort: 

RQS ON; 

RQS OFF; 

Beschreibung 

Dieser Befehl gibt das GerSt fur die Ausgabe von 
Bedienungsabfragen frei. Das Argument OFF sperrt a!le 
Bedienungsabfragen. Weitere Informationen finden Sie 
im Abschnitt Status- und Fehlerbericht. 



Art: 

Ausgang 



Syntax: 

SEND 

SEN 



Antwort: 

<number>: (kein Kopfteit) 



Beispiei: 

±1.E-F99; (Bereichsuberschreitung) 

+3.2E-1-3; 



Beschreibung: 

Dieser Befehl veranlaBt das GerSt die letzte Messung 
auszugeben. 1st keine Messung verfugbar, 16st das Gerat 
eine Messung aus und gibt sie dann aus. 

Wenn die Berechnung COMPARE freigegeben ist, 
(CALC CMPR) zeigt das Gerat mit einer der nachste- 
henden Zahlen die Beziehung zwischen dem Eingang 
und den mit dem Befehl LIMITS eingestellten Grenz- 
werten an: 



3.; Wenn der Eingang Ciber beiden Grenzwerten liegt. 

2.; Wenn der Eingang zwischen den Grenzwerten liegt 
Oder gleich einem der Grenzwerte ist. 

1.; Wenn der Eingang unter beiden Grenzwerten liegt. 



-M.E-1'99; Oder -1.E+99; bei Bereichsuberschreitung. 



German 3-18 



RQS 



SEND 



ADD JUL 1986 



Program mierung - DM 5010 



SET? 

Art: 

Abfrage 

Abfragesyntax: 

SET? 

Abtrage-Antwortbeispiel (Einschalt>Einstellungen) : 

DCV -1.E+3;AVE 2; RATI0 1. 0.;DBR 1.;LIMITS 0., 
0.;CALC OFF;NULL 0.;D1GIT 4.5;LFR OFF;MODE 
RUN;SOURCE FRONT;DT OFF;MONITOR OFF;OPC 
OFF; OVER OFF;USER OFF;RQS ON; 

Beschreibung: 

Auf diesen Befehl warden die derzeitigen Einstel- 
lungen ailer Geratefunktionen angezeigt. Die ISngste 
Anzeige besteht aus 225 Zeichen. 



SOURCE 



Art: 

Einsteliung Oder Abfrage 



Einstellsyntax: 

SOURCE FRONT 
SOURCE REAR 
SOUR FRONT 
SOUR REAR 

Abfragesyntax: 

SOURCE? 

SOUR? 

Abfrage-Antwort: 

SOURCE FRONT; 

SOURCE REAR; 

Beschreibung: 

SOURCE FRONT wahit fur die Messung den Eingang 
auf der Frontplatte; SOURCE REAR wahtt fur die 
Messung die Interface-Anschlusse an der Ruckseite. 




Urn Beschadigungen des Gerates und Betriebs- 
fehler zu vermeiden, darf nicht zwischen dem 
Eingang auf der Frontplatte und den Interface- 
AnschlOssen auf der Ruckseite umgeschaltet 
werden, wenn mehrats 500 V 5 an den Eingangsan- 
schlussen auf der Frontplatte aniiegen. 



ADD JUL 1986 



SET? 



SOURCE 



German 3-19 



Program mierung - DM 5010 



TEST 



Art: 

Ausgang 

Syntax: 

TEST 

Antwort: 

TEST 0; 
TEST 351; 



Beschreibung: 

Zeigt eine Zahl an, welche den Status der Kalibrie- 
rungs-Prufsumme angibt. 0 wenn die Prufsumme richtig 
ist; 351 wenn sie falsch ist. 



USER 

Art: 

Einstellung Oder Abfrage 

Einstellsyntax: 

USER ON 
USER OFF 

Abfragesyntax: 

USER? 

Abfrage’ Antwort : 

USER ON; 

USER OFF; 

Beschreibung: 

Mit diesem Befehl wird die Service-Abfrage der Taste 
INST ID freigegeben Oder gesperrt. Ist sie freigegeben, 
gibt das GerSt SRQ aus, wenn auf der Frontpiatte die 
Taste INST ID gedriickt wird. 



German 3-20 



TEST 



USER 



ADD JUL 1986 



Program mierung - DM 5010 



MiTTEILUNGEN UNO 
KOMMUNIKATIONS-PROTOKOLL 



Befehis-Trennzeichen 

Eine Mitteilung besteht aus einem, Oder einer Reihe 
von Befehlen und einem Endezeichen. Bei Mitteilungen, 
die aus mehreren Befehlen bestehen, mussen die 
Befehle durch Strichpunkte getrennt sein. Ein Strich- 
punkt am Ende einer Mitteilung ist zusatzlich. So ist z. B., 
jede der nachstehenden Zeiien eine Mitteilung. 



IN IT 

TEST;INIT;RQS ON;USER OFF;ID?:SET? 
TEST; 



Mitteilungs-Endezeichen 

Mitteilungen kOnnen mit EOi Oder dem ASClI-Zeichen 
LF beendet sein. Einige Controller machen EOI mit dem 
letzten Oaten- Byte gettend ; andere verwenden nur LF als 
Endezeichen. Das Gerat kann intern so eingestellt 
werden, daB es beide Endezeichen annimmt. Wird EOI 
ONLY als Endezeichen gewahit, interpretiert das Gerat 
den Empfang eines Oaten-Bytes mit EOI als Ende der 
Eingangsmitteilung; es macht dann auch EOI mit dem 
letzten Byte der Ausgangsmitteilung geltend. Bel der LF/ 
EOI Einstellung, interpretiert das Gerat das LF-Zeichen 
ohne EOI (Oder irgendein Datenbyte mit EOI) als Ende 
einer Eingangsmitteilung; es Obertragt CR (carriage 
return) gefoigt von „line feed" (LF mit EOI), urn Ausgangs- 
mitteilungen zu beenden. Servicepersonai findet Infor- 
mationen iiber die Einstellung des Mitteilungs-Endezei- 
chens im Abschnitt „Wartung“. Beim Versand sind 
TM 5000 Gerate auf EOI ONLY eingestellt. 



Formatierung einer Mitteilung 

Dm verstanden zu werden, mussen Befehle, die an 
TM 5000 Gerate gesendet werden, das richtige Format 
(Syntax) haben; dieses Format ist jedoch flexibel und es 
werden viele Variationen angenommen. Nachstehend 
wird dieses Format und die annehmbaren Variationen 
beschrieben. 



Die Gerate erwarten, daB alle Befehle in ASCII kodiert 
Sind; sie nehmen jedoch groBeund kleine ASCII-Zeichen 
an. Die Datenausgabe erfoigt in groBen Zeichen. 



Wie vorher besprochen, besteht ein Befehl aus einem 
Kopfteil dem, falls erforderlich, Arguments folgen. Ein 
Befehl mit Argumenten muB ein Kopfteil-Endezeichen 
haben, das aus dem Zwischenraumzeichen SPzwischen 
Kopfteil und Argument besteht. 



RQSspON 



Werden zusatzliche Formatlerungszeichen SR CR 
und LF (LF kann zur Formatierung nicht verwendet 
werden, wenn LF/EOI Endezeichen sind) zwischen Kopf- 
teilendezeichen und Argument eingefugt, werden sie 
vom Gerat ignoriert. 



Beispiel 1 : RQSspON; 

Beispiel 2: RQSsp spON; 
Beispiel 3: RQSsp cr lf sp spON 



Im allgemeinen werden diese Formatlerungszeichen 
nach jedem Endezeichen und am Anfang und Ende einer 
Mitteilung Ignoriert. 



spRQSspONicR LF 
SpUSERspOFF 



In der Befehlsliste sind einige Kopfteile und Argu- 
ments in zwei Versionen aufgefuhrt, in der voll ausge- 
schriebenen Form und einer abgekiirzten Form. Das 
Gerat nimmt alle Kopfteile und Arguments an, die zumin- 
dest die in der abgekurzten Form enthaltenen Zeichen 
besitzen; jedes weitere Zeichen muB dem in der voll 
ausgeschriebenen Form entsprechen. Zur Dokumenta- 
tion von Programmen kdnnen der voll ausgeschriebenen 
Form Alphazeichen angehangt werden. Alphazeichen 
kdnnen auch einem Fragekopfteil angehangt werden, 
vorausgesetzt, am Ende steht ein Fragezeichen. 



USER? 

USERE? 

USEREQ? 

USEREQUEST? 



Mehrfachargumente werden durch ein Komma 
getrennt; das Gerat nimmt jedoch aucheinenZwischen- 
raum oder Zwischenraume als Trennzeichen an. 



2,3 

2sp3 

2,sp3 

ANMERKUNG 

Im letzten Beispiel wird der Zwischenraum als 
Formatzeichen angesehen, da erhinterdem Komma 
steht (dem Argument-Trennzeichen). 

Zahien-Formate 

Das Gerat akzeptiert die nachstehenden Zahlenarten 
fur jedes numerische Argument. 



ADD JUL 1986 



German 3-21 



Programmierung - DM 5010 



• Ganze Zahlen mit und ohne Vorzeichen (einscbt. 
+ 0 und - 0). Ganze Zahlen ohne Vorzeichen 
werden als positiv angesehen. Bespiele: +1, 2, — 1, 
- 10 . 

• Dezimalzahlen mit und ohne Vorzeichen. Dezimal- 
zahlen ohne Vorzeichen werden als positiv ange- 
sehen. Beispieie; —3.2, +5.0, 1.2. 

• Gleitkommazahlen in wissenschaftlicher 
Schreibweise. Beispieie: +1.0E-2, 1.0E-2, 1.E-2, 
0.01E+0. 

Die hdchste, als Argument akzeptierbare Zahl ist 
±3,4028E+38. 

Mitteiiungs-Protokoll 

Wenn das Gerfit eine Mitteiiung erhSIt, wird sie im 
Eingangs-Puffer gespeichert, bearbeitet und ausge- 
fuhrt. Die Bearbeitung einer Mitteiiung besteht aus der 
Dekodierung von Befehlen, dem Erkennen von Trenn- 
zeichen und dem UberprCifen der Syntax. Bei Einstellbe- 
fehlen speichert das Gerat die angezeigten Anderungen 
im Einstell-Pufler. Wird wShrend der Bearbeitung ein 
Fehter entdeckt, gibt das GerSt eine Bedienungsab- 
frage (SRQ) aus, ignoriert den Rest der Mitteiiung und 
stellt den Einstell-Puffer zuruck. Durch RQckstellen des 
Einstell-Puffers werden unerwunschte ZustSnde 
vermieden, die dadurch entstehen kpnnen, daB einige 
Einstellbefehie der gleichen Mitteiiung ausgefuhrt 
werden und andere nicht. 

Die Ausf Lihrung einer Mitteiiung besteht in der Durch- 
fuhrung der TStigkeiten, die durch ihre Befehle spezifi- 
ziert sind. Bei Einstellbefehlen bedeutet das die Neu- 
Einstellung der GerSteeinstellungen und die Aufnahme 
dieser neuen Einsteliungen in den Einstell-Puffer. Die 
Einstellbefehie werden in Gruppen ausgefOhrt - d.h., 
eine Reihe von Einstellbefehlen wird bearbeitet und in 
den Einstell-Puffer aufgenommen.bevor die Ausfuhrung 
erfoigt. Das erlaubt dem Anwender einen neuen Status 
zu spezifizieren, ohne darauf zu achten, ob eine beson- 
dere Reihenfolge GDItigkeit hat. Die Durchfuhrung der 
Einstellung erfoigt, wenn das GerSt das Mitteilungs- 
Endezeichen, einen Abfragebefehl Oder einen Betriebs- 
befehi in einer Mitteiiung bearbeitet. 

Bearbeitet das GerSt einen Abfragebefehl in einer 
Mitteiiung, dann werden zuerst alie vorhergehenden 
Einstellbefehie ausgefuhrt, urn den Status des Gerates 
auf den neuesten Stand zubringen. Dann wird der Abfra- 
gebefehi ausgefuhrt, indem es die entsprechenden 
Daten abrutt uno sie in den Ausgangspuffer gibt. Danach 
wird die Bearbeitung und Ausfuhrung des Rests der 
Mitteiiung fortgesetzt. Wenn das Gerat zum Sprecher 
(talker) gemacht wird, werden die Daten an den 
Controller weitergegeben. 



Wenn das Gerat in einer Mitteiiung einen Betriebsbe- 
fehl bearbeitet, werden vor dem Betriebsbefehl alie 
vorhergehenden Einstellbefehie ausgefuhrt. 



Mehrfach-Mitteilungen 

Der Eingangs-Puffer hat eine begrenzte Kapazitat und 
eine einzelne Mitteiiung kann so lang sein, daB er damit 
ausgefullt ist. In diesem Falle wird ein Teil der Mitteiiung 
bearbeitet bevor das Gerat weitere Daten annimmt. 
Wahrend der Befehlsausfuhrung halt das Gerat zusatz- 
liche Daten zuruck ( durch NRFD) bis im Puffer Platz zur 
Verfugung steht. 



Wenn Platz vorhanden ist, kann das Gerat vor Ausfuh- 
rung der ersten eine zweite Mitteiiung annehmen. Es halt 
jedoch zusatzfiche Mitteilungen mit NRFD zuruck, bis die 
erste Mitteiiung vollstandig durchgefuhrt ist. 



Nachdem das Gerat in einer Mitteiiung einen Abfrage- 
befehl ausgefuhrt hat halt es die Antwort zuruck, bis es 
vom Controller zum Sprecher (talker) gemacht wird. 
Empfangt das Gerat eine neue Mitteiiung bevor der 
gesamte Ausgang der vorherigen Mitteiiung ausgelesen 
ist, macht es vor der Ausfuhrung der neuen Mitteiiung 
den Ausgangs-Puffer frei. Dadurch wird verhindert, daB 
der Controller unerwunschte Daten aus alten Mittei- 
lungen erhait. 



Eine weitere Situation kann das Gerat veranlassen 
den Ausgang zu tPschen. Die Ausfuhrung einer langen 
Mitteiiung kann dazu fuhren, daB Eingangs- und 
Ausgangs-Puffer voll werden. Wenn dies geschieht, 
kann das Gerat die Ausfuhrung der Mitteiiung nicht 
beenden weil es darauf wartet, daB der Controller die 
erzeugten Daten ausliest; der Controller kann die Daten 
aber nicht auslesen, weil er mit der Ubertragung seiner 
Mitteiiung noch nicht zu Ende ist. Da der Eingangs-Puffer 
voll ist und das Gerat den Rest der Mitteiiung des 
Controllers mit NRFD zuruckhait, hangt das System in 
der Schwebe weil Controller und Gerat aufeinander 
warten. Erkennt das Gerat diesen Zustand, erzeugt es 
eine Fehlermeldung, gibt ein SRQ aus und Idscht die 
Daten im Ausgangs-Puffer. Das ermoglicht dem 
Controller den Rest der Mitteiiung zu ubertragen und der 
Controller wird informtert, daB die Mitteiiung ausgefuhrt 
und der Ausgang geloscht wurde. 

Ein TM 5000 Gerat kann als Sprecher (talker) adres- 
siert werden, ohne das es eine Mitteiiung erhait, die 
angibt, was es ausgeben soil. In diesem Falle geben 
Erfassungsgerate (Zahler und Multimeter) eine Messung 
aus wenn sie beendet ist. Ist keine Messung fertig, geben 
sie eine Byte-Mitteilung zuruck bei der alie Bits gleich 1 
Sind (mit Endezeichen); andere TM 5000 Gerate geben 
nur diese Mitteiiung zuruck. 

Geratereaktionen auf IEEE 488 Interface Mittei- 
lungen 

Interface Mitteilungen und ihre Auswirkungen auf die 
Interface Funktionen des Gerates sind im IEEE Standard 
488-1978 defieniert. Abkurzungen dieser Norm werden 
in dieser Diskussion verwendet, in der die Auswirkungen 



German 3-22 



ADD JUL 1986 




Programmierung - DM 5010 



der Interface Mitteiiungen auf die Betriebsweise des 
GerStes beschrieben werden. 



UNL - Uniisten (63 mit ATN) 

UNT - Untalk (95 mit ATN) 

Wird der Befehl UNL empfangen, geht die Hbrer 
(listener) Funktion des GerStes in ihren Ruhezustand 
(nicht adressiert). Im Ruhezustand nimmt das GerSt 
keine Befehle vom GPIB an. 



Die Sprecher (talker) Funktion geht in ihren Ruhezu- 
stand, wenn das GerSt den Befehl UNT empfangt. In 
diesem Zustand kann das Gerat ilber den GPIB keine 
Daten ausgeben. Wenn Talker und Listener Funktion im 
Ruhezustand sind, ist das Lampchen „ADRESSED" aus. 
1st das Gerat entweder Talk- Oder Listen adressiert, ist 
das Lampchen an. 



IFC - Interface Clear (GPIB Stift 9) 

Diese einzeilige Mitteilung hat die gieiche Auswir- 
kung wie die UNL und UNT Mitteiiungen. Das Lampchen 
ADRESSED auf der Frontplatte ist aus. 



DCL - Device Clear (20 mit ATN) 

Die Mitteilung Device Clear stellt die Kommunikation 
zwischen Controller und Gerat wieder her. Als Antwort 
auf DCL Ibscht das Gerat alle Eingangs- und Ausgangs- 
mitteilungen und jede nicht ausgefuhrte Einstellung im 
Einstellungs-Puffer. Ebenso werden alle auf Abruf 
warlenden Fehler und Ereignisse gelbscht, mit 
Ausnahme des Einschalt-Ereignisses. Wenn aus irgend- 
einem anderen Grund als dem Einschaitvorgang ein 
SRQ ausgegeben ist, wird beim Empfang von DCL das 
SRQ gelOscht. 

SDC - Selected Device Clear (4 mit ATN) 

Diese Mitteilung erfullt die gieiche Funktion wie DCL; 
jedoch nur Gerate die als Listener adressiert sind 
antworten auf SDC. 

GET - Group Exekute Trigger (8 mit ATN) 

Das Gerat spricht auf <GET> nur an, wenn es als 
Listener adressiert ist und die Gerate-Triggerfunktion 
durch den Befehl Device Trigger (DT) freigegeben 
worden ist. Wenn die DT Funktion gesperrt ist (DT OFF), 
das Gerat auf Frontplattenbedienung eingestellt ist Oder 
beim Empfang von <GET> eine Mitteilung ausfuhrt, wird 
die Mitteilung <GET> ignoriert und ein SRQ erzeugt. 

SPE - Serial Poll Enable (24 mit ATN) 

SPD - Serial Poll Disable (25 mit ATN) 

Die Mitteilung SPE gibt das Gerat fur die Ausgabe des 
Serial Poll Status Byte frei, wenn es als Talker adressiert 
ist. Durch die Mitteilung SPD wird das Gerat auf seinen 



normalen Betrieb, die Sendung von Daten aus dem 
Ausgangs-Puffer, zuriickgeschaltet. 



MLA - My Listen Address 
MTA - My Talk Address 

Die primaren Listen- und Talk Adressen werden durch 
die GPIB Adresse desGerateserstellt (intern eingestellt). 
Die jeweiiige Einstellung der GPIB Adresse wird auf der 
Frontplatte dargestellt wenn der Knopf ID gedriickt wird. 
Wenn das Gerat Talk oder Listen adressiert ist, leuchtet 
das Lampchen ADDRESSED auf der Frontplatte. 



LLO - Local Lockout (17 mit ATN) 

LLO wird von dem Gerat mit einem Umschaitvorgang 
beantwortet - von LOGS auf LWLS Oder von REMS auf 
RWLS. 



REN - Remote Enable 

Wenn REN aktiviert ist und das Gerat hat seine Listen 
Adresse empfangen, schaltet es auf einen Fernbedie- 
nungsstatus urn (von LOCS auf REMS Oder von LWLS auf 
RWLS). Ist REN nicht aktiv, also falsch, wird aus jedem 
Status eine Umschaltung auf LOCS veranlaBt; das Gerat 
bleibt solange in LOCS wie REN falsch ist. 



Eine REN-Umschaltung kann nach dem Beginn einer 
Mitteilungsbearbeitung vorkommen. In diesem Falle wird 
die Ausfuhrung der in Bearbeitung befindlichen Mittei- 
lung durch eine Umschaltung nicht beeinfluSt. 



GTL - Go To Local (1 mit ATN) 

Nur Listen-adressierte Gerate antworten auf GTL 
durch Umschalten auf Eigen bedienung. Umschaltungen 
von Fern- auf Eigenbedienung durch GTL beeinflussen 
nicht die Ausfuhrung von Mitteiiungen, die beim 
Empfang von GTL bearbeitet werden. 



Remote-Local Operation 

Die vorstehende Diskussion der Interface-Mittei- 
lungen beschreibt die Statusumschaltungen durch GTL 
und REN. Die meisten Bedienungselemente auf der 
Frontplatte verursachen eine Umschaltung von REMS 
auf LOCS durch eine Mitteilung, die return-to-local (rtl) 
genannt wird. Diese Umschaltung kann wahrend der 
Mitteilungsausfuhrung vorkommen; aber im Gegensatz 
zu GTL- und REN-Umschattungen wird durch eine 
Umschaltung, die durch rtl veranlasst wurde, die Mittei- 
lungsausfuhrung beeinfluBt. In diesem Fall erzeugt das 
Gerat einen Fehler, wenn es irgendwelche nicht ausge- 
fuhrte Einstell- oder Betriebsbefehle gibt. Bedienungs- 
elemente auf der Frontplatte, die nur die Darsteilung 
andern (wie INST ID) beeinflussen die Fern- Eigenbedie- 
nungszustande nicht - nur Bedienungselemente, die 
Einstellungen andern, kbnnen rtl gettend machen. 



ADD JUL 1986 



German 3-23 




Program mterung - DM 5010 



Rtl wird ungultig nach Anderung der Einstellungen auf 
der Frontplatte. Da rtl Umschaltungen auf REMS verhin- 
dert, gibt das GerSt kein rtl aus, wenn eine Folge von 
Tasteneingaben nicht in angemessener Zeit beendet 
wird (etwa 5 bis 10 Sekunden). 



Wenn das Datenbit 8 eingestellt ist, befdrdert das STB 
Statusinformation, die durch die Bits 1 bis 4 gekenn- 
zeichnet sind, Bit 4 wird eingestellt, wenn das DM 5010 
auf eine Triggerung wartet; Bit 3 zeigt an, daB eine 
Messung zur Verfugung steht. 



Das Gerat behStt eine Auflistung seiner Einstellungen 
im Einstell-Puffer, die durch neue Einstellungen auf der 
Frontplatte Oder vom Controller aktualisert werden. 
Ferner werden die Einstellungen auf der Frontplatte 
durch Befehle auf den neuesten Stand gebracht. Die 
GerSteeinstellungen werden durch Umschaltungen 
zwischen den vier remote-local Zustanden nicht beein- 
fluBt. Bel REMS Oder RWLS ist die Anzeige REMOTE 
erleuchtet. 

Local State (LOGS) 

In LOGS werden die Einstellungen des GerStes durch 
die Bedienungsperson iiber die Bedienungselemente 
auf der Frontplatte gesteuert. In diesem Status werden 
nur Bus-Befehle ausgefuhrt, die die Einstellungen des 
Gerates nicht verSndern (Abfragebefehle); alle anderen 
Bus-Befehle (Einstellung und Betrieb) erzeugen einen 
Fehler, da ihre Funktionen uber die Frontplatte gesteuert 
werden. 

Local With Lockout State (LWLS) 

Das GerSt arbeitet in gleicher Weise wie bei LOGS mit 
der Ausnahme, daB rtl keine Umschaltung auf Fernbe- 
dienung beinhaltet. 

Remote State (REMS) 

In diesem Status fuhrt das GerSt alle Gerfitebefehle 
aus. Bei Befehlen mit Anzeigen auf der Frontplatte, wird 
nach Ausfuhrung dieser Befehle die Anzeige auf der 
Frontplatte aktualisiert. 

Remote With Lockout State (RWLS) 

Die Arbeitsweise des Gerates entspricht der bei 
REMS mit der Ausnahme, daB die Mitteiiung rtl ignoriert 
wird. 



STATUS- UND FEHLERBERICHT 

Uber die Funktion Bedienungsabfrage (definiert in der 
IEEE-488 Norm) kann das Gerat den Controller darauf 
aufmerksam machen, daB es Bedienung bendtigt. Dieser 
Bedienungsruf dient auch zur Anzeige, daB ein 
bestimmtes Ereignis (eine Stausanderung Oder ein 
Fehler) aufgetreten ist. Um den Ruf zu bedienen, fuhrt der 
Controller eine Serienabfrage durch; darauf antwortet 
das Gerat mit einem Statusbyte (STB) das anzeigt, ob es 
eine Bedienung verlangt hat oder nicht. Das STB kann 
auch eine begrenzte Menge an Information uber den 
Bedienungsruf enthalten. Das Format der im STB 
kodierten Information wird in Bild 3-2 dargestellt. 



Da die vom STB befOrderte Information uber ein 
Ereignis begrenzt ist, sind die Ereignisse in Klassen 
aufgeteilt; die Klasse wird im Statusbyte angegeben. Die 
Ereignisklassen werden wie folgt definiert: 



COMMAND Das Gerat hat einen Befehl empfangen, 
ERROR den es nicht verstehen kann. 

EXECUTION Das Gerat hat einen Befehl empfangen, 
ERROR den es nicht ausfuhren kann. verur- 
sacht durch Arguments auBerhalb des 
Bereichs Oder widerspruchliche 
Einstellungen. 

INTERNAL Das Gerat hat ein Hardware- Oder Firm- 
ERROR ware-Problem entdeckt, das den 
Betrieb verhindert. 



SYSTEM 

EVENTS 

INTERNAL 

WARNING 



DEVICE 

STATUS 



Ereignisse, die fur alle Gerate in einem 
System gleich sind (z. B. Power on, User 
Request usw.). 

Dadurch wird angezeigt, daB das Gerat 
ein Problem entdeckt hat. Das Gerat 
bleibt in Betrieb, aber das Problem sollte 
berichtigt werden (z. B. die Kalibrierung 
stimmt nicht). 

Vom Gerat abhangige Ereignisse. 



r-{ 



If 0. STB indicates event class 
It 1. STB indicates device status 



— 1 if requesting service 

1 —— 1 indicates an abnormal event 



- 1 if message processor is busy 



' I I 

DATA BITS 

' ! I 

I t I 



Define Events 



DECIMAL 



Status Byte 
(Example) 


8 


7 


6 


5 


4 


1 3 

1 


2 


1 




Not 

busy 


Busy 


Power 

On 


0 


1 


0 


X 


0 


0 


0 


1 




65 


81 



Blld 3-2. Definition der STB Bits 



Das Gerat kann zusatzliche Informationen uber viele 
der Ereignisse iiefern, besonders uber die im Statusbyte 
berichteten Fehler. Nach der Feststellung, daB das Gerat 
nach Service gerufen hat (durch PrCifung des STB), kann 
der Controller mit einer Fehleranfrage „ERR?“ weitere 
Informationen abfragen. Das Gerat antwortet mit einem 
Code, der das Ereignis definiert. Diese Codes werden in 
Tabelle 3-1 beschrieben. 



German 3-24 



ADD JUL 1986 




Programmierung - DM 5010 



Ta belie 3-1 

FEHLERABFRAGE UND STATUSIN FORMATION 



Beschreibung 


Antwort 
auf Fehier- 
abfrage 


Antwort 
■ auf Serial 
Poll® 


Befehls-Fehler: 






Ungultiges Befehls-Kopfteil 


101 


97 


Fehler im Kopfteil- 






Trennzeichen 


102 


97 


Fehler im Argument 


103 


97 


Fehler im Argument- 






Trennzeichen 


104 


97 


Argument fehit 


106 


97 


Ungultiges Mitteilungs- 






Endezeichen 


107 


97 


Ausfuhrungs-Fehler: 






Bei Eigenbedienung nicht 






ausfuhrbar 


201 


98 


Einstellungen durch rtl 






verloren 


202 


98 


Ein-undAusgangs-Puffervoll 


203 


98 


Argument auBerhalb des 






Bereichs 


205 


98 


Gruppentriggerung ignoriert 


206 


98 


Nicht kalibriert 


231 


98 


AuBerhalb der Katibrier- 






Oder Null-Fahigkeit 


232 


98 


Interne Fehler: 






Unterbrechungs-Fehler 


301 


99 


System-Fehler 


302 


99 


Rechen-Fehler 


303 


99 


Wandler-Ausfall 


311 


99 


Frontplatten-Ausfall 


317 


99 


Schlechte Ohm- 






Kalibrierungskonstante 


318 


99 


Kalibrier-Prufsummenfehler 


351 


99 


Normale Ereignisse 






System-Ereignisse; 






Einschaitvorgang 


401 


65 


Arbeit beendet 


402 


66 


ID Anwenderabfrage 


403 


67 


Interne Warnung: 






Bereichsuberschreitung 


601 


102 


Geratestatus^: 






Messung verfugbar 


0 


132 


Warten auf Triggerung 


0 


136 


Messung verfugbar und 






Warten auf Triggerung 


0 


140 


Unterhalb der Grenzwerte 


701 


193 


Oberhalb der Grenzwerte 


703 


195 


Keine Fehler Oder Ereignisse 


0 


128 



^WenndasGeratarbeitet,antworletesmiteinerZahl,dieum16hdher 
ist als die angegebene Zahl. 

^Bei Controllern der Serie 4050 wird der Befehl POLL fiir Serial Poll- 
Antworten zwischen 128 und 192 mil 0 beantwortet; man erhalt die 
aufgelisieten Antworlen durch die Statements WBYTE und RBYTE. 



Tabelle 3-2 

FRONTPLATTEN UND FEHLERCODES 



Darstellung 


Beschreibung 




Ausfuhrungs-Fehler 




205 


Argument auBerhalb des Bereichs 




231 


Nicht kalibriert 




232 


AuBerhalb der Kalibrierfahigkeit 




Interne Fehler 




303 


Rechen-Fehler 




311 


Wandler-Ausfall 




317 


Fronplatten-Ausfall 




318 


Schlechte Ohm-Kalibrierkonstante 




340 


RAM Fehler (positiv) 




341 


RAM Fehler (negativ) 




351 


Kalibrier-Prufsummenfehler 




372 


ROM Piazierungsfehler 


COOO 


373 


ROM Piazierungsfehler 


DOOO 


374 


ROM Piazierungsfehler 


EOOO 


392 


ROM Prufsummenfehler 


COOO 


393 


ROM Prufsummenfehler 


DOOO 


393 


ROM Prufsummenfehler 


EOOO 


395 


ROM Prufsummenfehler 


FOOO 


321 


Zeigt an, daB der GPIB Adressenschalter 
(Signatur-Analyse) freigegeben Ist 



Wenn mehr als ein Ereignis zu berichten ist, gibt das 
GerSt weiter SRQ aus bis alie Ereignisse berichtet sind. 
Nach dem Bericht uber die Serienabfrage wird jedes 
Ereignis automatisch gelbscht. Die Interface-Mitteilung 
Device Clear (DCL) kann zur LOschung aller Ereignisse, 
mit Ausnahme von Power on, verwendet werden. 



Zur Steuerung des Berichts einiger individueller 
Ereignisse und fur das Sperren aller Bedienungsrufe 
stehen Befehle zur Verfugung. So bietet z. B. der Befehl 
User Request (USER) tndividuelle Steuerung uber den 
Bericht der Anwenderabfrage, die nach Driicken der 
Taste INST ID auf der Frontplatte auttritt. Der Befehl 
Request for Service (ROS) steuert, ob das Gerat irgend- 
ein Ereignis mit SRQ berichtet. 



RQS OFF halt alle SRQ’s zuruck (auBer Power on), so 
daB die Abfrage ERR? in dieser Betriebsart dem 
Controller ermbglicht, Ereignisse herauszufinden, ohne 
zuerst eine Serienabfrage durchzufuhren. Bei RQS OFF 
kann der Controller jederzeit die Abfrage ERR? stellen 
und das Gerat antwortet mit einem Ereignis, das darauf 
wartet berichtet zu werden. Der Controller kann durch 
Senden der Fehlerabtrage alle Ereignisse Idschen, bis 
ein Nuilcode (0) erscheint, oder alle Ereignisse, auBer 
Power on, durch die Interface-Mitteilung DCL Idschen. 



Bei RQS OFF kann der Controller eine Serienabfrage 
durchfuhren, wobei das Statusbyte aber nur gerateab- 
hangige Statusinformation enthait. Bei RQS ON enthait 
das STB die Kiasse des Ereignisses und einen darauffol- 
genden im STB berichteten Fehler. 



ADD JUL 1966 



German 3-25 





Programmierung - DM 5010 

DAS SENDEN VON INTERFACE 
STEUER-MITTEILUNGEN 

Die nachstehenden Controller-Befehie gelten fur 
TEKTRONIX-Controiler der Serie4050 und reprdsentativ 
fur andere Controller. 



GerStebefehle werden an das DM 5010 in ASCII durch 
An\wendung der PRINT Statements Cibertragen. Als 
Antwort auf INPUT Statements vom Controller gibt das 
DM 5010 Daten aus. Zum Beispiel: 

PRINT @16:„SET?“ 

INPUT® 16:A$ 

wobei 16 die GP1B-Prim&radresse des DM 5010 1st. 



jnterface-Steuermitteilungen kOnnen mit den 
Controller-Befehlen WBYTE an das DM 5010 gesendet 
v^erden. In den folgenden Beispielen sind A und B die 
Talk- und Listenadressen des DM 5010. Fur A die Prim&r- 
adresse plus 32; fur B die Primaradresse plus 64. 



Listen (MLA) 

Unlisten (UNL) 

Talk (MTA) 

Untalk (UNT) 

Device Clear (DCL) 

Selected Device Clear (SDC) 
Go To Local (GTL) 

Remote With Lockout (RWLS) 
Local With Lockout (LWLS) 
Group Execute Trigger <GET> 
Serial Poll Enable (SPE) 

Serial Poll Disable (SPD) 



WBYTE @ A: 
WBYTE @ 63: 
WBYTE @ B: 
WBYTE @ 95: 
WBYTE @ 20: 
WBYTE @ A, 4: 
WBYTE® A, 1: 
WBYTE @ A, 17 
WBYTE @ 17: 
WBYTE @ A, 8: 
WBYTE @24: 
WBYTE @ 25: 



Informationen uber die Anwendung des RBYTE State- 
ments enthait das Handbuch fur Controller der Serie 
4050. 



EINSCHALT- (ANFANGS-) BEDINGUNGEN 

Beim Einschalten fuhrt der Microprozessor des 
DM 5010 eine Diagnoseroutine (Selbsttest) durch, urn 
die Funktion des ROM und RAM zu prufen. Wird kein 
Fehler entdeckt, schaltet das GerSt auf Eigenbedienung 
(LOGS) mit den in Tabelle 3-3 aufgelisteten Einstel- 
lungen um. Die SRQ Leitung am GPIB ist ebenfalls 
geltend gemacht. 



Die in Tabelle 3-3 enthaltenen Einstellungen werden 
vom DM 5010 auch angenommen, wenn es den Befehl 
INIT ausfuhrt. Die Bereichseinstellung fur die Funktion 
DCV gilt nurfur die erste Messung, da das Gerat im AUTO 
Bereich arbeitet. 



Tabelle 3-3 

DM 5010 EINSCHALT-EINSTELLUNGEN 



Kopfteil 


Argument 


AVE 


2 


CALC 


OFF 


DBR 


1 


DCV 


-1.E-F3 


DIGIT 


4.5 


DT 


OFF 


LFR 


OFF 


LIMITS 


0,0 


MODE 


RUN 


MONITOR 


OFF 


NULL 


0 


OPC 


OFF 


OVER 


OFF 


RATIO 


1,0 


RQS 


ON 


SOURCE 


FRONT 


USER 


OFF 



German 3-26 



ADD JUL 1986 




Programmterung - DM 5010 




ADD JUL 1986 



German 3-27 











































































































































Program mierung - DM 5010 



Programm Beispiele 

Sprecher/Horer Programm fur Controller 
der TEKTRONIX Serie 4050. 



100 R^n DnSOiO Talker /L latener Proaree 
110 REn OnSOlO Priaaru Addresa ^ 16 
120 INIT 

130 ON SRQ THEN 260 
160 Din AX200) 

150 PRINT "Enter nesaaae(a)i 
160 INPUT Ci 
170 PRINT ei6iC$ 

IBD REn Check for aueries 

190 IF P0S(C»,"?",1X>0 THEN 220 

200 REn Check for 'SEND' 

210 IF P0S<Ci,**SEND",l)»0 THEN 150 

220 REn Inrui froa device 

230 INPUT B16IA4 

260 PRINT A4 

250 00 TO ISO 

260 REn Serial POLL Routine 
270 POLL XfYll6 
280 PRINT "Statua BuleJ "JY 
290 RETURN 



Diese Programm-Beispiele ermOglichen einem 
Anwender Geratebefehle an das DM 5010 zu senden, urn 
GerSteeinstellungen zu andern und die erzeugten Daten 
abzurufen. 



Weitere Unterstutzung bei der Entwicklung spezieller, 
anwendungsorientierter Software ftnden Sie in den 
nachstehenden TEKTRONIX Handbuchern. 



070-3985-GPIB Programming Guide. Dieses Hand- 
buch wurde speziell fur die Anwendung dieses 
Gerates in IEEE-488 Systemen geschrieben. Es 
enthait Programmierungsanleitungen, Tips und einige 
spezielle Programmbeispiele. 

070-2270-00-4051 GPIB Hardware Support Manual. 
Dieses Handbuch bietet eine eingehende Diskussion 
des IEEE-488 Bus Betriebs, ErklSrungen der Bus 
Timing Details und fruhe Bus Interface-Schaltungen. 



Sprecher/Horer Programm fur Controller 
der TEKTRONIX Serie 4040. 



90 REM DM5010 TALKER/LISTENER PROGRAM 
95 REM DM5010 PRIMARY ADDRESS » 16 
100 OPEN tl "GPIB<PRI*16.E0f1*<>) •’ 

110 ON SRQ TfCN GOSUB 240 

115 ENABLE SRQ 

120 DIM Af TO C200> 

130 PRINT "ENTER COMMANOCS) / QUERY *’ 

140 INPUT Cf 

145 IF C»*"EX" THEN GOTO 230 

150 PRINT #1 CS 

160 REM CHECK FOR QUERIES 

170 IF POS<C$/"?*M)<>0 THEN GOTO 200 

180 IF POS<C$."SEND''»n=0 THEN GOTO 13G 

190 REM INPUT FROM OEUICE 

200 INPUT »1 A$ 

210 PRINT M 
220 GOTO 130 
230 STOP 

240 POLL SB.P*Sil6 

250 PRINT "SRO SEEN, STATUS BYTE WAS ".SB 
260 RETURN 



070-2058-01 - Programmieren in BASIC. 

070-2059-01 - Graphisches Programmieren in 
BASIC. 

062-5971-01 - Programmierungshitfen Serie 4050, T1 
(incL Software). 

062-5972-01 -Programmierungshilfen Serie 4050, T2 
(inci. Software). 

070-2380-01 - 4907 File Manager Betriebsanleitung. 

070-2128-00 - 4924 Anwender-Handbuch. 

070-1940-01 - Graphisches System Serie 4050 
Betriebsanleitung. 

070-2056-01 - Graphisches System Serie 4050 
Bezugshandbuch. 

070-3918-00 - 4041 Betriebsanleitung. 

061-2546-00 - 4041 Programmierungs-Handbuch. 



German 3-28 



ADD JUL 1986 




Programmierung > DM 5010 



PROGRAMMIERUNGSHILFEN 



Diese Besprechung der Programmierungsvorschiage 
und die Programmbeispiele dienen als Hilfe bei der 
Entwicklung von Programmen zur Steuerung des 
DM 5010. Die Programmbeispiele warden mit einem 
Controller der Serie 4050 und dem DM 5010 entwickelt; 
bei einigen Beispielen warden auch andere TM 5000 
Cerate verwendet. 



Ein erster Programmierungsvorschlag betrifft die 
Einstellung der Betriebsartenschalter des DM 5010 fur 
das Mitteilungs-Endezeichen, die GPiB Adresse und die 
Betriebsart Talk Only. Zur Bestimmung ihrer derzeitigen 
Einstellung drucken Sie die Taste INST ID. Die darge- 
stellte Zahl ist die gewahtte GPIB Primaradresse; das 
Dezimalzeichen ganz rechts leuchtet auf, wenn als 
Mitteilungs-Endezeichen LF/EOI gewahit ist; das Minus- 
zeichen leuchtet auf, wenn die Betriebsart Talk Only 
gewahit ist. Hinweise zur Anderung der Schaltereinstel- 
lungen findet qualifiziertes Servicepersonal in diesem 
Handbuch im Abschnitt „Wartung‘‘. 



in den Programmbeispielen ist die Variable D der GPIB 
Primaradresse des DM 5010 zugeordnet von der ange- 
nommen wird, daB sie auf das Dezimaiaquivalent 16 
eingestellt ist. Die Verwendung einer Variablen eliminiert 
die Wiederholung der Adressen-Dezimalzahl und 
ermogilcht die einfache Anderung der Adresse im 
Programm. 



Behandlung von Service-Abfragen (SRQ) 

Beim Einschalten macht das DM 5010 SRQ geltend. 
Das Einschalt SRQ ist eingesetzt, urn den Controller zu 
informieren, wenn die Spannungsquelle wahrend der 
Programmbearbeitung unterbrochen wird, da dies die 
richtige Programmausfuhrung beeinflussen kann. Wenn 
RQS freigegeben ist, kann das DM 5010 auch fur andere 
Ereignisse SRQ geltend machen (siehe Tabeiie 3-1, 
Fehlerabfrage und Status-information). Einige 
Controller kOnnen SRQ's ignorieren; andere Controller 
mussen alle SRQ’s bedienen. Wenn SRQ's im Programm 
bedient werden mussen, stellen Sie sicher, daB seine 
Unterbrechung freigegeben wird. 



Interrupt Handler 

Eine Interrupt gesteuerte Routine zur Bedienung von 
SRQ’s, die wahrend der Programmbearbeitung auftre- 
ten. Ein Interrupt-Handler besteht im wesentlichen aus 
einem ON SRQ Statement am Anfang des Programms 
und einer Serial Poll-Routine irgendwo im Programm. 
Das ON SRQ Statement richtet die Programmsteuerung 
auf die Serienabfrage-Routine wenn ein SRQ auftritt. 
Siehe Programmbeispiel 1 Oder 3, Zeile 110 fur ON SRQ 
Statements. Wenn ein SRQ Interrupt auftritt, fiihrt der 



Controller die Serienabfrage-Routine durch. In einem 
POLL Statement gibt die erste Variable die Gerateposi- 
tion in der Liste der GPIB Adressen an; die zweite 
Variable gibt das Statusbyte an. Eine Serienabfrage 
eines Cerates am Bus wird in Beispiel 3, Zeile 1000 illu- 
striert. In Beispiel 4 fragt Zeile 400 drei Cerate auf dem 
Bus ab und verwendet die Variable fur jede Gerate- 
adresse. In jedem Beispiel zeigt POLL das Statusbyte 
des Gerates an, das SRQ geltend gemacht hat. 
Programmbeispiel 9 Zeilen 150, 160 und 170 faBt eine 
Serienabfrage mit den Statements WBYTE und RBYTE 
der Serie 4050 zusammen. 



Die Serienabfrage-Routine kann zur Dekodierung von 
Information iiberdasSRQausIbsende Ereigniserweitert 
werden. Die Zeilen 510 und 520 in Beispiel 1 lOschen das 
Arbeitsbit im Statusbyte: die Zeilen 530 bis 560 deko- 
dieren das Statusbyte und die Zeilen 1000 bis 7030 
drucken die Ereignisklasse aus. 



Programmbeispiel 7 verwendet das MONITOR SRQ 
urn Messungen herauszufinden, die oberhalb Oder 
unterhalb der mit dem Befehl LIMITS eingestellten 
Grenzwerte liegen. DieZeilen 1020, 1040, und 1045 deko- 
dieren das Statusbyte und veranlassen den entspre- 
chenden Ausdruck auf dem Controllerdisplay. 



In Programmbeispiel 2, Zeile 130 fragt der Controller 
das GerSt an Adresse 16 ab, urn das Einschalt-SRQ zu 
Ibschen. Zeile 116 schaltet RQS ab, urn weitere SRQ’s zu 
verhindern. Wenn RQS OFF ist, kann die Abfrage ERR? in 
das Programm eingeftigt werden, urn wenn es erforder- 
lich ist, einen Ereignisstatus zu bestimmen. 



Frontplatten-Abschaltung 

Die Bedienung von der Frontplatte kann abgeschaltet 
werden, so daB nur der Controller GerSteeinstellungen 
Sndern kann. Zur Abschaltung der Frontplatte machen 
Sie zuerst REN geltend. Solange Abschaltung der Front- 
platte gewunscht wird, muB REN gultig bleiben. Bei 
Controllern der Serie 4050 macht das RUN Statement 
automatisch REN geltend; das Statement END hebt REN 
auf. Dann sender Sie die Interface-Mitteilung LLO (Dezi- 
maiaquivalent 17 mit ATN). Bei der Serie 4050 geschieht 
dies mit dem Statement WBYTE. Zuletzt adressieren Sie 
das GerSt, indem Sie einen Einstell- Oder Abfragebefehl 
mit dem Statement PRINT @ D: oder nur die Listen- 
Adresse mit einem WBYTE Statement senden. Nach 
diesen drei Schritten ist die FrontpaItte abgeschaltet 
und bleibt so, bis REN falsch wird Oder eine <GTL> 
Mitteilung (DezimaISquivalent 1 mit ATN) gesendet wird. 
Siehe Programmbeispiel 4, Zeilen 150 und 190; und 
Beispiel 5, Zeilen 130 und 220. 



REV JUL 1986 



German 3-29 



Programmierung - DM 5010 



Programmierung - DM 5010 



Die Verwendung von INIT 

Die Verwendung des Befehls INIT vereinfacht das 
Programm, da man gewOhnlich weniger Befehie zur 
Einstellung des GerStestatus benOtigt als fur die indivi- 
duelle Spezifizierung aller Einstellungen. Im Programm- 
beispiel 6, Zeile 150 empfangt das DM 5010 den Befehl 
INIT gefoigt von einer Serie von Befehlen, die den GerSte- 
status von den INIT (Einschalt-) Einstellungen in den 
gewtinschten Status Sndern. 

L5schen einer Darsteliung 

Nach einer Anderung des Eingangs kann es 
wunschenswert sein, die derzeitge Anzeige zu Ibschen, 
da sie nicht mehr der jetzigen MeBbedingung entspricht. 
Eine MOgiichkeit ist es, dem GerSt einen Einstellbefehizu 
senden - dies veranlaBt das Gerat die Daten im 
Ausgangs-Puffer zu Ibschen. Ein weiterer Weg ist dem 
Controller eine Messung einzugeben und sie zu igno- 
rieren. 



Durch Verwendung von MODE TRIG bei der Messung 
kbnnen ungultige Anzeigen vermieden werden. 

Allowing Settling Time 

Urn sicherzustellen, daB die an den Controller uber- 
mittelte Messung gOltig ist, kann in einem Programm 
Settling Time enthalten sein, Siehe Step Response Time 
im Abschnitt „Spezifikation“. 



In Programmbeispiel 4 verwenden die Zeilen 230-250 
eine FOR. ..NEXT Schleife zur Eingabe von funf 
Messungen in die Variable R. Am Ende der Schleife 
enthSit die Variable R die funfte Messung. 



In Programmbeispiel 5 Zeilen 290-320 werden zwei 
DM 5010 Messungen verglichen; wenn die Differenz 
groBer als 0,001 ist, wird eine weitere Messung zum Ver- 
gleich herangezogen. Die Vergleiche werden wiederholt 
bis die Differenz anzeigt, daB zwei Messungen nahezu 
gieich sind. 

Getriggerte Messungen 

Zur Auflosung einer einzeinen Umwandlung 
verwenden Sie MODE TRIG und initiieren eine Trigge- 
rung mit einem der nachstehenden Vorgange; 

1. Adressieren Sie das GerSt als Talker. Siehe 
Programmbeispiel 2, Zeile 180. 



2. Befehl SEND. 



3. Senden Sie DTTRIG. Dann triggern Sie das DM 5010 
durch Obetragung einer Group Execute Trigger (GET) 
Interface Mitteilung (DezimaISquivalent 8 mit ATN). Siehe 
Programmbeispiel 9, Zeilen 120 und 5. 

4. Wenn die Betriebsart EXTRIG freigegeben ist, 
haiten Sie fur 10 ps Oder weniger P1031-16A am Isolation 
Board auf Masse. 



5. Veranlassen Sie, daB die Bedienungsperson die 
Taste TRIGGERED auf der Frontplatte druckt. 



Fur wiederholte (freilaufende) Triggerung verwenden 
Sie den Befehl MODE RUN. Ist die Betriebsart EXTRIG 
freigegeben, haiten Sie P1031-16A am isolation Board auf 
Masse. 



Verfugbarkeit von Ablesungen 

Wenn das Gerat als Talker adressiert ist Oder wenn der 
Befehl SEND zum Abruf von Daten verwendet wird, ist es 
nicht erforderiich zu bestimmen, ob eine Ablesung 
verfugbar ist. Furjededieser Abrufmethodentriggertdas 
Gerat eine Ubertragung wenn keine Ablesung ansteht. 



FDr andere Abrufmethoden gibt es mehrere Wege zu 
bestimmen, ob eine Ablesung verfugbar ist. 



1. Senden Sie den Abrufbefehl RDY?. Ist die Antwort 1 
ist eine Ablesung fertig. Siehe Programmbeispiel 3, Zeile 
140. 



2. Stellen Sie OPC ON und RQS ON. Das Gerat macht 
SRQ geltend, wenn eine Ablesung verfugbar ist. Siehe 
Beispiel 8, Zeile 150. 



3. Wiederholen Sie eine Serienabfrage-Routine mit 
den Statements WBYTE bis das Statusbyte 132, 148, 140 
Oder 156 ist. Siehe Beispiel 9, Zeilen 150 und 200. 



RDY?, OPC ON und die Serienabfrage-Routine sind 
nutzlich, wenn mehrere Aufgaben gieichzeitig abiaufen. 



Senden an einen Hdrer (Listener) 

Urn eine DM 5010 Messung an einen GPIB Listener 
ubertragen zu kOnnen, muB das empfangende Gerat als 
Listener adressiert sein. Dann adressieren Sie das 
DM 5010 als Talker fur die Ubertragung der Messungen. 
Erfoigt die Sendung an einen Controller, kbnnen die 
Daten in einen String Oder nummerische Variable 
gelesen werden. Siehe Programmbeispiele 2, Zeile 180 
und 3, Zeile 150. 



German 3-30 



REV JUL 1986 




WARNING 



THE FOLLOWING SERVICING INSTRUCTIONS 
ARE FOR USE BY QUALIFIED PERSONNEL 
ONLY. TO AVOID PERSONAL INJURY, DO NOT 
PERFORM ANY SERVICING OTHER THAN THAT 
CONTAINED IN OPERATING INSTRUCTIONS 
UNLESS YOU ARE QUALIFIED TO DO SO. 
REFER TO OPERATORS SAFETY SUMMARY 
AND SERVICE SAFETY SUMMARY PRIOR TO 
PERFORMING ANY SERVICE. 




Section 5 — DM 5010 



PERFORMANCE CHECK 



Introduction 

This performance check verifies the Electrical Perfor- 
mance Requirements as listed in the Specification section in 
this manual. Perform the Adjustment Procedure if the instru- 
ment fails to meet these checks. For convenience, many 
steps in this procedure check the performance of this instru- 
ment at only one value in the specified performance range. 
Any value within the specified range, within appropriate lim- 
its. may be substituted. The performance check may be 
done at any ambient temperature between 0° and +50“C. 
Performance limits for two ambient temperature ranges are 
listed for some steps. Use the data listed for the tempera- 



ture at which the instrument is operating. A summary sheet 
is provided at the back of this section for recording perfor- 
mance check results. 



Test Equipment Required 

The test equipment listed in Table 5-1 , or equivalent, is 
recommended to perform the performance check. Specifica- 
tions given for the test equipment are the minimum neces- 
sary for accurate performance verification. All test 
equipment is assumed to be correctly calibrated and operat- 
ing within specification. 



Table 5-1 

TEST EQUIPMENT LIST 



Description 


Minimum 

Requirements 


Performance 
Check Step 


Recommended 

Equipment 


TM 5000-Series Power 
Module 




all 


TEKTRONIX TM 5003, Opt. 02 


Dc voltage calibrator 


±200 mV: ±(0.0038% of rdng 
+ 0.0025% of range) 
±2V-200V: ±(0.0038% of 
rdng + 0.0013% of range) 
±1000 V: ±(0.005% of rdng -H 
0.0025% of range) 


1. 2, 3 


Fluke 335D Dc Voltage Standard 

1 

! 


Ac voltage calibrator 


200 mV through 200 V: 

10-20 Hz: ±(0.20% of rdng -h 
0.08% of range) I 

20-100 Hz: ±(0.20% of rdng 
-1-0.05% of range) i 

100 Hz-20 kHz: ±(0.05% of 
rdng + 0.05% of range) 

20-100 kHz: ± (0.25% of rdng -h 
0.12% of range) 


2. 3,4 


Fluke 5200A Ac Calibrator, and 
Fluke 521 5A Power Amplifier 




700 V: 

10-20 Hz: ±(0.20% of rdng + 
0.22% of range) 

20-100 Hz: ±(0.20% of rdng + 
0.15% of range) 

100Hz-15kHz: ±(0.05% of 
rdng + 0.15% of range) 




1 



Perfoimance Check — DM 5010 



Table 5-1 (cont) 



Description 


Minimum 

Requirements 


Performance 
Check Step 


Recommended 

Equipment 


Resistance standard" 


200 12: ±(0.0038% of rdng -i- 
0.0038% of range) 

2 k-200 kl2: ±(0.0038% of rdng 
+ 0.0025% of range) 

2 M12: ±(0.025% of rdng + 
0.0025% of range) 

20 M12: ±(0.038% of rdng + 
0.0012% of range) 


5 

! 


Electro Scientific Industries, Inc. 
DB 62 Dekabox and SRI 10 M12 
Standard Resistor 

i 

j 


Counter 


100 MHz ±0.0016% 


4 


TEKTRONIX DC 509 Universal 
Counter/Timer^ 


Resistor 


100 kl2. ±5%, 1/4 W 


3 


Tektronix Part No. 315-0104-00 


Resistor 


60412, ±1%, 1/4 W 


6 


Tektronix Part No. 322*0172-00 


Controller 


GPIB compatible 


9 


TEKTRONIX 4050-Series Controller 
or TEKTRONIX 4041 Controller 



"Resistance of Oekabox and interconnect cable must be known to the accuracy listed in Table 5-1 for each point checked in the Ohms 
Accuracy check. 

‘‘Requires a TM 500 /5000-Series power module. 



Preparation 

Make certain the 50-60 Hz jumper is positioned to match 
the power module line frequency. To check the jumper posi- 
tion, turn the two plastic fasteners on the left side cover and 
remove the cover. Refer to Fig. 10-1 in the pullout pages for 
the jumper location and position. Replace the side cover. 



Install the DM 501 0 in the power module, and apply pow- 
er. Allow 30 minutes warm-up time (60 minutes after stor- 
age in high-humidity environment) before beginning the 
performance check. 



WA RNING 



Preliminary Control Settings 



DCV 

NULL 

LOW FREQ RESPONSE 
RANGE 

TRIGGER MODE 
CONVERSION RATE 
CALCULATIONS 
REAR INPUT 



on 

off 

off 

STEP (200 mV range) 

RUN on 

FAST off 

all off 

off 



1 . Check Dc Voltage Accuracy 

a. Set the DM 5010 front-panel controls to match the 
preliminary control settings listed above. 



Dangerous voltages may be encountered in the fol- 
lowing steps. Caution must be exercised. Do not con- 
tact the output connectors of the voltage calibrator, 
the input terminals of the DM 5010, or the internal cir- 
cuitry of the DM 5010. Set all voltage calibrators to a 
minimum output before making the necessary 
connections. 



b. Connect the dc voltage calibrator to the DM 5010 
HIGH and LOW input connectors through appropriate ca- 
bles and adapters. 

c. Set the calibrator output to the voltage listed in Table 
5-2. 



5-2 



REV JAN 1983 









Performance Check — DM 5010 



d. CHECK — that the DM 5010 display reads within the 
display limits listed in the table. 

e. Set the CONVERSION RATE (FAST button) as listed 
in the next line of the table. 

f. CHECK — that the DM 5010 display reads within the 
limits listed in the table. 



g. Repeat parts c through f for the succeeding lines of 
the table. 

h. Set the calibrator to a minimum output voltage. 

I. Remove all connections to the DM 5010. 



Table 5-2 

DC VOLTAGE ACCURACY 



DM 5010 
Range 


Dc Calibrator 
Voltage 


DM 5010 
FAST 


Display Limits 


Ambient Temp. Range 
+ 18 to +28-C 


Ambient Temp. Range 
0 to +18*C, +28 to 
+50 *C 


200 mV 


0.0 V 


off 


+ 0.02 to -0.02 


+ 0.07 to -0.07 






on 


+ 0.1 to -0.1 


+ 0.2 to -0.2 


2 V 


0.0 V 


on 


+ .001 to -.001 


+ .002 to - .002 






off 


+ .0001 to -.0001 


+ .0006 to - .0006 


20 V 


0.0 V 


off 


+ 0.001 to -0.001 


+ 0.006 to -0.006 






on 


+ 0.01 to -0.01 


+ 0.02 to -0.02 


200 V 


0.0 V 


on 


+ 0.1 to -0.1 1 


+ 0.2 to -0.2 






off 




+ 0.06 to -0.06 


1000 V 


0.0 V 


off 


+0.1 to -0.1 


+ 0.4 to -0.4 






on 


+ 1. to -1. 


+ 2. to -2. 


200 mV 


190 mV 


^ off 


189.95 to 190.05 


189.82 to 190.18 






on 


189.8 to 190.2 


189.6 to 190.4 


2 V 


1.9 V 


on 


1.898 to 1.902 


1.896 to 1.904 






off 


1.8996 to 1.9004 


1.8983 to 1.9017 


20 V 


19. V 


off 


18.996 to 19.004 


18.983 to 19.017 






on 


18.98 to 19.02 


18.96 to 19.04 


200 V 


190. V 


on 


189.8 to 190.2 


189.6 to 190.4 






off 


189.96 to 190.04 


189.83 to 190.17 


1000 V 


950. V 


off 


949.7 to 950.3 


949.0 to 951.0 






on 


948. to 952. 


947. to 953. 



Set the calibrator output to a minimum level. 



200 mV 


-190 mV 


off 


-189.95 to -190.05 


-189.82 to -190.18 






on 


-189.8 to -190.2 


-189.6 to -190.4 


2 V 


-1.9 V 


on 


-1.898 to -1.902 


-1.896 to -1.904 






off 


-1.8996 to -1.9004 


-1.8983 to -1.9017 


20 V 


-19. V 


off 


-18.996 to -19.004 


-18.983 to -19.017 






on 


-18.98 to -19.02 


-18.96 to -19.04 


200 V 


-190. V 


on 


1 -189.8 to -190.2 


-189.6 to -190.4 






off 


-189.96 to -190.04 


-189.83 to -190.17 


1000 V 


-950. V 


off 


-949.7 to -950.3 


-949.0 to -951.0 






on 


-948. to -952. 


-947. to -953. 



REV AUG 1984 



5-3 





















































Performance Check — DM 5010 



2. Check Ac Voltage Accuracy 

a. Set the DM 5010 front-panel controls to the prelimi- 
nary control settings with the following exception: 

ACV + DCV on 



b. Connect the ac sinewave voltage calibrator to the 
DM 5010 HIGH and LOW input connectors. 

c. Set the ac voltage calibrator output to the voltage and 
frequency listed in Table 5-3 or 5-4, depending on the ambi- 
ent temperature. 



NOTE 

For the 10 and 20 Hz checks, press the LOW FREQ 
RESPONSE button to obtain a stable display. Re- 
lease the button for the remaining frequency checks. 



d, CHECK — that the DM 5010 display reads within the 
display limits for the frequencies and FUNCTIONS listed in 
the table (Dc input limits using ACV-(-DCV function are 
checked later in this step.) 



e. Set the CONVERSION RATE (FAST button) as listed 
in the next line of the table. 



f. CHECK — that the DM 5010 display reads within the 
limits for the frequencies and FUNCTIONS listed in the 
table. 

g. Repeat parts c through f for each remaining line of the 
table. For the 200 and 700 V range checks, use the power 
amplifier, 

h. Set the ac voltage calibrator to a minimum output and 
replace the ac calibrator with the dc voltage calibrator. 

i. Set the DM 501 0 range and the FAST button as listed 
in the first line of the table. 



j. Set the dc calibrator output to the first voltage listed in 
the table. 



k. Repeat parts d through f for each line of the table, 
checking only the display limits for dc input. 



I. Set the dc voltage calibrator to a minimum output and 
remove all connections to the DM 5010. 



Table 5-3 

AC VOLTAGE ACCURACY 
(Ambient Temp. Range +18 to +28®C) 









DM 5010 FUNCTION 








ACV + DCV 


ACV 


ACV 1 


ACV+DCV 


ACV 








Calibrator Frequency 


DM 5010 


Calibrator 


DM 5010 
FAST 

I 


10 Hz" 


20 Hz" 


20 kHz 


Dc 


100 kHz 


Range 


Voltage 




Display Limits 






200 mV 


190. mV 


off 


192.12 to 187.88 


191.92 to 188.08 


190.78 to 189.22 


191.48 to 188.52 


192.90 to 187.10 




100. mV 




101.40 to 98.60 


101.20 to 98.80 


100.60 to 99.40 


101.30 to 98.70 


102.00 to 98.00 




10. mV 




10.68 to 9.32 


10.46 to 9.54 


10.42 to 9.58 


11.12 to 8.88 


11.10 to 8.90 




190. mV 


on 


192.1 to 187.9 


191.9 to 188.1 


190.8 to 189.2 


191.5 to 188.5 ! 


192.9 to 187.1 


1 


100. mV 




101.4 to 98.6 


101.2 to 98.8 


100.6 to 99.4 


101.3 to 98.7 


102.0 to 98.0 




10. mV 




10.7 to 9.3 


10.5 to 9.5 


10.5 to 9.5 


11.2 to 8.8 


11.1 to 8.9 



5-4 



REV AUG 1984 






Performance Check — DM 5010 



Table 5-3 (cont) 



DM 5010 
Range 


Calibrator 

Voltage 


DM 5010 
FAST 


DM 5010 FUNCTION 


ACV + DCV 


ACV 


ACV 


ACV-FDCV 


ACV 


Calibrator Frequency 


10 Hz* 


20 Hz* 


20 kHz 


Dc 


100 kHz 


Display Limits 






1.9 V 


on 


1.921 to 1.879 


1.919 to 1.881 


1.908 to 1.892 


1.929 to 1.871 


■I 


1. V 




1.014 to .986 


1.012 to .988 


1 .006 to .994 


1.020 to .980 




.1 V 




.107 to .093 


.105 to .095 


.105 to .095 


.1 1 1 to .089 




1.9 V 


off 


1.9212 to 1.8788 


1.9192 to 1.8808 


1.9078 to 1.8922 


1.9290 to 1.8710 




1. V 




1.0140 to .9860 


1.0120 to .9880 


1 .0060 to .9940 


1.0200 to .9800 


■ 


.1 V 




.1068 to .0932 


.1046 to .0954 


.1042 to .0958 


.1110 to .0890 


20 V 


19. V 


off 


19.212 to 18.788 


19.192 to 18.808 


19.078 to 18.922 


19.290 to 18.710 




10. V 




10.140 to 9.860 


10.120 to 9.880 


10.060 to 9.940 


10.200 to 9.800 




1. V 




1 .068 to .932 


1 .046 to .954 


1.042 to .958 


1.110 to .890 




19. V 


on 


19.21 to 18.79 


19.19 to 18.81 


19.08 to 18.92 


19.29 to 18.71 




10. V 




10.14 to 9.86 


10.12 to 9.88 


10.06 to 9.94 


10.20 to 9.80 




1. V 




1 .07 to .93 


1 .05 to .95 


1 .042 to .958 


1.11 to .89 


200 V 


190. V 


on 


192.1 to 187.9 


191.9 to 188.1 


190.8 to 189.2 


191.4 to 188.6 


192.9 to 187.1 




100. V 




101.4 to 98.6 


101.2 to 98.8 


100.6 to 99.4 


101.2 to 98.8 


102.0 to 98.0 




10. V 




10.7 to 9.3 


10.5 to 9.5 


10.5 to 9.5 


11.1 to 8.9 


11-1 to 8.9 




190. V 




192.12 to 187.88 


191.92 to 188.08 


190.78 to 189.22 


191.38 to 188.62 


192.90 to 187.10 




100. V 




101.40 to 98.60 


101.20 to 98.80 


100.60 to 99.40 


101.20 to 98.8 


102.00 to 98.00 




10. V 




10.68 to 9.32 


10.46 to 9.54 


10.42 to 9.58 


11.02 to 9.98 


11.10 to 8.90 












15 kHz 


Dc 




700 V 


665. V 




676.6 to 653.4 


674.5 to 655.5 


670.5 to 659.5 


669.5 to 660.5 






350. V 




359.1 to 340.9 


357.0 to 343.0 


354.9 to 345.1 


354.2 to 345.8 






100. V 




107.1 to 92.9 


105.0 to 95.0 


104.4 to 95.6 


103.7 to 96.3 






665. V 


on 


677. to 653. 


675. to 655. 


671. to 659. 


670. to 650. 






350. V 




359. to 341. 


357. to 343. 


355. to 345. 


355. to 345. 






100 V 




107. to 93. 


105. to 95. 


105, to 95. 


104. to 96. 





•use LOW FREQ RESPONSE. 



REV AUG 1984 



5-5 






































Performance Check — DM 5010 



Table 5-4 

AC VOLTAGE ACCURACY 

(Ambient Temp. Range 0 to +18®C, +28 to +50®C) 



DM 5010 
Range 


r* — — 

Calibrator 

Voltage 


DM 5010 
FAST 


DM 5010 FUNCTION 


ACV + DCV 


ACV 


ACV 


ACV+DCV 


ACV 


Calibrator Frequency 

I _ . . 






20 kHz 


Dc 


100 kHz 


Display Limits 










1.921 to 1.879 


1.919 to 1.881 


1.908 to 1.892 


1.929 to 1.871 


Hi 






1.014 to .986 


1.012 to .988 


1.006 to .994 


1 .020 to .980 








.107 to .093 


.105 to .095 


.105 to .095 


.111 to .089 








1.9212 to 1,8788 


1.9192 to 1.8808 


1.9078 to 1.8922 


1.9290 to 1.8710 








1.0140 to .9860 


1.0120 to .9880 


1 .0060 to .9940 


1.0200 to .9800 


■ 






.1068 to .0932 


.1046 to .0954 


.1042 to .0958 


.1110 to .0890 


20 V 


19. V 


oft I 


19.212 to 18.788 


19.192 to 18.808 


19.078 to 18.922 


19.290 to 18.710 




10. V 




10.140 to 9.860 


10.120 to 9.880 


10.060 to 9.940 


10.200 to 9.800 




1. V 




1.068 to .932 


1 .046 to .954 


1 .042 to .958 


1.110 to .890 




19. V 


on i 


19.21 to 18.79 


19.19 to 18.81 


19.08 to 18.92 


19.29 to 18.71 




10. V 




10.14 to 9.86 


10.12 to 9.88 


10.06 to 9.94 


10.20 to 9.80 




1. V 




1 .07 to .93 


1 .05 to .95 


1.042 to .958 


1.11 to .89 


200 V 


190. V 


on 


192.1 to 187.9 


191.9 to 188.1 


: 190.8 to 189.2 


191.4 to 188.6 


192.9 to 187.1 




100. V 




101.4 to 98.6 


101.2 to 98.8 


100.6 to 99.4 


101.2 to 98.8 


102.0 to 98.0 




10. V 




10.7 to 9.3 


10.5 to 9.5 


10.5 to 9.5 


11.1 to 8.9 


11.1 to 8.9 




190. V 


off 


192.12 to 187.88 


191.92 to 188.08 


190.78 to 189.22 


1 191.38 to 188.62 


192.90 to 187.10 




100. V 




101.40 to 98.60 


101.20 to 98.80 


1 100.60 to 99.40 

1 


101.20 to 98.8 


102.00 to 98.00 




10. V 




10.68 to 9.32 


10.46 to 9.54 


j 10.42 to 9.58 


11.02 to 9.98 


11.10 to 8.90 












15 kHz 


Dc 




700 V 


665. V 


off 


676.6 to 653.4 


674.5 to 655.5 


1 670.5 to 659.5 

1 


669.5 to 660.5 






350. V 




359.1 to 340.9 


357.0 to 343.0 


I 354.9 to 345.1 

1 


354.2 to 345.8 






100. V 




107.1 to 92.9 


105.0 to 95.0 


104.4 to 95.6 


103.7 to 96.3 






665. V 


on 


677. to 653. 


675. to 655. 


671 . to 659. 


670. to 650. 






350. V 




359. to 341. 


357. to 343. 


355. to 345. I 


355. to 345. 

i 






100 V 




107. to 93. 


105. to 95. 


105. to 95. 


104. to 96. 





5-6 



REV AUG 1984 

































Performance Check — DM 5010 



3. Check Dc Common Mode Rejection 

a. Set the DM 5010 controls to the preliminary settings. 

b. Connect the DM 501 0 input connectors to the dc volt- 
age calibrator as show/n in Fig. 5-1 A. 

c. Set the dc voltage calibrator output to 100 V. 

d. CHECK — that the DM 5010 display reads ^3.16 mV. 

e. Set the calibrator to a minimum output. 

f. Add a connection from the DM 5010 GUARD connec- 
tor as shown in Fig. 5-1 B. 



g. Set the dc voltage calibrator output to 100 V. 

h. CHECK — that the DM 5010 display reads =el.00 mV. 



i. Set the dc voltage calibrator to a minimum output and 
replace it with the ac voltage calibrator and counter. 

j. Set the ac voltage calibrator output to 1 5 V rms at 
60.2, ±0.02 Hz. Use the counter to verify the calibrator 
frequency. 

k. CHECK — that the absolute value of the DM 501 0 dis- 
play reads ^0.21 mV. 

l. Remove the connection to the DM5010 GUARD 
connector. 



Power Module 




A. Setup for unguarded common mode rejection ratio check. 



Power Module 




B. Setup for guarded common mode rejection ratio check. 

2994-27 



Fig. 5-1. Common mode check setup. 



REV JAN 1982 



5-7 




Performance Check — DM 5010 



m. CHECK — that the absolute value of the DM5010 
display reads =s2.12 mV. 



n. If desired, this step may be repeated with the calibra- 
tor, counter, and GUARD connected to the LOW side of the 
resistor instead of the HIGH side. 



o. Set the voltage calibrator to a minimum output, and 
remove all connections to the DM 501 0. 



4. Check Dc Normal Mode Rejection 

a. Make certain the DM 501 0 50-60 Hz jumper is in the 
60 Hz position. 



b. Connect the counter, ac calibrator, and DM 5010 as 
shown in Fig. 5-2. 

c. Set the DM 501 0 controls to the preliminary settings 
with the following exception: 

RANGE STEP (2 V range) 

d. Store 0.0212 for one LIMITS constant. 



e. Store —0.0212 for the other LIMITS constant. 



f. Enable the COMPARE calculation. 



g. Set the ac calibrator output to 1.5 V rms at the fre- 
quency listed in Table 5-5. Use the counter to verify the 
calibrator frequency. 



h. CHECK — that the DM 5010 display reads PASS as 
shown in the table. 



i. Repeat parts g and h for each remaining line of the 
table for the 60 Hz jumper position checks. Be sure to set 
the DM 5010 CONVERSION RATE (FAST button) as listed 
in the table. 



j. Reposition the DM 501 0 50-60 Hz jumper to the 50 Hz 
position. 

k. CHECK — that the DM 5010 display reads PASS as 
shown in the table for the 50 Hz jumper position checks. 



I. Remove ail connections to the DM 5010. 



m. Reposition the DM 5010 50-60 Hz jumper to the 
power module line frequency. 




Fig. 5-2. Dc normal mode rejection setup. 



5-8 



REV JAN 1982 






Performance Check — DM 5010 



Table 5*5 

DC NORMAL MODE REJECTION 



50-60 Hz 
Jumper 
Position 


DM 5010 
FAST 


Calibrator 
Frequency (Hz) 


Display 

Reading 




Off 


60.2, ±0.02 


PASS 




on 


60.2 ±0.02 


PASS 


60 Hz 


on 


59.8, ±0.02 


PASS 




off 


59.8, ±0.02 


PASS 




off 


50.2, ±0.02 


PASS 




off 


49.8, ±0.02 


PASS 


50 Hz 


on 


49.8, ±0.02 


PASS 




on 


50.2, ±0.02 


PASS 



5. Ohms Accuracy 

a. Set the DM 5010 front-panel controls to the prelimi- 
nary control settings with the following exception: 

OHMS on 



b. Connect a shorting plug between the DM 5010 HIGH 
and LOW input connectors. 

c. CHECK — that the display reads within the limits listed 
in Table 5-6, at each conversion rate. 



d. Set the DM 5010 front panel controls to the 200 
range and normal conversion rate. Press the NULL button. 
Remove the shorting plug and connect the decade resis- 
tance box to the DM 501 0 input connectors using a coaxial 
cable with less than 0.3 fl. See Fig. 5-3A. 



e. Set the decade box resistance to the value listed in 
Table 5-7, 



f. CHECK — that the display reads within the limits listed 
in the table. 



g. Set the DM 5010 CONVERSION RATE as shown in 
the next tine of the table. 



h. CHECK — that the display reads within the limits listed 
in the table. 



i. Set the DM5010 range, CONVERSION RATE, and 
the decade box resistance as listed in the next line of the 
table. 



j. Repeat parts f through i for the remaining lines of the 
table, except change the equipment setup as shown in Fig. 
5-3B for the 20 Mfi range checks. 



k. Remove ail connections to the DM 5010. 



Table 5-6 

OHMS OFFSET ACCURACY 



DM 5010 
Range 


DM 5010 
FAST 


Display Limits 


Ambient Temp, Range 
-f 18to +28“C 


Ambient Temp. Range 
Oto -f18“C, +28 to +50»C 


200 Q 


Off 


± 0.03 0® 


±0.12 0® 




on 


±0.1 oa 


±0.2f]« 


2 kO 


on 


± .001 kO 


± .002 kfi 




off 


± .0002 0^ 


± .0007 kfi*’ 


20 kO 


off 


±0.002 kO 


±0.007 kfi 




on 


±0.01 kn 


±0.02 kCl 


200 kQ 


on 


±0.1 kfl 


±0.2 kO 




off 


±0.02 kfi 


±0.07 kO 


2 MO 


off 


± .0002 Mn 


± .0007 MCI 




on 


± .001 MCI 


± .002 MCI 


20 MO 


' on 


±0.01 Mfi 


±0.01 MO 




off 


±0.001 MCI 


±0.002 MO 



a- With NULL, if NULL is not used add ±0.2 Q. 

With NULL, if NULL is not used add ±0.0002 kfl. 



REV OCT 1984 



5-9 




























Performance Check — DM 5010 




Fig. 5’3. Ohms accuracy setup. 



5-10 




Performance Check — DM 5010 



Table 5-7 

OHMS GAIN ACCURACY 



DM 5010 


Resistance 

Standard 


DM 5010 
FAST 


Display Limits 


Range 


Ambient Temp. Range 
+ 18 to +28"C 


Ambient Temp. Range 
0 to +18*C, +28 to +50»C 


200 0 


0.00019 MO 

! 


o o 

_ J 


R ±0.06 0 

in 

R ±0.2 0 

in 


R ±0.24 0 

tn 

R ±0.4 0 


2 kO 


0.00019 MO 


on 

off 


R^ ±.001 kO 
± .0002 kO 


R^ ± .002 kO 
fC ± .0008 kO 




0.00190 MO 


off 

on 


rC ± .0005 kO 
R*" ± .002 kO 


R_^ ±.0019 kO 
r"" ± .004 kO 


20 kfi 


0.00190 MO 


on 

off 


R ± .01 kO 

in 1 

R^^ ±0.002 kO 


R ±0.02 kO 

in 

R ±.008 kO 




0.01900 MO 


off 

on 


r "* ±0.005 kO 

in 

R ±0.02kO 

m 


R ±0.019 kO 

in 

R ±.04 kO 

in 


200 kO 


0.01900 MO 


on 

off 


R ±.1 kO 

in 

R^ ±0.02 kO 


R ± .2 kO 

1 

R ± .08 kO 




0.19000 MO 


off 

on 


R ±0.05 kO 

tn 

R ±0.2 kfi 

m 


R^ ±0.19 kO 
R ± .4 kO 


2 MO 


0.19000 MO 


on 

off 


R^ ± .001 MO 
± .0004 MO 


R^ ± .003 MO 
r" ±.0017 MO 




1 .90000 MO 


off 


± .0021 MO 


R^^ ±.0110 MO 






on 


r'" ± .003 MO 

m 


r'’ ±.012 MO 

in 


20 MO 


1.90000 MO 


on 

off 


R ± .03 MO 

in 

R^^ ± .004 MO 


R ± .04 MO 

in 

R^ ±.016 MO 




0.00000 MO" 


off 

on 


r'" ±.016 MO 

in 

R.^ ±.11 MO- 


R*" ± .077 MO 

in 

R^^ ±.017 MO 




9.00000 MO" 


on 


r[ ± .20 MO 


r|^ ±.31 mo 




i 

! 


off 


r'" ± .030 MO 


R ±.145 MO 

in 



‘SR1 10 MO standard resistor in series with the DB62. 



6. Diode Test Check 

a. Set the DM 5010 controls to the preliminary settings. 



b. Connect a 604 Q resistor between the DM 5010 HIGH 
and LOW input connectors. 



c. Press the DIODE TEST button (on). 



d. CHECK — that the display reads between 0.5484 V 
and 0.6054 V. 



e. Remove the resistor. 



NOTE 

The rear interface ohms offset and accuracy checks 
need not be made unless the instrument is used for 
measurements via the rear-interface connections. 

7 . Rear Interface Ohms Offset Check 

For this check, short the power module connections to 
the DM 5010 rear-interface pins 28B (Hi) and 28A (Lo) on 
the ADC board (A17). Access to these pins is most easily 
made using a TM 5000-Series, Option 02 power module. 

a. Set the DM 501 0 controls to the preliminary control 
settings with the following exceptions; 

OHMS on 

REAR INPUT on 



5-11 



Performance Check — DM 5010 



b. CHECK — that the DM5010 display reads between 
— 0 and —0.5 Q. 



c. Remove the short between the power module connec- 
tions to the DM 501 0 rear-interface input connector pins. 

8. Rear Interface Accuracy Checks 

To verify the accuracy of the DCV, ACV, ACV+DCV, 
and OHMS modes via the DM 5010 rear interface, follow 
the steps outlined in the performance check for the front- 
panel input connectors, but apply the voltages and resis- 
tances to the DM 501 0 rear interface pins pins 28B (Hi) and 
28A (Lo) on the ADC board (A17) via the power module 
connections. 



NOTE 

The output cable fixture from the calibrating sources 
to the rear interface pins may require modification to 
accommodate accuracy checks via the DM 5010 rear 
interface. 



Press the DM 5010 REAR INPUT button to select rear 
interface input. 




Do not exceed the maximum input voltages specified 
for rear interface input 

When rear-interface accuracy checks have been com- 
pleted, remove all connections to the DM 5010. 



9. GPIB Communication Check 

a. Refer to the talker-listener programs in the Program- 
ming section of this manual. Using one of these programs, 
send commands to the DM 501 0 and observe the front- 
panel changes. Send SET? and note the data returned to 
the controller. 



b. CHECK — that the DM 501 0 front panel correctly dis- 
plays setting changes as sent and returns the correct set- 
ting information when queried. 

c. Remove all connections. 



This completes the performance check for the DM 5010. 



5-12 



REV JAN 1983 



Performance Check — DM 5010 



PERFORMANCE CHECK SUMMARY SHEET 




Permission is granted to reproduce this summary sheet for customers data logging purposes only. Reproduction for 
commercial purposes is expressly forbidden. 



5-13 









Section 6 — DM 5010 



ADJUSTMENT PROCEDURE 



Introduction 

This procedure should be performed if the instrument 
fails to meet the performance requirements of the electrical 
characteristics listed in the Specification section of this man- 
ual. To ensure continued instrument accuracy, adjustment 
should be performed every 1 000 hours of operation or every 
six months if used infrequently. Adjustment is also recom- 
mended following instrument repair or modification. Adjust- 
ments must be made at an ambient temperature between 
-i-21°C to -i-25'’C. Allow thirty minutes warm-up time be- 
fore beginning adjustments (sixty minutes after exposure to 
or storage in high humidity environment). 



The recommended interval for battery replacement is ap- 
proximately every two years. Performance of the Adjust- 
ment Procedure is necessary after battery replacement to 
restore the calibration factors to memory. See the Mainte- 



nance section of this manual for battery replacement 
information. 

Services Available 

Tektronix, Inc. provides complete instrument repair and 
adjustment at local field service centers and at the factory 
service center. Contact your local Tektronix Field Office or 
representative for further information. 



Test Equipment Required 

The test equipment listed in Table 6-1, or equivalent, is 
recommended for adjustment of the DM5010. Specifica- 
tions given for the test equipment are the minimum neces- 
sary for accurate instrument adjustment. All test equipment 
is assumed to be correctly calibrated and operating within 
specification. 



Table 6-1 

TEST EQUIPMENT LIST 



Description 


1 

Minimum Requirements 


Performance 
Check Step 


— 

Recommended 

Equipment 


TM 5000-Series Power 
Module 




all 


TEKTRONIX TM 5003, Opt. 02 


DC voltage calibrator 


200 mV: ± (0.0038% of rdng -i- 
0.0025% of range) 

2V-200V: ±(0.0038% of rdng 
+ 0.0013% of range) 

1000 V: ±(0.005% of rdng -i- 
0.0025% of range) 


2 


Fluke 335D Dc Voltage Standard 


Ac voltage calibrator 


200 mV through 200 V: 

10-20 Hz: ±(0.20% of rdng + 
0.08% of range) 

20-100 Hz: ±(0.20% of rdng -h 
0.05% of range) 

100 Hz-20 kHz: ±(0.05% of 
rdng + 0.05% of range) 

20-100 kHz: ±(0.25% of rdng -i- 
0.12% of range) 


6, 7 

L 


Fluke 5200A Ac Calibrator, and 
Fluke 521 5A Power Amplifier 




Adjustment Procedure — DM 5010 



Table 6-1 (cont) 



Description 


Minimum Requirements 


Performance 
Check Step 


Recommended 

Equipment 




700 V: 

10-20 Hz: ±(0.20%of rdng -h 
0.22% of range) 

20-100 Hz: ±(0.20% of rdng + 
0.15% of range) 

100 Hz-15 kHz: ±{0.05% of 
rdng -i- 0.15% of range) 


1 




Resistance standard" 


200 Q: ±(0.0038% of rdng -i- 
0.0038% of range) 

2 k-200 kfl: ±(0.0038% of rdng 
+ 0.0025% of range) 

2 Mn: ±(0.025% of rdng -h 
; 0.0025% of range) 

20 M«: ±(0.038% of rdng -h 
0.0012% of range) 


4 


Electro Scientific Industries, Inc. 
DB 62 Dekabox and SR1 10 MQ 
Standard Resistor 


Digital Voltmeter 


Range: 0 to 1 kV. 

Accuracy: ±(0.05% of rdng 
+ 0.02% of full scale) 


5 


TEKTRONIX DM 501 A Digital 
Multimeter® 


Flexible Extender cable 
(2 ea) 




5. 6, 7 


Tektronix Part No. 067-0645-02 



"Resistance of Dekabox and interconnect cable must be known to the accuracy listed In Table 6-1 for each point adjusted in Step 4. 
‘’Requires a TM 500/5000-Series power module. 



6-2 



REV JAN 1983 










Adjustment Procedure — DM 5010 



Preparation 

Before adjustments can be performed, the interna! CAL 
jumper must be repositioned. For access to the jumper, re- 
move the instrument’s left side cover by turning the two 
plastic fasteners. The jumper is located in the lower rear 
corner of the CPU board (A14). See Fig. 10-1 in the pullout 
pages of this manual. Reposition the CAL jumper, P1 1 32, to 
the CAL position. Also, make certain the 50-60 Hz jumper is 
positioned to match the power module line frequency. This 
jumper is also located on the CPU board. Replace the side 
cover. 



Since the DCV and OHMS adjustments are more sensi- 
tive to temperature variations, these adjustments are made 
with the instrument operating in the power module. Install 
the DM 501 0 in the power module, turn on the power mod- 
ule and allow warm-up time before beginning adjustments. 



WARNING 



Dangerous voltages may be encountered in the fol- 
lowing steps. Caution must be exercised. Do not con- 
tact the output connectors of the voltage calibrator, 
the input terminals of the DM 5010, or the internal cir- 
cuitry of the DM 5010. Also, do not contact the inter- 
nal adjustments, since they may be at the DM 5010 
input potential; use only an insulated adjustment tool 
for adjustments. 



Preliminary Control Settings 



DCV 

NULL 

LOW FREQ RESPONSE 
RANGE 

TRIGGER MODE 
CONVERSION RATE 
CALCULATIONS 
REAR INPUT 



on 

off 

off 

STEP (200 mV range) 

RUN on 

FAST off 

ail off 

off 



e. Set the range and FAST button as shown in the next 
line of the table. 



f. Repeat parts c through e for each succeeding line in 
the table. 



g. Remove the shorting plug. 

Table 6-2 

DCV OFFSET CALIBRATION FACTORS 



DM5010 ^ DM5010 | Display 



Range 


FAST 


Press 


Reading 


200 mV 


off 


ENTER 


0.00 mV 




on 


ENTER 


0.0 mV 


2 V 


on 


ENTER 


.OOu V 




off 


ENTER 


.0000 V 


20 V 


off 


ENTER 


0.000 V 




on 


ENTER 


0.00 V 


200 V 


on 


ENTER 


0.0 V 




off 


ENTER 


0.00 V 


1000 V 


off 


ENTER 


0.0 V 




on 


ENTER 

L 


0. V 



2. Adjust the DCV Gain Calibration Factors 



a. Set the DM 501 0 controls to the preliminary control 
settings. 

b. Connect the dc voltage calibrator through appropriate 
cables and connectors to the DM5010 HIGH and LOW 
connectors. 



c. Set the dc voltage calibrator output to 190 mV dc. 



1. Adjust the DCV Offset Calibration Factors 

a. Set the DM 501 0 front-panel controls to the prelimi- 
nary settings. 



b. Connect the dual banana shorting plug between the 
DM 5010 HIGH and LOW INPUT connectors. 



d. Press ENTER. 

e. CHECK — that the display reads as shown in Table 
6-3, ± 1 in the LSD. 

f. Set the FAST button as shown in the table. 



c. Press ENTER. 

d. CHECK — that the display reads as shown in Table 
6-2, ±1 in the least significant digit (LSD). 



g. Press ENTER. 

h. CHECK — that the display reads as shown in the ta- 
ble, ±1 in the LSD. 



@ 



6-3 




Adjustment Procedure — DM S010 



Table 6-3 

DCV GAIN CALIBRATION FACTORS 



DM 5010 Range 


j Dc Calibrator Voltage 


1 DM 5010 FAST 


Press 


j Display Reading 


200 mV 


1 90 mV dc 


1 off 


ENTER 


I 190.00 mV 






on 


ENTER 


190.0 mV 


2 V 


1 .9 Vdc 


on 


ENTER 


1 .900 V 

1 






off 


j ENTER 


i 1 .9000 V 


20 V 


19 Vdc 

1 


Off 


i ENTER 

1 


19.000 V 




! 


on 


ENTER 


19.00 V 


200 V 


190 Vdc 


on 


ENTER 


190.0 V 






off 


ENTER 


190.00 V 


1000 V 


1000 Vdc 


off 


ENTER 


1000.V 






on 


ENTER 


1000.0 V 



i. Set the DM 5010 range as shown in the table. d. CHECK— that the display reads as shown in Table 

6-4, ±1 in the LSD. 

j Set the dc calibrator output to the next value in the ^ 

^ line of the table. 



NOTE 

Avoid over-ranging the DM 5010 while performing the 
adjustment procedure. Should over-range occur, al- 
low several minutes for stabilization before proceed- 
ing with adjustments. 

k. Repeat parts d through j for each succeeding line of 
the table. 



I. Set the dc calibrator to 0 Vdc and remove the connec- 
tions to the DM 5010. 



3. Adjust the Ohms Offset Calibration Factors 

a. Set the DM 5010 controls to the preliminary settings 
with the following exception: 

OHMS on 



b. Connect the dual banana shorting plug between the 
DM 5010 HIGH and LOW INPUT connectors. 



c. Press ENTER. 



f. Repeat parts c through e for each succeeding line in 
the table. 

g. Remove the shorting plug. 



Table 6-4 

OHMS OFFSET CALIBRATION FACTORS 



DM 5010 
Range 


DM5010 

FAST 


Press 


T 

I Display 
Reading 


200 n 


off 


ENTER 


0.00 




on 


ENTER 


o 

d 


2 kO 


on 


ENTER i 

i 


.000 kn 




off 


ENTER 


.0000 kO 


20 kO 


I off 


ENTER 


0.000 kO 




on 


ENTER 


0.00 kn 


200 kfi 


on 


ENTER i 

I 


0.0 kn 




off 


ENTER I 


0.00 kn 


2 Mfi 


off 


ENTER ; 


.0000 Mn 




on 


ENTER i 

I 


.000 Mn 


20 MO 


on 


ENTER 


0.00 Mn 




off 


ENTER I 


0.000 Mn 



@ 



6-4 








Adjustment Procedure — DM 5010 



4. Adjust the Ohms Gain Calibration Factors 



NOTE 

The actual resistance of the precision resistance, in- 
cluding the interconnecting cable, must be known for 
each calibration point before this step can be per- 
formed. For convenience, write the actual resistance 
in the blank columns (Table 6-5), for each calibration 
point. 



a. Set the DM 5010 controls to the preliminary settings 
with the following exception; 

OHMS on 

b. Connect the decade box to the DM 501 0 input con- 
nectors as shown in Fig. 6-1 A. 



c. Set the decade box resistance to the value listed in 
Table 6-5. 

d. Press the keypad numeric and decimal point buttons 
listed in the table for the applied resistance value, beginning 
with the most significant digit. (For example; for 190 n press 
1, 9, 0, and ENTER; for 190 kfi press 1, 9, 0, 0, 0. 0, and 
ENTER). 

e. Press ENTER. 

f. CHECK — that the display reads as shown in the table, 
± 1 in the LSD. 

g. Repeat parts c through f for the remaining lines of 
Table 6-5 except change the equipment setup as shown in 
Fig. 6-1 B for the 20 MQ adjustments. 



h. Remove all connections to the DM 5010. 




A. Initial ohms gain adjustment setup. 




B. 20 Mfl range adjustment setup. 

2994-30 



Fig. 6-1. Ohms adjustment setup. 



REV JAN 1983 



6-5 




Adjustment Procedure — DM 5010 



Table 6-5 

OHMS GAIN CALIBRATION FACTORS 



DM 5010 


DM 5010 


Resistance 


ENTER 


Display Reading 


Range 


FAST 


Standard 


applied resistance 


(entered resistance) 


200 n 


off 


0.00019 Mfi 








on 


0.00019 Mfi 






2 kO 


on 


0.00190 M12 








off 


0.00190 Mfl 






20 kfi 


off 


0.01900 m 








on 


0.01900 MO 






200 kfi 


on 


0.19000 MQ 








off 


0.19000 Mf] 






2 Mfi 


off 


1.90000 MJi 








on 


1.90000 Mfi 




± 1 in LSD 


20 Mfi‘ 


on 


9.00000 Mil 




±3 in LSD 




off 


9.00000 Mfi 







‘Connect SRI 10M standard in series with the DB 62. To minimize the effect of noise, make physical contact with the DM 5010 chassis 
ground terminal. 



5. Adjust the ACV Offsets 

a. Turn off the power module, remove the DM 501 0, and 
connect the DM 5010 rear-interface connectors to the pow- 
er module via the flexible extender cables. Turn on the pow- 
er module. 

b. Connect a shorting plug between the HIGH and LOW 
input connectors. 

c. Set the DM 5010 controls to the preliminary settings 
with the following exceptions: 

ACV-hDCV on 



d. Set the DM 501 A to measure 200 mV dc. 



e. Connect the DM 501 A low connector to the DM 5010 
Lo test point (TP1701) and the high connector to the 
DM 501 0 Atten Out test point (TP1 503). Refer to Fig. 1 0-1 
for test point locations. 



f. ADJUST — the Atten Offset (R1601), using an insulat- 
ed adjustment tool, for a DM 501 A reading of 0 ±0.05 mV. 



g. Move the DM 501 A high lead to the DM 5010 Amp 
Out test point (TP1201). 



h. ADJUST— the Amp Offset (R1305) for a DM 501 A 
reading of 0 ±0.50 mV. 

i. Disconnect the DM 501 A leads and remove the short- 
ing plug. 

6. Adjust ACV Gain Calibration Factors 

a. Set the DM 5010 controls to the preliminary settings 
with the following exception: 

ACV + DCV on 

b. Connect the ac calibrator to the DM 5010 HIGH and 
LOW input connectors. 

c. Set the 200 Hz ac calibrator output to the voltage list- 
ed in the table. 



d. Press ENTER. 



Adjustment Procedure — DM 5010 



e. CHECK — that the display reads as listed in Table 6-6. 



f. Set the DM 501 0 range and FAST button as listed in 
the next line of the table. 



g. Repeat parts c through f for each remaining line of the 
table. Use the power amplifier for the 200 V and 700 V 
range adjustments. 



h. Set the calibrator output to a minimum level and re- 
move all connections to the DM 5010. 



7. Adjust the Ac Frequency Compensation 

a. Set the DM 5010 controls to the preliminary settings 
with the following exceptions: 

ACV-hDCV on 

RANGE STEP (200 V range) 



b. Connect the ac calibrator to the DM 5010 HIGH and 
LOW input connectors. 



c. Set the ac calibrator output to 190,00 V at 20 kHz. 
±200 Hz. 



Table 6-6 

ACV GAIN CALIBRATION FACTORS 



DM 5010 


Ac Calibrator 


DM5010 


1 

! 




Range 


(200 Hz) 


j FAST 


Press 


Display Reading 


200 mV 


19 mV 


1 off 


ENTER 


19.00 






on 


ENTER 


19.0 




190 mV 


on 

1 


ENTER 


190.0 






1 off 


ENTER 


190.00 


2 V 


190 mV 


1 off 


ENTER 


.1900 






on 


ENTER 


.190 




1.9 V 


on 


ENTER 


1.900 






off 


ENTER 


1.9000 


20 V 


1.9 V 


off 


ENTER 


1.900 






on 


ENTER 


1.90 




19 V 


on 


ENTER 


19.00 






off 


ENTER 


19.000 


200 V 


19 V 


off 


ENTER 


19.00 






on 


ENTER 


19.0 


1 


190 V 


on 


ENTER 


190.0 






off 


ENTER 


190.00 


700 V 


190 V 


off 


ENTER i 


190.0 






on 


ENTER 


190. 




700 V 


on 


ENTER 


700. 






off 


ENTER 


700.0 ±3 in LSD 



6-7 













Adjustment Procedure — DM 5010 

d. ADJUST— the 200 V H.F. Comp. (C1607) for a 
DM 5010 display reading of 190.00, ±0.02 V, using an insu- 
lated adjustment tool. Refer to Fig. 10-1. After adjustment, 
recheck the DM5010 display reading and readjust, if 
necessary. 



NOTE 

If Cl 607 approaches the end of its adjustment range, 
turn off the power module, and remove the RMS 
board (A 16). Adjust Cl 605 several complete turns in 
the same direction required for additional range by 
C1607. Reinstall the board, turn on the power module, 
and readjust Cl 607. 



e. Set the ac calibrator output to 1 ,9000 V at 20 kHz, 
±200 Hz. 



f. Set the DM 5010 range to the 2 V range. 



g. ADJUST— the 2 V/200 mV H.F. Comp. (Cl 503) for a 
display reading of 1.9000, ±0.0002 V. 



h. Set the DM 5010 to the 20 V range. 



i. Set the ac calibrator output to 19.000 V at 20 kHz, 
±200 Hz. 



j. ADJUST— the 20 V H.F. Comp. (C1403) for a display 
reading of 19.0000, ±0.005 V. 



k. Set the DM 501 0 to the 200 V range and repeat parts 
b through ] to verify that the adjustments have not changed. 

l. Set the ac calibrator output to a minimum level and 
remove connections to the DM 5010. 



m. Turn off the power module and reposition the CAL 
jumper to the normal position. Replace the cover. 

This completes the adjustment procedure. 



6-8 




Section 7 — DM 5010 



MAINTENANCE 



This section of the manual describes preparation for use (internal jumper and switch settings) and provides general mainte- 
nance and troubleshooting information. 




To prevent damage to the DM 5010, turn off the power module before installing or removing the instrument. Do 
not use excessive force to install or remove. 



PREPARATION FOR USE 

Setting the GPiB Address Switches 

For access to the GPIB address switches, remove the 
DM 5010 left side cover. Five of these switches (A5 through 
A1) set the decimal value of the primary GPIB address for 
the DM 501 0. Refer to Fig. 7-1 . Setting the primary address 
to 31 untalks and unlistens the DM 5010; the instrument 
does not respond to GPIB commands. Refer to Table 7-1 
for switch settings. 



IEEE 488 

ADDRESS SELECTION 



EOl ONLY 
[A5H 
A4- 



ADDRESS 



A3- 
A2- 

A1- m 



SIGNATURf 
ANALYSIS 
TALK ONLY 
LF/EOI 

16 l 



BINARY 

WEIGHT 



PUSH FOR 
LOGIC 0 



PUSH FOR 
LOGIC 1 



2994-31 



Fig. 7-1. GPIB address and message terminator switches. 



Table 7-1 



IEEE 488 (GPIB) PRIMARY ADDRESSES 



AS 


A4 


A3 


A2 


A1 


Primary 

Address 


0 


0 


0 


0 


0 


0 


0 


0 


0 


0 


1 


1 


0 


0 


0 


1 


0 


2 


0 


0 


0 


1 


1 


3 


0 


0 


1 


0 


0 


4 


0 


0 


1 


0 


1 


5 


0 


0 


1 


1 


0 


6 


0 


0 


1 


1 


1 


7 


0 


1 


0 


0 


0 


8 


0 


1 


0 


0 


1 


9 


0 


1 


0 


1 


0 


10 


0 


1 


0 


1 


1 


11 


0 


1 


1 


0 


0 


12 


0 


1 


1 


0 


1 


13 


0 


1 


1 


1 


0 


14 


0 


1 


1 


1 


1 


15 


1 


0 


0 


0 


0 


16 


1 


0 


0 


0 


1 


17 


1 


0 


0 


1 


0 


18 


1 


0 


0 


1 


1 


19 


1 


0 


1 


0 


0 


20 


1 


0 


1 


0 


1 


21 


1 


0 


1 


1 


0 


22 


1 


0 


1 


1 


1 


23 


1 


1 


0 


0 




24 


1 


1 


0 


0 


1 


25 


1 


1 


0 


1 


0 


26 


1 


1 


0 


1 


1 


27 


1 


1 


1 


0 


0 


28 


1 


1 


1 


0 


1 


29 


1 


1 


1 


1 


0 


30 


1 


1 


1 


1 


1 


31 



@ 



7-1 





Maintenance — DM 5010 



Message Terminator Switch Setting 

The EOi ONLY switch selects the DM5010 message 
terminator. For access to this switch, remove the instru* 
ment’s left side cover. The switch is located on the CPU 
board (A14). Refer to Fig, 7-1. Operation of the DM 5010 
with either switch position is described in Section 3 under 
Messages and Communication Protocol. 



Talk Only Switch Setting 

The Talk Only switch is one of the bank of eight switches 
located on the CPU board (A14). Remove the instrument's 
left side cover for access to this switch. Refer to Fig. 7-1 . 
Setting the Talk Only switch to logic 1 selects the Talk Only 
mode. 



Using the Rear interface Connections 

For rear interface connector pin assignments, see Tables 
10-13, 10-14, and 10-15 in the pullout pages of this manual. 



Rear-interface pins 28 B (Hi) and 28A (Lo) on the ADC 
board (A17) are the input connections for measurements via 
the rear interface. 



A negative-going TTL signal may be used to trigger in- 
strument measurements via rear interface connections to 
the Isolation board (A15). Use of this function requires mov- 
ing a jumper on the CPU board (A14). For access to the 
jumper, remove the instrument’s left side cover. Connect 
pins 2 and 3 of J1733 using Its EXTRIG jumper, PI 733. 
Refer to Fig. 1 0-1 . Apply the EXTRIG signal to the Isolation 
board rear interface pins 1 6A and 1 6B (Ground). 



GENERAL MAINTENANCE 

Rear Circuit Board Removal 

To remove the CPU, Isolation, RMS, or ADC boards, 
turn off the power module and remove the plug-in. Turn the 
two plastic fasteners on each side cover and remove the 
covers. Next, remove the four screws on the instrument 
back plate and remove the plate. See Fig. 7-2. Then, re- 
move the retainer bar. Carefully pull the selected board to- 
ward the rear of the instrument. 



NOTE 

Before removing the CPU board, unplug the ribbon 
cable connector from the Front Panel Driver board. 
Before removing the ADC board, remove the screw 
on the front panel between the input connectors. 



A calibration fixture (Tektronix Part No. 067-1052-00) 
contains a board extractor for disengaging these boards. It 
also contains two extender boards designed for operating 
boards outside the instrument. 



To reinstall boards, carefully align the board edges in the 
guides attached to the top and bottom instrument covers. 
Press the board firmly to seat it in the Main Interconnect 
board connectors. When inserting the ADC board, slide the 
board in until the input connectors contact the front panel. 
From the front of the instrument, insert a small screwdriver 
into the front panel connector holes and carefully align the 
input connectors with the holes while maintaining slight 
pressure on the back edge of the board. When properly 
aligned, press the board in firmly. 



Phillips screws 




Fig. 7-2. Backplate and retainer bar removal. 

Front-Panef Board Removal 

To remove the Front Panel and Front Panel Driver board 
assembly, first remove the instrument side covers and back 
plate. Remove the front panel screw between the input con- 
nectors and remove the ADC board. Refer to Fig. 7-3. It is 
necessary to disengage the latch before removing the front 
panel boards. To disengage the latch, use a small 
screwdriver to push forward slightly on the rear latch (1) just 
in front of the spring. Press down on the latch knob to raise 
the latch knob extension at the point where the two latch 
pieces engage. While holding the latch knob down, push up 
on the front panel latch piece at the point of engagement (2) 
to disengage the two pieces. Then, pull the latch knob out. 



7-2 



REV JAN 1983 





Maintenance — DM 5010 




Fig. 7-3. Latch disassembly. 




Do not install the plug-in in the power module while 
the latch is disassembled. Removal of the plug-in with- 
out use of the latch can be extremely difficult. 



Next, remove the two screws near the front of the instru- 
ment top cover (see Fig. 7-4) and remove the cover. Then, 
remove the other front panel screw and the chassis ground 
terminal. Pull forward to remove the front panel assembly. 
Disconnect the ribbon cable from the Front Panel Driver 
board. 



To remove the front panel from the board assembly, re- 
move the five screws on the Front Panel board. To separate 
the two circuit boards, carefully pull the boards apart, main- 
taining nearly equal separation until the interconnecting pins 
disengage. Reassemble in the reverse order. 



Top cover 
screws 




Chassis ground 
terminal 



Fig. 7-4. Front panel removal. 



@ 



7-3 






Maintenance — DM 5010 



Input Switch Assembly 

For access to the input switch, remove the ADC board 
(A17) from the instrument. Then, remove the input connec- 
tor assembly mounting nut and screw, and remove the 
guard shield. Refer to Fig. 7-4. Unsolder the wires to the 
switch. Next, remove the two screws in the back of the 
Input connector assembly and remove the plate. The switch 
can now be removed. Be careful not to lose the actuator 
and spring located inside the input connector assembly. 
Reinstall the guard switch and input connector assembly in 
reverse order. 



Adjusting C1301 and C1404 

If the transformer is replaced, the adjustment of C1301 
and Cl 404 should be checked. To accomplish this, place 
the Isolation board (A1 5) on an extender board and connect 
the plug-in to the power module via a flexible extender ca- 
ble. The recommended equipment is listed below: 

Oscilloscope TEKTRONIX 7603 

Dual Trace Amplifier TEKTRONIX 7A1 8 

Time Base TEKTRONIX 7B50A 



a. Connect the DM 5010 HIGH input connector to the 
LOW connector. Connect the oscilloscope as shown in Fig. 
7-5. Apply power to the power module. 

b. ADJUST — C1301 for minimum amplitude of the dis- 
played square wave («33 /xs period). Refer to Fig. 7-6. 



c. Add a connection from the DM 5010 GUARD connec- 
tor to the DM 501 0 chassis ground. 



d. ADJUST — Cl 404 for minimum amplitude of the dis- 
played square wave. 

e. Remove all connections to the DM 5010 and turn off 
the power module. Reinstall the Isolation board in the plug- 
in. 



Battery Replacement 

The recommended interval for battery replacement is ap- 
proximately two years. 

NOTE 

Disconnecting the battery causes the loss of calibra- 
tion factors stored in memory. Battery replacement 
must be followed by a 24-hour period of operation and 
then performance of the Adjustment Procedure. 



For access to the battery, unplug the ribbon cable con- 
nector from the Front Panel Driver board and remove the 
CPU board (A14). The battery is located in the rear, bottom 
corner of the board. Unsolder the battery ears from the 
wires attached to the circuit board. Use diagonal pliers to 
cut the two plastic straps holding the battery in position. 
Place the new battery in the circuit board cutout with correct 
polarity. Fasten new plastic straps around the battery and 
through the circuit board holes. Solder the battery ears to 
the circuit board wires. 



Power up the instrument for about 24 hours to properly 
charge the battery. Then, perform the Adjustment Proce- 
dure to restore calibration factors to instrument memory. 




2994-35 



Fig. 7-5. Setup tor C1301 and C1404 adjustment. 



@ 



7-4 








Maintenance — DM 5010 




Fig. 7-6. Location of Cl 301 and Cl 404. 



Troubleshooting Aids 

Diagrams. Complete circuit diagrams are located in the 
foldout pages in the Diagrams and Circuit Board Illustra- 
tions section. The jDortions of the circuit mounted on circuit 
boards are enclosed by a solid line. The circuit number of 
each component in this instrument is shown on a diagram. 
See the first page of the Diagrams and Circuit Board Illus- 
trations section for definitions of the symbols and reference 
designators used on the diagrams. 

Circuit Board Illustrations. Circuit board illustrations are 
provided in conjunction with circuit diagrams. Each board- 
mounted component shown on a diagram is also identified 
on the circuit board illustration by circuit number. A table is 
provided with each diagram listing components by assembly 
and circuit number. The table also lists the component grid 
locations on both the diagram and circuit board illustrations. 



Adjustment Locations. To aid in locating test points and 
adjustable components, the adjustment locations pullout 
page (normally used with the Adjustment Procedure) per- 
mits rapid location of adjustments and associated test 
points. 

Calibration Fixture 

Several calibration fixtures are available from Tektronix, 
Inc. that are helpful in troubleshooting the DM 5010. 

067-1052-00 — contains two extender boards and a 
board extractor. 

067-0645-02 — provides a flexible extender cable. 
067-0996-00 — contains a GPIB extender cable. 



Contact your nearest Tektronix, Inc. Field Office or repre- 
sentative for ordering information. 



Troubleshooting Equipment 

Befor using any test equipment to make measurements 
on static-sensitive components or assemblies, be certain 
that any voltage or current supplied by the test equipment 
does not exceed the limits of the component to be tested. 



Static-Sensitive Components 




Static discharge can damage any semiconductor 
component in this instrument. 

This instrument contains electrical components that are 
susceptible to damage from static discharge. See Table 7-2 
for relative susceptibility of various classes of semi- 
conductors. Static voltages of 1 kV to 30 kV are common in 
unprotected environments. 

Observe the following precautions to avoid damage. 



1 . Minimize handling of static-sensitive components. 



2. Transport and store static-sensitive components or 
assemblies in their original containers, on a metal rail, or on 
conductive foam. Label any package that contains static- 
sensitive assemblies or components. 



3. Discharge the static voltage from your body by wear- 
ing a wrist strap while handling these components. Servic- 
ing static-sensitive assemblies or components should be 
performed only at a static-free work station by qualified ser- 
vice personnel. 



4. Nothing capable of generating or holding a static 
charge should be allowed on the work station surface. 

5. Keep the component leads shorted together when- 
ever possible. 

6. Pick up components by the body, never by the leads. 

7. Do not slide the components over any surface. 

8. Avoid handling components in areas that have a floor 
or work surface covering capable of generating a static 
charge. 




Maintenance — DM 5010 



9. Use a soldering iron that is connected to earth 
ground. 



refer to the replaceable parts lists and the Cross Reference 
Index, Mfr. Code Number to Manufacturer. 



1 0. Use only special anti-static suction type or wick type 
desoldering tools. 



Table 7-2 

RELATIVE SUSCEPTIBILITY TO 
TO STATIC DISCHARGE DAMAGE 



Semiconductor Classes 


Relative 

Susceptibility 

Levels* 


MOS or CMOS microcircuits or i 

discretes, or linear microcircuits ; 

with MOS inputs. (Most Sensitive) 


j 

i 

1 


ECL 


2 


Schottky signal diodes 


3 


Schottky TTL 




High-frequency bipolar transistors 


! 5 


JFETs 


I 6 


Linear microcircuits 


7 


Low-power Schottky TTL 


8 


TTL (Least Sensitive) 


9 



*Voltage equivalent for levels: 

1 = 100 to 500 V 4 = 500 V 7 = 400 to 1000 V(est.) 

2 = 200 to 500 V 5 = 400 to 600 V 6 = 900 V 

3 = 250 V 6 = 600 to 800 V 9 = 1200 V 

(Voltage discharged from a lOOpF capacitor through a resis- 

tance of 100 Q.) 



Obtaining Replacement Parts 

Electrical and mechanical parts can be obtained through 
your local Tektronix Field Office or representative. However, 
it may be possible to obtain many of the standard electronic 
components from a local commercial source. Before pur- 
chasing or ordering a part from a source other than 
Tektronix, Inc., check the Replaceable Electrical Parts list 
for the proper value, rating, tolerance, and description. 



NOTE 

When selecting replacement parts, remember that the 
physical size and shape of a component may affect its 
performance in the instrument. 



Some parts are manufactured or selected by Tektronix, 
Inc., to satisfy particular requirements or are manufactured 
for Tektronix, Inc., to our specifications. Most of the me- 
chanical parts used in this instrument have been manufac- 
tured by Tektronix, Inc. To determine the manufacturer. 



When ordering replacement parts from Tektronix, Inc., 
include the following information: 

1. Instrument type (include modification or option 
number); 



2. instrument serial number; 

3. a description of the part (if electrical, include complete 
circuit number); and 



4. Tektronix part number. 



Soldering Techniques 



WARNING 



To avoid eiectriC’Shock hazard, disconnect the instru- 
ment from the power source before soldering. 



The reliability and accuracy of this instrument can be 
maintained only if proper soldering techniques are used 
when repairing or replacing parts. General soldering tech- 
niques, which apply to maintenance of any precision elec- 
tronic equipment, should be used when working on this 
instrument. Use only 60/40 rosin-core, electronic grade sol- 
der. The choice of soldering iron is determined by the repair 
to be made. 




The CPU, ADC, Front Panel Driver, Front Panel and 
Isolation boards are multilayer type boards with a con- 
ductive path laminated between the top and bottom 
board layers. AH soldering on these boards should be 
done with extreme care to prevent breaking the con- 
nections to this conductive path. 

Do not allow solder or solder flux to flow under printed 
circuit board switches. The printed circuit board is part 
of the switch contacts; intermittent switch operation 
can occur if the contacts are contaminated. 



When soldering on circuit boards or small wiring, use 
only a 15 watt, pencil-type soldering iron. A higher wattage 
soldering iron can cause the etched circuit wiring to sepa- 



@ 



7-6 





Maintenance — DM 5010 



rate from the txiard base material and melt the insulation 
from small wiring. Always keep the soldering iron tip proper- 
ly tinned to ensure the best heat transfer to the solder joint. 
Apply only enough heat to remove the component or to 
make a good solder joint. To protect heat-sensitive compo- 
nents, hold the component lead with a pair of long-nose 
pliers between the component body and the solder joint. 
Use a solder removing wick to remove excess solder from 
connections or to clean circuit board pads. 



Semiconductors 

To remove in-line integrated circuits mounted in sockets, 
use an extracting tool. This tool is available from Tektronix, 
Inc.; order Tektronix Part No. 003-0619-00. If an extracting 
tool is not available, use care to avoid damaging the pins. 
Pull slowly and evenly on both ends of the integrated circuit. 
Try to avoid disengaging one end before the other end. 



Exterior Cleaning 

Chassis. Accumulated dust on the instrument chassis 
can be removed with a soft cloth or small brush. Remove 
dirt that remains with a soft cloth dampened in a mild deter- 
gent and water solution; then remove the detergent with a 
soft cloth dampened in clean water. Do not use abrasive 
cleaners. 



Front Panel. Use only a cotton swab or soft cloth, 
dampened in isopropyl alcohol or water. 




To avoid damage, use only isopropyl alcohol or water. 

Do not use petroleum based cleaning agents. Before 
using a cleaner other than isopropyl alcohol, consult 
your Tektronix Service Center or representative. 

Interior Cleaning 

Clean circuit boards only when required for operation to 
specified performance. Cleaning and rinsing solutions can 
be used on all boards except the Front Panel board. The 
recommended cleaning and rinse solutions, plus specific 
cleaning precautions for each board are listed below by 
board name. Observe this board-specific information and 
the following general board cleaning information. 

General Board Cleaning 

1 . For boards that can be cleaned with a detergent solu- 
tion, use only a 20:1 solution of distilled water and Kelite 
Spray Whiter 

'Allied-Kelite Products Division of the Richardson Co.; Los An- 
geles, CA. 



2. Cleaning after minor repairs to circuit boards can be 
done by using a soft plastic tool to carefully chip away flux 
residue. Be careful not to damage circuit board paths and 
components. 



3. Do not immerse boards in cleaning or rinsing soiu- 
tions; use spray bottles to spray on the specified solutions. 



^ CAVriOH 

Rinse the area extremely well to completely remove 
cleaning residue. 

4. After cleaning, use dry, low-velocity air {approximately 
5 !b/in^) to blow-dry the board (except the Front Pane! 
board). 

5. To finish board drying, place in an oven at 40 °C to 
60®C for a minimum of twenty-four hours. 




To prevent damage and to ensure proper operation, 
circuit boards and components must be dry before ap- 
plying power. 



Board Cleaning 

Front-Panel Board (A1 1). Do not use any type of clean- 
ing or rinsing solutions, water, or compressed air on this 
board, since cleaning may leave residue and contaminants 
inside the switch assemblies or on the circuit board contact 
areas; interfering with both mechanical and electrical oper- 
ation. If the front-panel switches are intermittent, then re- 
place the switches. 



Front-Panel Drive Board (A 12). Use the detergent solu- 
tion specified under General Board Cleaning. Rinse with 
isopropyl alcohol or warm distilled water. 



Main Interconnect Board (A 13). Use isopropyl alcohol 
or the specified detergent solution for cleaning. Rinse very 
well with warm distilled water or clean isopropyl alcohol. 



REV JAN 1982 



7-7 



Maintenance — DM 5010 



CPU Board (A14). Use the specified detergent solution 
or isopropyl alcohol for cleaning. Rinse well with clean 
isopropyl alcohol or warm distilled water. 




To prevent instrument damage and performance deg- 
radation, do not allow cleaning or rinsing solutions on 
the GPIB switches (SI 51 5), or on the battery or bat- 
tery circuit. Board cleaning around the battery area 
may be done if the battery is removed first: however, 
this requires new battery straps for re-installation of 
the battery and performance of the adjustment proce- 
dure to restore calibration constants in memory. To 
help protect the GPIB switches, apply wide tape to 
the switch sides and top. 



Isolation Board (A15). Use the specified detergent solu- 
tion for cleaning; rinse well with distilled water. 




Do not allow cleaning or rinsing solutions on the trans- 
former. Isopropyl alcohol may be used for cleaning if 
the transformer is first removed from the board. Rinse 
very well with generous amounts of dean isopropyl 
alcohol. 



RMS Board (A16). For cleaning, use the specified deter- 
gent solution. Rinse with distilled water. 




Isopropyl alcohol may be used for cleaning this board 
if the board is very well rinsed with generous amounts 
of dean isopropyl alcohol. 



ADC Board (A 17) and Relay Board (A 18). For cleaning, 
use the specified detergent solution: rinse very well with 
distilled water. Isopropyl alcohol may be used for cleaning 
provided the circuit board is very well rinsed with generous 
amounts of clean isopropyl alcohol. 




Do not allow cleaning or rinsing solutions in or on the 
rear input relay (K1631 on the Relay board), or the 
guard input switch assembly (S1731). 



CPU Board Coating 

Some solder connections and board surface areas of the 
CPU board are coated with a clear, moisture-proof material 
called Humiseal. These areas are indicated by a gray shad- 
ing in Fig. 10-6 in the pullout pages (see lower rear area of 
component side of board). After any soldering on these 
areas, the shaded solder connections and board surfaces 
must be recoated to ensure operation to specified perfor- 
mance in a high humidity environment. Clean the worked 
area by carefully scraping away the damaged portions of 
the coating. Remove any flux residue: then reapply 
Humiseal to the indicated surfaces and solder connections, 
on both sides of the board. Humiseal may be obtained by 
ordering Tektronix Part No. 006-1744-00. 



TROUBLESHOOTING 

Introduction 

Troubleshooting information for the DM 5010 includes 
detailed instructions using traditional techniques and signa- 
ture analysis for selected digital circuit troubleshooting. For 
troubleshooting purposes, the circuitry in the DM 5010 is 
broken into circuit sections. Table 7-3 lists typical problem 
symptoms for these sections. Use these symptoms to help 
select the malfunctioning circuit; then perform the verifica- 
tion in the table for the selected circuit. Any discrepancy 
found in verification confirms that the selected section is 
malfunctioning. If the instrument symptoms suggest mal- 
functions in several circuit sections, do the verification for 
the tower numbered section first. Then follow the detailed 
troubleshooting procedures listed by the circuit section and 
number following the table. Although the troubleshooting in- 
formation cannot address every possible fault, it may help 
isolate the problem area. A review of the Theory of Oper- 
ation section in this manual should also prove helpful. Refer 
to board illustrations adjacent to the diagrams in the pullout 
pages for component and test point locations. 



If an error code is either displayed on the instrument front 
panel or returned to the controller in response to an ERR? 
query, refer to the error code definitions in the Programming 
section of this manual. The only error codes that indicate 
instrument malfunction are those classified as Internal Er- 
rors in the error code list. The displayed error code 521 
indicates that the Signature Analysis switch is enabled. If 
CAL is displayed, the internal CAL jumper is set for instru- 
ment adjustment. Enabling the signature analysis or adjust- 
ment mode affects normal instrument operation. 



For access to troubleshooting points on the four rear 
boards, use the DM5010 extender boards listed under 
Troubleshooting Aids in this section of this manual. Also 
listed are flexible extender cables for operating the DM 501 0 
outside of the power module. 



7-8 



ADD JAN 1982 




Maintenance — DM 5010 



Signature Analysis 

Signature analysis information for troubleshooting some 
DM 5010 digital circuitry is provided in the pulout pages in 
the back of this manual. It is probable that, over a period of 
time, product modifications and updates will become avail- 
able, or necessary, or both. Due to the impact they have on 
instrument diagnostics and firmware, some modifications 
and updates must be installed in a serial manner; that is, all 
earlier modifications and updates may be a prerequisite to 
installation of the most recent one requested or suggested. 



To determine the applicable signature version for your 
instrument, compare the board assembly (670-) and 
firmware (1 60-) numbers in the DM 501 0 Signature Versions 
Table (in the back of this section) with those on the instru- 
ment boards. Use the signature analysis information in the 
pullout pages for the signature version indicated in the table 
for your instrument board and firmware configuration. 



Signature Table 10A provides signature analysis infor- 
mation for checking the microprocessor, ROM, and address 
decoding on the CPU board. The DM 5010 setup informa- 
tion for these checks requires positioning the NOP jumper to 
disable bidirectional buffer U1435 and the buffered data 
bus. It also enables the NOP buffer, which sends NOP (no 



operation) instruction code to the microprocessor. This code 
causes the microprocessor to sequentially address each 
memory space in ROM. Signature analysis verifies that the 
data read from ROM is correct, thus ensuring that the 
microprocessor, data bus, and ROM are operational. After 
checking signatures, reset the NOP jumper to the normal 
operating position. The instrument must be powered down 
and then back up to reset the microprocessor to normal 
operation. 



Signature Table 10B checks the range shift registers. 
These tests require setting the DM 5010 Signature Analysis 
switch to the SA mode. This causes the microprocessor to 
read and perform a special signature analysis routine. This 
routine uses a repeatable pattern to set the registers to 
known states. 



W4i?N>WG~| 



Dangerous voltages may be encountered in the fol- 
lowing troubleshooting procedures. Caution must be 
exercised. Do not contact the output connectors of 
the voltage source, or the input connectors or internal 
circuitry of the DM 5010. 



Table 7-3 

TYPICAL TROUBLE SYMPTOMS 



Typical Symptoms 


Circuit Section — Verification 


Extinguished or unchanging display. 


CPU Board, Diagram 7 




1 1a. POWER SUPPLIES — Check for -t-5 V dc on PI 731-1 A or 1B and 2A or 2B 
I (gnd). 




1b. CLOCK — Check for 1 MHz squarewave between TP1535 (CK) and TP1531 
I (gnd). 




1c. PON CIRCUIT— Check for TTL logic 1 at U1320-40 (PON). 

j 


Unchanging or flickering display, or inter- 


CPU Board, Diagrams 7, 8 


nal error code. 

1 

i 

I 

\ 

i 

i 


2. MICROPROCESSOR — Place NOP jumper P1425 in the enable position. 
Check for a squarewave on the buffered address lines at U1235 and U1420A; 
each line should be one-half the frequency of the previous line, going from BAG to 
BA11. Check the outputs of U1620 and U1520. Check that the ROM Enables 
(pin 18 of U1200, U1300, U1305, and U1400) are not locked high or low. With 
power off, reposition the NOP jumper to connect J1425, pins 1 and 2. Apply 
power and check that the data lines on both sides of U1435 are not locked high 
or low. Check that IRO at U 1320-4 is not locked low. Check that VMA and R/W 
(U1 320-5 and 34) are toggling. 



ADD JAN 1982 



7-9 






Maintenance — DM 5010 



Table 7*3 (cont) 

Typical Symptoms Circuit Section — Verification 

Dead, unchanging, or flickering display, or CPU Board, Diagram 9 
no response to pushbuttons. 

3. FRONT PANEL— Check that U1605-1 (RW3) is a logic 1. With the DIODE 
TEST button held in, check the same point for a 0.6 ms logic 0 pulse at =^5 ms 
intervals. 

Error code 31 1 Isolation Board, Diagram 4 

4. ISOLATED SUPPLIES — Using an isolated ground reference, check the fol- 
lowing supply voltages: 

P1701-7A +35.1 Vdc, ±11% 

P1701-13B +36.9 Vdc, ±11% 

P1701-13A -36.9 Vdc, ±11% 

P1701-14A -17.6Vdc, ±11% 

P1701-14B +17.6 Vdc, ±11% 

P1701-15B -17.6 Vdc, ±11% 

P1701-15A -27 Vdc, ±2% 

No response to REAR INPUT button. Isolation Board, Diagram 5 
wrong reading, hunts for range, displayed ADC Board, Diagram 2 
measurement drifts. RMS Board, Diagram 3 

5. FUNCTION & RANGE REGISTERS— Repeatedly press the REAR INPUT 
button and check that the relay clicks with each button press. 

Error code 31 1 , wrong reading, hunts for Isolation Board, Diagrams 4 and 5 
range. ADC Board, Diagram 1 

6. A/D CONVERTER — Connect U1 120-3 on the ADC Board to analog ground. 
Display reads %zero in all DCV ranges. 

One or more DCV readings is out of Dc Voltage Measuring Circuits, Diagram 1 

specification or 31 1 error code. 

7. Apply 0 V dc and 95% of the full scale dc voltage at the DM 501 0 inputs for 
each DCV range. All readings are within specification. 

One or more ACV or ACV + DCV readings RMS Board, Diagram 3 
is out of specification. 

8. RMS CONVERTER— For both ACV and ACV + DCV, apply a 200 Hz, 5% and 
95% of full scale input at the DM 5010 inputs, for the 200 mV through 200 V 

I ranges. Apply a 200 Hz, 14% and 95% of full scale input for the 700 V range. All 
readings are within specification. 

One or more OHMS readings is out of RMS Board, Diagram 3 
specification. 

9. OHMS CONVERTER— Apply 0 fi and 95% of the full scale input resistance, 
at the DM 5010 inputs, for each OHMS range. All readings are within 
specification. 



7-10 



ADD JAN 1982 



Maintenance — DM 5010 



Table 7-3 (cont) 



Typical Symptoms 


Circuit Section — Verification 


Hangs up bus, or will not communicate 
over bus with controller. 


10. GPIB — Connect a 4051 or 4052 to the DM 5010 power module. Turn all 
power on. If the message: 




NO SRQ ON UNIT-MESAGE NUMBER 43 


1 

1 


is received, type: 




POLLX,Y;16 


1 


where 16 is the instrument address. Short the DM 5010 inputs. Type the 
following: 




PRI (0)16: -DCV 2" 
INP @16: AS 
PRI A$ 




The last line on the controller display should be: 0.; or 0.0001 ; or —0.0001 ;. The 
instrument does not have to be within specification to verify bus operation. 



Before beginning troubleshooting on the selected circuit 
section, visually inspect the circuit board for broken, 
damaged, or loose components, damaged or shorted circuit 
paths, etc. 

1. POWER SUPPLY, CLOCK, PON CIRCUITS 

a. POWER SUPPLY, Isolation Board, Diagram 4 

If verification indicated a +5 V malfunction, remove the 
Isolation board from the DM 5010, but leave the board con- 
nected to the flexible extender cable. Check for -i-5 V at 
J1733-1A or 1B. If +5 V is present, then a load on either 
the Main Interconnect board or CPU board is pulling down 
the +5 V supply. 

Check the 3 A fuse on the Isolation board. 



Check for +5V at U1 000-2. If not present, check 
Q1105, Q1104, and PWR (P1031-6B) from the power 
module. 



Check that VR1216 is not shorted. 



Check U1000 and Q1101. 



Reinstall the Isolation board. 



b. CLOCK, CPU Board, Diagram 7 



Check U 1320-37 for a 1 MHz squarewave. 



Check U 1320-38 and 39 for a 4 MHz squarewave. 



c. PON, CPU Board, Diagram 7 



Check VR1232. 



Check U1230 (all pins). 



2. MICROPROCESSOR, CPU Board, Diagram 7 

To troubleshoot this circuit, do the following steps or use 
a signature analyzer to check the signatures in Table 1 0A in 
the pullout pages. 

a. On U1320, check that the address and data lines are 
toggling; IRQ, RESET, NMI, and HALT are not stuck low; 
check for clock pulses on pins 37, 38, 39. Check power and 
ground to U1320. 



b. Check power, ground, data, and address lines in the 
circuit area including U1235, U1420, U1510, U1520, U1620, 
U1720, U1730, U1435, U1430, U1425, U1200, U1300, 
U1305, U1400, U1600, U1505. U1220. 



add JAN 1982 



7-11 



Maintenance — DM 5010 



3. FRONT-PANEL, Front-Panel Drive board, 
Diagram 11 

a. If all indicators and push buttons are inoperable, 
check J 1820-1 2 for -t- 5 V and J 1820-20 for +8V. 



b. If one or more LEDs do not illuminate, check the asso- 
ciated anode driver and the circuit path from the anode driv- 
er to the front panel. 

c. If the same segment in all LEDs stays off or on, check 
the associated cathode drivers and circuit paths. 



d. If only one LED or segment is always off, check that 
LED and its circuit paths. 



e. If one of the push buttons is inoperable, check the 
push button switch and its circuit board paths. 

f. If several push buttons are inoperable, check the col- 
umn drivers and row lines and their paths between the 
Front-Panel Drive and Front-Panel boards. 

4. ISOLATED SUPPLIES, Isolation Board, 

Diagram 4 

If any of these supplies are working, the problem with a 
malfunctioning supply is located in the isolated section. 
When troubleshooting a supply on the Isolation board, use 
an extender board only for the bottom Isolation board con- 
nector to the Main Interconnect board; leave the top con- 
nector unconnected. 



a. Check the following no load supply voltages on the 
Isolation board: 



Table 7-4 

NO LOAD POWER SUPPLY VOLTAGES 



+ lead 


— lead 


Voltage Limits (V dc) 


P1701-15B 


P1701-15A 


-h9.2 V to -M1.6 V 


-14B 


-4A or 4B 


-l-16.6Vto -h20.8V 


-14A 


-4A or 4B 


-20.8 V to -16.6 V 


-13B 


-4A or 4B 


-h33.3 V to -h 41.7 V 


-13A 


-4A or 4B 


. -41.7 V to -33.3 V 


-7A ! 


i -7B 


1 +33.3 V to -1-41.7 V 



If any of these voltages are outside the limits, check the 
associated rectifiers and filter capacitors. 



b. Check for a 50 V peak-to-peak squarewave (18 *^s up 
and 18 ^s down) between the collectors (cases) of Q1201 or 
Q1202 and ground (TP1421). If the squarewave is not 
present, check the 1/2 A fuse. 



c. Check for a 1 MHz TTL squarewave at J1 733-1 IB 
on diagram 6), If not present, check the circuit back to 
U1230 on the CPU board. 



d. Check for a 27.78 kHz TTL squarewave at U1325B-8 
and 9 (on diagram 4). If present, check the transistors and 
associated components of the transformer drive circuit. 



e. Check for a 250 kHz squarewave at U1535B-8 and 9 
(diagram 6). If not present, check U1535. 



f. Check for a 4 /xs pulse every 72 mS at U 1730-1 5. If not 
present, check the -h 18 circuit (U1635B, U1730, U1635C, 
U1530B, U1320B). 

NOTE 

A blown fuse may indicate an overload in another cir- 
cuit. To troubleshoot an overload condition, it may be 
helpful to temporarily replace the fuse with a 75 to 
200 Q, 3 W resistor. After troubleshooting, be sure to 
reinstall the fuse. 



5. FUNCTION & RANGE REGISTER 

To troubleshoot this circuit, do the following steps or use 
a signature analyzer to check the signatures in Table 10B in 
the pullout pages. For the following steps, use an oscillo- 
scope; connect the external trigger (— slope) to U1 520-7 on 
the CPU board, diagram 7. Set the DM 5010 to the fast 
conversion rate. Set the oscilloscope to 5 V/cm and 
2 ms/cm. 



a. Check RC at J1 731-1 OB. Look for a closely grouped 
set of 32 pulses; then check for a second group of 32 
pulses, not as closely or as evenly spaced as the first group. 
Note the position of the last pulse. Then check RD at J1 731- 
9B. It should have a fixed bit pattern only during the second 
pulse group checked previously. Change the DM 5010 
range or function and check that the bit pattern changes. 
The RD line also has a short pulse just following the last RC 
pulse.. Also check RC and RD on the Main Interconnect 
board (diagram 10) and at the opto-isolators, U1515-3 and 
U1610-3 (diagram 5). Change the oscilloscope ground refer- 
ence to PGND (P1701-4A or 4B, diagram 5), and position 
the trace near the top of the crt display. Check IRC and IRD 
at U1 51 5-6 and U1 61 0-6, and on diagram 1 0 at J1 701 -1 1 A 
and 11B. 



7-12 



ADD JAN 1982 




Maintenance — DM 5010 



Next, check the STROBE signal on the ADC and RMS 
txjards at shift registers U1500-1, diagram 2, and U1330-1, 
diagram 3, respectively. The strobe should appear only dur- 
ing the short pulse at the end of the RD pulse train. Check 
the input and output (pins 2 and 9) of each register. 



If the shift registers are working and a range problem still 
exists, check the latches and the switches they drive for the 
malfunction. Refer to Figs. 10-2 and 10-5 in the pullout 
pages. 

6. A/D CONVERTER, Isolation Board, Diagram 5 

First determine whether the problem is in the isolated or 
grounded parts of the A/D Converter. To do this, place the 
Isolation board on one extender, leaving the_top board con- 
nector unconnected. Jumper U1710-3 (U/D) to U1510-6 
(COMP) on the Isolation board. Check the display with U/D 
jumpered to COMP, an overrange negative voltage indi- 
cates the fault is in the isolated circuit; a displayed error 
code 31 1 suggests the fault is in the grounded circuit. Re- 
move the jumper between U/D and COMP, and check the 
indicated circuit. 



a. Isolated A/D Circuit: If the problem is in the isolated 
section, refer to the sections in the DC Voltage Measuring 
Circuit Troubleshooting section dealing with 31 1 errors and 
the Charge-Balancing Converter. 

b. Grounded A/D Circuit: Check the path of the TRIG 
pulse through the control ICs at the following points: 

U1530A-6 (In Progress) 

U1435C-8 
U1425A-5 (M/2) 

U1435A-3 

U1330A-5 (Override) 

U1230A-5 

U1420C-8 

U1425B-8 



Check U1330B-8 (U/D) and U1335B-10 (COMP). COMP 
should follow U/D. 



On diagram 6, check U1635A-12 (EOC) and U1520A-3 
(EOAZ). Check 01 through Q12 of U1525 for a squarewave 
signal: each signal should be one-half the frequency of the 
preceding signal. 



To check the data generation, trigger the oscilloscope on 
TP1625, Stop, on diagram 7; then check that U1 235-1 5 and 
U1320A-6 count out the 17 Advance pulses (diagram 6). 
Check U1030B-6 (DATA) for a serial representation of the 
17 bit input to U 11 25 and U1030C-8. Check U1 125-10 for a 



parallel representation of the counters inputs from U1020, 
U1120, U1220, and U1130. Trigger the oscilloscope on 
U1425A-5, M/Z, diagram 5; then check that the UP and 
DOWN pulses beginning at U1020-5 and 4 propagate 
through the counter ICs and that their outputs toggle appro- 
priately. Check that the counter is reset to 0 by the RS 
pulse. U1020-11. 

7. DC VOLTAGE MEASURING CIRCUITS, ADC 
Board, Diagrams 1, 2 

a. To check the supply voltages to this circuit, place the 
ADC board on an extender board and measure the voltages 
listed in Table 7-5. 



Table 7-5 

POWER SUPPLY AND REFERENCE VOLTAGES 



Measurement 






Location 


Diagram 


j Voltage Limits 


U1 230-1 6 


1 


-1-11.4 V to -h12.6 V 


U 1230-6 




-12.6 V to -11.4 V 


VR1321-C 




-1-6.28 V to +6.42 V 


VR1223-C 




+ 21.5 V to +22.5 V 


VR1225-A 




-22.5 V to -21.5 V 


VR1001-C 




+ 32.5 V to +41.7 V 


VR1013-A 




-41.7 V to -32.5 V 


U1 400-1 4 


2 


typically —22 V 


U 1400-7 




-27.5 V to -26.5 V 


VR1501-C 




+4.8 V to +5.4 V 



If the voltages are correct, continue troubleshooting at 
part 7b. 



If these voltages are incorrect, remove the RMS board 
from the plug-in and remove the ADC board from the ex- 
tender board. Measure the voltages in Table 7-6, on tne 
extender board connector. The measurement locations are 
the Main Interconnect board connector pin numbers. 



Table 7-6 

NO LOAD POWER SUPPLY VOLTAGES 



! 

Measurement 

Location 

(+ lead) (- lead) 


Voltage Limits 


15B 


■ 

15A 


+ 9.2 V to +11.6 V 


14B 


6B 


+ 16.6Vto +20. 8V 


14A 


6B 


-20.8 V to -16.6 V 


13B 


66 


+ 33.3 V to +41.7 V 


13A 


6B 


-41.7 V to -33.3 V 



ADD JAN 1982 



7-13 



Maintenance — DM 5010 



If these voltages are incorrect, refer to the Isolated Sup- 
plies troubleshooting information. If they are correct, check 
the regulation circuit U1601, U1603, U1605, VR1514, 
CR1611, R1611, and Q1613 on diagram 2 for the proper 
voltages. 



Next, perform one of the troubleshooting parts, based on 
these symptoms: part b if the display indicates a 31 1 error 
code; part c if the displayed measurement is out of specifi- 
cation for the applied dc input voltage. 



b. Set the DM 501 0 to the power-on settings and check 
the waveforms in Fig. 7-7 at the locations given. If the 
waveforms are incorrect, check the components or 
troubleshooting procedure listed in Table 7-7 for the indicat- 
ed system. 



Table 7-7 

ERROR CODE 311 FAULTS 



Symptoms 


1 Component 


One or more power 
supplies is incorrect 


See part a 


1 M/Z high, 


U1615 on diagram 5, A/D Con- 


1 U/D low 


verier troubleshooting procedure 


1 M/Z low 


U1230, C1139 on diagram 1 


1 U/D high 


Q1514, C1514, R1514 on dia- 
gram 2 



c. Check the FET gate waveforms shown in Fig. 7-8 for 
the indicated FETs with 0 V applied to the DM 5010 input. 
Set the DM 501 0 settings to the power-on states. 



If one or more gate waveforms are incorrect, the problem 
is associated with the FET, the DCV Signal Conditioner 
bootstrap buffer, or the FET gate drive circuits. 



To check the bootstrap buffer, measure the voltage at 
the juction of the emitters of Q1 017 and Q1 021 (diagram 1 ). 
This voltage should be no more than a few millivolts. If not, 
troubleshoot the DCV Signal Conditioner, using the proce- 
dure provided below. 



If the bootstrap buffer is operating correctly, trace the 
gate signal back through its driver and to the Function and 
Range Register or the Measurement Enable circuit. Refer to 
the Function and Range Register, if the problem is in that 
circuit. Tables 1 0-2 and 1 0-5 in the pullout pages show the 
register output states. If the problem is in the Measurement 
Enable circuit (no I M/Z at U1400-1, diagram 2), check 
Q1511, Q1512, and CR1511. 



The remainder of this procedure provides 
troubleshooting information for each of the functional blocks 
in the isolated section. 



Input Switch 

Measure the voltage between the input end of R1637 
and the isolated grounds (diagram 1). 



if the voltage is not equal to the front panel input, check 
Cl 723, LI 723, K1631, and the solder connections between 
K1631 and the ADC board. 



If the voltage is not equal to the rear interface input, 
check K1631 and the solder connections between the relay 
and the ADC board. 



If K1631 does not operate, check its drive circuit and the 
Function and Range Register (U1 300-12) output (diagram 
2 ). 



Attenuator 

Measure the voltage between the junction of R1521 and 
R1427, and the isolated ground (diagram 1). The junction 
will be loaded slightly by the test equipment used. Check the 
components listed in Table 7-8 for the symptoms indicated 
for the measured voltage. The Function and Range Register 
states are given in Tables 10-2 and 10-5 in the pullout 
pages. 



Overvoltage Protection and Function Switching 

Retain the measurement connections from the previous 
check, with the DM 501 0 set to its power-on state, if the 
measured voltage is approximately —22 V or -i-22 V, check 
Q1327 or Q1323 (diagram 1). 



Connect an oscilloscope between the input end of R1222 
and the isolated ground. Use the I M/Z (U1230-3) trailing 
edge as the external trigger; set the oscilloscope for 
50 mV/cm and 50 ms/cm. Apply 100 mV to the DM 5010 
input. If the displayed waveform is not the same as the 
waveform in Fig. 7-9, check Q1319 and Q1317. 



DCV Signal Conditioner 

Connect the oscilloscope between the input end of 
R1121 and the isolated ground (diagram 1). Use the trailing 
edge of I M/Z (U1 230-3) as the external trigger. Set the 
oscilloscope for 1 V/cm and 50 ms/cm. Set the DM 501 0 to 
its power-on state. Apply 100 mV, 1 V, and 10 V to the 
DM5010 input. For each input, check that the displayed 



7-14 



ADD JAN 1982 




Maintenance — DM 5010 



Table 7-8 

ATTENUATOR FAULTS 



Symptom 


Diagram 


j Components 


Voltage ^ applied input (any range) 


1 


R1637 


Voltage ^ applied input in 200 mV through 
20 V ranges. Checks good in 200 and 1000 V 
ranges 


1.2 


R1521, K1527, and its drive circuit. Function and 
Range Register (U1500-12) output 


Voltage ^ applied input in 200 or 1 000 V 
ranges. Checks good in 200 mV-20 V ranges 


1,2 1 

i 1 

1 


R1429, K1525, and K1425, and their drive circuits. 
Function and Range Register (U1 500-5, 7) outputs 


Voltage > one-haff the applied input in 200 mV 
through 20 V ranges 


1,2 


K1425 and its drive circuit, Function and Range 
Register (U1500-7) output 


Voltage > applied input in 200 and 1000 V 
ranges 

I 

■ . 1 ■■ 1 L 


1,2 


K1527 and its drive circuit, Function and Range 
Register, (U 1500-1 2) output 



waveform matches that shown in Fig. 7-10. if it does not, 
check U1210, R1101, R1102, Q1105, Q1106, Q1112, 
Q1 1 14 (diagram 1), and their gate drive circuits (diagram 2); 
also check the output of the Function and Range Register 
(U1 300-5, 4, 7, 6, on diagram 2). See Tables 10-2 and 10-5 
in the pullout pages. 



Connect the oscilloscope between U1 110-2 and the iso- 
lated ground. Set the oscilloscope to 100 mV/cm and apply 
1 00 mV to the DM 501 0 input. Check that displayed 
waveform matches that shown in Fig. 7-1 0. If it does not, 
check the components listed in Table 7-9 for the indicated 
symptoms. 



Table 7-9 

OCV SIGNAL CONDITIONER FAULTS 



Symptom 


[ Components 


U1 110-2 at the -f or — rail 


U1110, U1210, Q1101, 
Q1111, Q1017, and 
Q1021 


U1 110-2 oscillating 


C1017, C1019 


DM 5010 display is correct 
but varies at least ± 3 least 
significant digits 


U1210 



Charge-Balancing Converter 

Connect the oscilloscope between the input end of 
R1229 and the isolated ground. Set the oscilloscope to 
1 V/cm and 50 ms/cm and apply 100 mV to the DM 5010 
input. 



if the displayed waveform does not match that in Fig. 
7-10, check R1121, CR1123, CR1125, VR1124, VR1126, 
and U1120. 



Compare the DM 501 0 display to the symptoms listed in 
Table 7-10 and check the indicated components on diagram 
1. 



Table 7-10 

CHARGE-BALANCING CONVERTER FAULTS 



Symptom 


Components 


Display indicates 31 1 error code when 


CR1123, 


a 500 V or greater transient is applied 


CR1125, 


to the DM 5010 input 


VR1124, and 




VR1126 


Display indicates 31 1 error code when 


CR1129. VR1129 



the DM 501 0 is in a fixed range and the 
applied input is more negative than the 
negative full scale value 



8. RMS CONVERTER, RMS Board, Diagram 3 

a. To check the first stage of the converter, apply a sig- 
nal that reflects the problem to the DM 5010 input connec- 
tors. Be sure the DM 5010 is set to the ACV or ACV + DCV 
mode, and to the appropriate range (or autorange). Connect 
a digital multimeter to TP1701 (tow) and TP1503 (high). 
Check that the nominal ac voltage measured is as listed 
below for the DM 5010 range: 

DM 5010 Range Nominal Ac Voltage 

200 mV or 2 V same as applied input 
20 V 0.1 times the applied input 

200 or 700 V 0.001 times applied input 



ADD JAN 1982 



7-15 




Fig. 7-7. 1 M/Z, I U/D, ICOMP and the zero-reference voltage waveforms after power on. 



FUNCTION 



AC> AC+DC 



OHMS 

(2000 RANGE > -1900) 



©- ZERO PERIOD 
d)- MEASUREMENT PERIOD 



CATE WAVEFORM 



vx 

ftASURE- 

MENT 



© © 



VrmS 

MEASURE- 

MENT 



I ^RMS 



MEASURE- 

MENT 



© © 



I ^RMS CONVERTER 
I OUTPUT 



VO OUT 
MEASURE- ' 
MENT I 



© © 




7-16 



ADD JAN 1982 






Maintenance — DM 5010 




I 



Fig. 7-9. Over-voltage protection and function switching Fig. 7-10. DCV Signal Conditioner and Charge-Balancing 
waveform. Converter waveform. 



If the measured voltage is correct, troubleshoot the next If no error is found, check the final stage of the converter 

stage, according to part 7b. If incorrect, check the compo- in part 7c. if an error is detected, check the components 

nents listed in Table 7-1 1 for the indicated symptoms. listed in Table 7-12 for the DM 5010 symptoms. 



Table 7-1 1 

RMS CONVERTER FAULTS 




Error occurs in ACV mode but i Cl 621 
not in ACV -i- DCV mode I 



Error occurs in ACV + DCV K1621, R1621 

mode with a dc or low fre- 
quency ac input 

Error occurs in all ranges R1603, R1501, K1621, 

U1500, C1605, C1607, 
C1609, C1503, C1505, 

-I- and -12 V supplies 

Error occurs in 200 mV, 2 V R1 501 , C1 505, Cl 503 
ranges 

Error occurs in 20 V range R1403, R1401, C1403, 

C1504 

Error occurs in 200, 700 V R1309, Cl 311 
ranges 

b. To check the second stage of the RMS Converter, 
move the digital multimeter high lead to TP1201 (low lead 
remains at TP1701). Set the applied input voltage to a full 
scale value for the DM 501 0 range being checked. Check 
that the nominal ac voltage measured is as listed below for 
the DM 5010 range. 

DM 5010 Range Nominal Ac Voltage 

200 mV— 200 V 2 V 

700 V 0.7 V 



Table 7-12 

RMS CONVERTER FAULTS 




Error occurs in all ranges R1307, R1201, U1200, 

-I- and —12 V supplies 



Error occurs in 200 mV, R1201 

200 V ranges 

Error occurs in 2 V, 20 V, R1211,K1201 
700 V ranges I 

c. To check the final converter stage, move the digital 
multimeter high lead to U1 100-8 (low lead remains at 
TP1701). Check that the measured dc voltage is equal to 
the rms value of the applied input, scaled to a maximum of 
2 V for a full scale input. If an error is detected, check 
U1100, Cl 101, Cl 103, C1001, and R1101. If no error is 
found, check Q1217 on the ADC board (diagram 1). If 
Q1217 is good, make sure the A/D Converter is functioning 
properly by measuring a dc input in the DCV mode. If not, 
refer to the A/D Converter and Dc Voltage Measuring Cir- 
cuits troubleshooting information. 



9. OHMS CONVERTER, RMS Board, Diagram 3 

To troubleshoot the Ohms Converter, place the RMS 
board on an extender board and set the DM 5010 to the 
OHMS mode, with the range (in STEP mode) and input con- 
dition as listed in Table 7-13. Measure the voltage between 
the component listed in the table and ohms ground. If the 
voltage is outside the limits listed, check the designated 
component. 



ADD JAN 1982 



7-17 





Maintenance — DM 5010 



If the output of U1417-2 is correct, disconnect the RMS 
board from the extender board and remove the ADC board. 
On the extender board, measure the voltage between pins 
7B and 8B. if the voltage is not between 33.3 and 41.7 V, 
refer to the Isolated Supplies troubleshooting information. 
Continue with the measurements in the table. 



After making the voltage measurements in Table 7-13, 
check the components listed below for the indicated 
symptoms. 



Table 7-13 

POWER SUPPLY AND REFERENCE VOLTAGES 



Conditions 


Measurement 

Location 

1 


Limits 


Components 


200 Q range, 0 
input 


U1417-2 


22.8 to 25.2 


See text 




U1120-4 


-2.3 to -3.1 


VR1415 




VR1123-C 


8.82 to 9.18 


R1221, VR1123, C1111 




U1 120-3 


0.638 to 0.671 


R1123, R1121, CR1021, CR1121, U1120 




P1711-8A 


9.50 to 10.76 


U1120, CR1227, RT1227, CR1225, R1229, R1321, 

1 R1225, R1223, K1313 and its drive circuit, U1 330-11 




VR1013-C 


1.8 to 2.6 


R1013, VR1013 


200 0 range, 
open input 


P1711-4A or 4B 


3.5 to 4.7 


Q1021, CR1011,RT1011, R1331, K1131 and K1231 
and their drive circuits, U1 300-1 2, and 14 


2 kil range. 0 n 
input 


P1711-8A 1 


1.12 to 1.27 


K1313 and its drive circuit, U 1330-11 


20 kt] range, 0 U 
input 


P1711-8A 


9.50 to 10.76 


U 1330-11 


200 kO range, 0 0 i 

input j 

( 


P1711-8A 

I 


1.12 to 1.27 


U 1330-11 


2 Mn range, 0 0 
input 


P1711-8A 


1.12 to 1.27 


U 1330-11 


20 Mfl range, 0 0 
input 


P1711-8A 

5 

i 


1.12 to 1.27 


U 1330-11 



Table 7-14 

OHMS CONVERTER FAULTS 


Symptom 


Component 


Display is incorrect in all 
ranges 


Q1315 and its drive circuits (diagram 1) and the output of the Function and Range Register, U1400- 
11, U1 500-6 (diagram 2). For each OHMS range, check the output of the Function and Range 
Register U1330-11, 12, 13, and 14 (diagram 3). 


Display indicates 
191 .90 n with a 
190.00 fi input 


K1031 and its drive circuit, and the output of the Function and Range Register U 1330-1 3 (diagram 
13) 



7-18 



ADD JAN 1982 



Maintenance — DM 5010 



Nonlinearity in the 20 Mfi range is caused by a lowering 
of the insulation resistance between High and Low, High 
and Q Out, and Low, and chassis ground. Check the compo- 
nents between these signal lines to find the fault. 



Signal 


ADC Board i 


RMS Board 


High 


P1713-4A 


P1711-4A 


Low 


P1713-2A 


P1711-2A 


nout 


P1713-8B 


P1711-8A 



10. GPIB, CPU Board, Diagram 9 

GPIB circuit faults may appear in four places: 

GPIB IC U1105 
Data buffer U1100 
Control buffer U1110 
Circuit board 



Visually inspect the circuit board paths and solder con- 
nections in the GPIB circuit for damage and poor connec- 



tions. Place the CPU board on an extender board plugged 
into the DM 5010 and apply power via a flexible extender 
cable to the power module. 



a. Check that the data on both sides of data buffer 
U1100 are the same. 



b. Check that the control lines are the same on both 
sides of control buffer U11 10. Check that the lines are in a 
valid state. 



c. To check U1100, remove U1105, using proper static 
handling procedures; then force U1100-1 (TE) high or low. 
Force the data buffer inputs (U 11 00-12 to 19) high and low, 
checking its outputs (pins 2 to 9). A similar procedure can be 
used on U1110. 



d. If U1100 and U1110 are not faulty, change U1105. 



Table 7-15 Signature Versions 



Assembly 

ROM 


1.0 


A14. CPU 


I 670-6815-00 




U1200 


160-1329-00 


i 


U1300 


160-1328-00 




U1305 


160-1327-00 




U1400 


160-1326-00 


1 

1 


A 15, Isolation 


670-6814-00 




A16. RMS 


670-6816-00 




A17, ADC 


670-6817-00 





ADD JAN 1982 



7-19 




Section 8 — DM 5010 



OPTIONS 



No options are available. 



@ 



8-1 



Section 9 — DM 5010 



REPLACEABLE 
ELECTRICAL PARTS 

PARTS ORDERING INFORMATION 



Replacement parts are available from or through your local 
Tektronix, Inc. Field Office or representative. 

Changes to Tektronix instruments are sometimes made to 
accommodate improved components as they become available, 
and to give you the benefit of the latest circuit improvements 
developed in our engineering department. It is therefore impor- 
tant, wnen ordering parts, to include the following information in 
your order: Part number, instrument type or number, serial 
number, and modification number if applicable. 

If a part you have ordered has been replaced with a new or 
improved part, your local Tektronix, Inc, Field Officeor represen- 
tative will contact you concerning any change in part number 

Change information, if any. is located at the rear of this 
manual. 

LIST OF ASSEMBLIES 

A list of assemblies can be found at the beginning of the 
Electrical Parts List, The assemblies aretistedin numerical order. 
When thecompletecomponent number of a part is known, thistist 
wifi identify the assembly in which the part is located 

CROSS INDEX-MFR. CODE NUMBER TO 
MANUFACTURER 

The Mfr Code Number to Manufacturer index for the 
Electrical Parts List is located immediately after this page. The 
Cross Index provides codes, names and addresses of manufac- 
turers of components listed in the Electrical Parts List. 



Only the circuit number will appear on the diagrams and 
circuit board illustrations Each diagram and circuit board 
illustration is clearly marked with the assembly number. 
Assembly numbers are also marked on the mechanical exploded 
views located m the Mechanical Parts List. The component 
number is obtained by adding the assembly number prefix to the 
circuit number 

The Electrical Parts List is divided and arranged by 
assemblies in numerical sequence (e.g., assembly A1 with its 
subassemblies and parts, precedes assembly A2 with its sub- 
assemblies and parts). 

Chassis-mounted parts have no assembly number prefix 
and are located at the end of the Electrical Parts List, 



TEKTRONIX PART NO. (column two of the 
Electrical Parts List) 

Indicates part number to be used when ordering replace- 
ment part from Tektronix. 

SERIAL/MODEL NO. (columns three and four 
of the Electrical Parts List) 

Column three (3) indicates the serial number at which the 
part was first used. Column four (4) indicates the serial number at 
which the part was removed. No serial number entered indicates 
part is good for all serial numbers. 



ABBREVIATIONS 



Abbreviations conform to American National Standard Y 1 . 1 . 



COMPONENT NUMBER (column one of the 
Electrical Parts List) 



A numbering method has been used to identify assemblies, 
subassemblies and parts. Examples of this numbering method 
and typical expansions are illustrated by the following: 



Example a. component number 

A23R1234 A23 R1234 

Assembly number 



I ^ 



Circuit number 



Read: Resistor 1234 of Assembly 23 



Example b. 

A23A2R1234 
Assembly 
number 



component number 
A23~ A2 R^34 



Read: Resistor 1234 of Subassembly 2 of Assembly 23 



NAME & DESCRIPTION (column five of the 
Electrical Parts List) 

In the Parts List, an Item Name is separated from the 
description by a colon (;). Because of space limitations, an Iterri 
Name may sometimes appear as incomplete For further item 
Name identification, the U.S Federal Cataloging Handbook H6-1 
can be utilized where possible. 



MFR. CODE (column six of the Electrical Parts 
List) 

Indicates the code number of the actual manufacturer of the 
part (Code to name and address cross reference can be found 
immediately after this page.) 



MFR. PART NUMBER (column seven of the 
Electrical Parts List) 

Indicates actual manufacturers part number 



Replaceable Electrical Parts - DM 5010 



CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER 

Mfr. 

Code Manufacturer Address City, State. Zip Code 



00779 

00853 

01002 

01121 

01295 

01983 

02735 

03508 

03888 

04222 

04713 

0539? 

05574 

05628 

07263 

07716 



12969 

14433 

14552 

14752 

15636 

17856 

18324 

19209 

19647 

19701 

22526 

24355 

24546 

27014 

31433 

32997 

33096 

34335 

34371 

50157 

50434 

52763 

52769 

54473 

S56B0 

56289 

57668 

56361 



AMP INC 

SflNCflMO HESTON INC 
SANGQMO CAPACITOR DIV 
GENERAL ELECTRIC CO 
CAPACITOR PRODUCTS OEPT 
ALLEN-8RA0LEY CO 
TEXAS INSTRUMENTS INC 
SENICONOUCTOR GROUP 
CHERRY ELECTRICAL PRODUCTS CORP 
RCA CORP 

SOLID STATE DIVISION 
GENERAL ELECTRIC CO 
SEMI-CONDUCTOR PRODUCTS OEPT 
KOI PYROFILM CORP 
AVX CERAMICS DIV OF AVX CORP 

MOTOROLA INC 

SEMICONDUCTOR GROUP 

UNION CARBIDE CORP MATERIALS SYSTEMS 

DIV 

VIKING CONNECTORS INC 

GENERAL INSTRUMENT CORP 

GOVERNMENT SYSTEMS DIV 

FAIRCHILD CAMERA AND INSTRUMENT CORP 

SEMICONDUCTOR DIV 

TRH INC 

TRH ELECTRONICS COMPONENTS 

TRM IRC FIXED RESISTORS/BURLINGTON 

UNITROOE CORP 

ITT SEMICONDUCTORS OIV 

MICRO/SEMICONDUCTOR CORP 

ELECTRO CUBE INC 

ELEC-TROL INC 

SILICONIX INC 

SIGNETICS CORP 

GENERAL ELECTRIC CO 

BATTERY BUSINESS DEPT 

CAOOOCK ELECTRONICS INC 

MEPCO/ELECTRA INC 

A NORTH AMERICAN PHILIPS CO 

DU PONT E I OE NEMOURS AND CO INC 

DU PONT CONNECTOR SYSTEMS 

ANALOG DEVICES INC 

CORNING GLASS HORKS 

NATIONAL SEMICONDUCTOR CORP 

UNION CARBIDE CORP 

ELECTRONICS DIV 

BOURNS INC 

TRIMPOT DIV 

COLORADO CRYSTAL CORP 

ADVANCED MICRO DEVICES 

HARRIS SEMICONDUCTOR DIV OF HARRIS 

CORP 

MIOHEST COMPONENTS INC 

HEMLETT-PACKARO CO OPTOELECTRONICS 
DIV 

STETTNER ELECTRONICS INC 

SPRAGUE-GOOOMAN ELECTRONICS INC 
MATSUSHITA ELECTRIC CORP OF AMERICA 
NICHICON /AMERICA/ CORP 
SPRAGUE ELECTRIC CO 
ROHM CORP 

GENERAL INSTRUMENT CORP 
OPTOELECTRONICS DIV 



P 0 BOX 3608 
SANGAMO RO 
P 0 BOX 128 
JOHN ST 

1201 SOUTH 2ND ST 
13500 N CENTRAL EXPRESSNAY 
P 0 BOX 225012 M/S 49 
3800 SUNSET AVE 
ROUTE 202 

H GENESEE ST 

60 S JEFFERSON RO 
19TH AVE SOUTH 
P 0 BOX 867 
5005 E MCDOKELL RO 

11901 MADISON AVE 

21001 NORDHOFF ST 
600 H JOHN ST 

464 ELLIS ST 

2850 MT PLEASANT AVE 



580 PLEASANT ST 

2830 S FAIRVIEH ST 
1710 S DEL MAR AVE 
26477 N GOLDEN VALLEY RO 
2201 LAURELHOOD RO 
811 E AROUES 
441 HHY N 
P 0 BOX 861 
3127 CHICAGO AVE 
P 0 BOX 760 

30 HUNTER LANE 

RT 1 INDUSTRIAL PK 
P 0 BOX 280 
550 HIGH ST 
2900 SEMICONDUCTOR DR 
PO BOX 5928 

1200 COLUMBIA AVE 

2303 H 8TH ST 
901 THOMPSON PL 
P 0 BOX 883 

1981 PORT CITY BLVD 
P 0 BOX 787 
640 PAGE MILL RO 

6135 AIRHAYS 8LV0 
PO SOX 21947 
134 FULTON AVE 
ONE PANASONIC HAY 
927 E STATE PKY 
87 MARSHALL ST 
16931 MILLIKEN AVE 
3400 HILLVIEN AVE 



HARRISBURG PA 17105 
PICKENS SC 29671 

HUDSON FALLS NY 12839 

MIINAUKEE HI 53204 
DALLAS TX 75265 

NAUKEGAN IL 60085 
SOMERVILLE NJ 08876 

AUBURN NY 13021 

HHIPPQNY NJ 07981 
MYRTLE BEACH SC 29577 

PHOENIX A2 85008 

CLEVELAND OH 44101 

CHATSHORTH CA 91311 
HICKSVILLE NY 11802 

MOUNTAIN VIEN CA 94042 

BURLINGTON lA 52601 



HATERTOHN MA 02172 
HEST PALM BEACH FL 
SANTA ANA CA 92704 
SAN GABRIEL CA 91776 
SAUGUS CA 91350 
SANTA CLARA CA 95054 
SUNNYVALE CA 94086 
GAINESVILLE FL 32802 

RIVERSIDE CA 9250? 
MINERAL HELLS TX 76067 

CAMP HILL PA 17011 

NORKOOD HA 02062 

BRADFORD PA 16701 
SANTA CLARA CA 95051 
GREENVILLE SC 29606 

RIVERSIDE CA 92507 

LOVELANO CO 80537 
SUNNYVALE CA 94006 
MELBOURNE FL 32901 

MUSKEGON MI 49443 

PALO ALTO CA 94304 

CHATTANOOGA TN 37421 

GARDEN CITY PARK NY 11040 
SECAUCUS NJ 07094 
SCHAUMBURG IL 60195 
NORTH ADAMS MA 01247 
IRVINE CA 92713 
PALO ALTO CA 94304 



9-2 



REV JUN 1986 




Replaceable Electrical Parts - DM 5010 



CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER 

Mfr. 



Code 


Manufacturer 


Address 


City. State. Zip Code 


59660 


7US0NIX INC 


2155 N FDROES 8LV0 


TUCSON, ARIZONA 85705 


71400 


MCGRON-EDISON CO 
BUS5M0NN MFC OIV 


502 EARTH CIH PLAZA 
P 0 BOX 14460 


ST LOUIS MO 63178 


74970 


JOHNSON E F CO 


299 10TH AVE S H 


HASECA MN 56093 


75042 


TRN INC 

TRN ELECTRONIC COMPONENTS 

IRC FIXED RESISTORS PHIUOELPHIfl OIV 


401 N BROAD ST 


PHILADELPHIA PA 19108 


75915 


LITTELFUSE INC 


800 E NORTHNEST HNY 


OES PLAINES IL 60016 


00009 


TEKTRONIX INC 


4900 S H GRIFFITH DR 
P 0 BOX 500 


BEAVERTON OR 97077 


81073 


GRQYHILL INC 


561 HILLGROVE AVE 
P 0 BOX 373 


LA GRANGE IL 60525 


91637 


OflLE ELECTRONICS INC 


P 0 BOX 609 


COLUMBUS NE 68601 


TK1727 


PHILIPS NEDERLAND BV 
RFD ELONCO 


POSTBUS 90050 


5600 PB EINDHOVEN THE NETHERLANDS 



REV JUN 1986 



9-3 



Replaceable Electrical Parts - DM 5010 



Comoonent No. 


Tektronix 
Part No. 


Serial/Assembly No. 
Effective Dscont 


Name & Description 


Mfr. 

Code 


Mfr. Part No. 


ft11 


670-6812-00 




CIRCUIT 80 QSSY:FR0NT PANEL 


80009 


670-6812-00 


0110S1000 


150-1066-00 




LAMP. LED RD0UT:0RflN6E,6 SEG.+/-1. 


58361 


Q33B4/MAN4605A 


fl110S1006 


150-1053-00 




LAMP, LED R00UT:0RANGE, 


58361 


MaN4610Q/03411 


fl11051010 


150-1043-00 




LT EMITTING DIO:ORONGE,635NM,35MA MAX 


58361 


MV5774C 


ft110S1015 


150-1043-00 




LT EMITTING D10:ORANGE,635NM,35MA MAX 


58361 


HV5774C 


fl11DS1020 


150-1043-00 




LT EMITTING OIO:ORANGE,635NM,35MA MAX 


58361 


MV5774C 


fl1 IDS 1030 


150-1043-00 




LT EMITTING 0I0:0RANGE,635NM,35MA MAX 


58361 


MV5774C 


011051032 


150-1043-00 




LT EMITTING 0I0:0RANGE,635NM,35MA MAX 


58361 


MV5774C 


011051100 


150-1053-00 




LAMP, LED RD0UT;0RANGE, 


58361 


MAN4610A/03411 


011051105 


150-1053-00 




LAMP. LED ROOUTrORANGE, 


58361 


MAN4610A/Q3411 


011051110 


150-1043-00 




LT EMITTING 0I0:0RANGE,635NM,35MA MAX 


58361 


MV5774C 


Q11D51115 


150-1043-00 




LT EMITTING D10:0RANGE,635NM,35HA MAX 


58361 


MV5774C 


011051120 


150-1043-00 




LT EMITTING 0I0:0RANGE,639«,35MA MAX 


58361 


MV5774C 


Q11D51130 


150-1043-00 




LT EMiniNC 0I0:0RANGE,635f«.35MA MAX 


58361 


MV5774C 


011051135 


150-1043-00 




LT EMITTING 010:0RANGE,635NH,35MA MAX 


58361 


MV5774C 


011051200 


150-1053-00 




LAMP, LED ROOUTtOHANGE, 


58361 


MAN4610A/Q3411 


011051210 


150-1043-00 




LT EMITTING 0I0;0RANG£,635W,35MA MAX 


58361 


MV5774C 


0110S1215 


150-1043-00 




LT EMITTING D10:0RANGE,635NM,35MA MAX 


58361 


MV5774C 


011051217 


150-1043-00 




LT EMITTING DI0:0RANGE,635fW,35MA MAX 


58361 


MV5774C 


011051220 


150-1043-00 




LT EMITTING DIO;ORANGE,635f«,35MA MAX 


58361 


MV5774C 


011051225 


150-1043-00 




LT EMITTING DI0:0RANGE,635NM,35MA MAX 


58361 


MV5774C 


011051230 


150-1043-00 




LT EMITTING DI0;0RANGE.635NM,35MA MAX 


58361 


MV5774C 


011051237 


150-1043-00 




LT EMITTING DI0:0RANGE,635NM,35HA MAX 


58361 


MV5774C 


011051302 


150-1043-00 




LT EMITTING DI0;0RANGE.635NM,35MA MAX 


58361 


MV5774C 


0110S1304 


150-1043-00 




LT EMITTING DIO:ORANGE,635NM,35MA MAX 


58361 


MV5774C 


011051306 


150-1043-00 




LT EMITTING D1Q:0RANGE.635NM,35MA MAX 


58361 


MV5774C 


011051502 


150-1043-00 




LT EMITTING DIO:ORANGE ,635NM,35HA MAX 


58361 


MV5774C 


011051504 


150-1043-00 




LT EMITTING DIO:ORANGE ,635NM,35HA MAX 


58361 


MV5774C 


011051506 


150-1043-00 




LT EMITTING OIO:ORANGE,635NM,35MA MAX 


58361 


MV5774C 


011J1120 


136-0263-04 




SOCKET ,PIN TERM:U/K 0.025 SO PIN 


/7526 


75377-001 


fl11J1300 


136-0263-04 




SOCKET. PIN TERM:U/M 0.025 SO PIN 


22526 


75377-001 


fl11J1320 


136-0263-04 




SOCKET. PIN TERM:U/K 0.025 SO PIN 


77526 


75377-001 


fl11J1400 


136-0263-04 




SOCKET. PIN TERM:U/H 0.025 SO PIN 


22526 


75377-001 


01151010 


263-0019-35 




SMITCH PB QSSY:MOMENTARY 


80009 


263-0019-35 


01151015 


263-0019-35 




SNITCH PS ASSY: MOMENTARY 


80003 


263-0019-35 


01151020 


263-0019-35 




SNITCH P8 ASSY: MOMENTARY 


80003 


263-0019-35 


01151025 


263-0019-38 




SNITCH PB ASSY:MOMENTARY 


80009 


263-0019-38 


01151030 


263-0019-35 




SNITCH PB ASSY;MOMENTARY 


80009 


263-0019-35 


011S1032 


263-0019-35 




SNITCH PB ASSY:MOM£NTARY 


80009 


263-0019-35 


01151035 


263-0019-38 




SNITCH PB ASSY:MOMENTARY 


80009 


263-0019-38 


01151037 


263-0019-38 




SNITCH PB ASSY:MOMENTARY 


80009 


263-0019-38 


01151039 


263-0019-38 




SNITCH PB A5SY:M0MENTARY 


80009 


263-0019-38 


01151110 


263-0019-35 




SNITCH PB ASSY:MOM£NTARY 


80009 


263-0019-35 


01151115 


263-0019-35 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-35 


01151120 


263-0019-35 




SNITCH PB ASSY:MOMENTARY 


80009 


263-0019-35 


01151130 


263-0019-35 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-35 


01151135 


263-0019-35 




SNITCH PB ASSY: MOMENTARY 


B0009 


263-0019-35 


01151139 


263-0019-38 




SNITCH PB ASSY:MOMENTARY 


80009 


263-0019-38 


Q11S1210 


263-0019-35 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-35 


01151215 


263-0019-35 




SNITCH PB ASSY:MOMENTARY 


80009 


283-0019-35 


01151217 


263-0019-35 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-35 


01151220 


263-0019-35 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-35 


01151225 


263-0019-35 




SNITCH PB ASSY:MOMENTARY 


80009 


263-0019-35 


01151230 


263-0019-35 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-35 


01151232 


263-0019-38 




SNITCH PB ASSY’.MOMENTARY 


80009 


263-0019-38 


01151235 


263-0019-38 




SMITCH PB ASSY:MOMENTARY 


80009 


263-0019-38 


01151237 


263-0019-35 




SNITCH PB ASSY:MOMENTARY 


80009 


263-0019-35 


01151239 


263-0019-38 




SNITCH PB ASSY:MOMENTARY 


80009 


263-0019-38 


01151310 

9-4 


263-0019-38 




SNITCH PB ASSY;MOMENTARY 


80009 


263-0019-38 
REV JUN 1» 



Replaceable Electrical Parts - DM 5010 



Tektronix 

Component No, Part No. 


Serial/Assembly No. 
Effective Dscont 


Name & Description 


Mfr. 

Code 


Mfr . Part No 


01151315 


263-0019-38 




SNITCH PB flSSY;M0MENTftRY 


80009 


263-0019-38 


01151320 


263-0019-38 




SNITCH PB PSSY: MOMENTARY 


80009 


263-0019-38 


01151325 


263-0019-38 




SNITCH PB QSSY: MOMENTARY 


80009 


263-0019-38 


01151410 


263-0019-38 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-38 


01151412 


263-0019-38 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-38 


01151415 


263-0019-38 




SNITCH PB ASSY:M0MENTARY 


80009 


263-0019-38 


01151417 


263-0019-38 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-38 


01151420 


263-0019-38 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-38 


01151422 


263-0019-38 




SNITCH P8 ASSY: MOMENTARY 


80009 


263-0019-38 


01151425 


263-0019-38 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-38 


01151427 


263-0019-38 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-38 


01151510 


263-0019-36 




SNITCH PB ASSY:MOMENTARY 


30009 


263-0019-36 


01151520 


263-0019-38 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-38 


01151525 


263-0019-37 




SNITCH PB ASSY: MOMENTARY 


80009 


263-0019-37 


012 


670-6813-00 




CIRCUIT 80 ASSYrEP DRIVE 


80009 


870-6813-00 


012C1315 


281-0775-00 




CAP,FXO,CER 01:0. 1UF,20Z. 50V 


04222 


MA205E104HAA 


012C1431 


281-0775-00 




CAP,FXD,CER 01:0. 1UF,2QX, 50V 


04222 


MA205E104MAA 


012C1531 


281-0775-00 




CAP,FXD,CER DI:0.1UF,20%,50V 


04222 


MA205E104MAA 


012C1533 


281-0775-00 




CAP,FX0,CER 01:0. 1UF,20Z, 50V 


04222 


MA205E104MAA 


012C1741 


290-0727-00 




CAP,FX0,ELCTLT:300UF,>75-10X,25V 


56289 


5000307G025EH7 


012C1821 


281-0775-00 




CAP,FXO,CER 01:0. 1UF,20X, 50V 


04222 


MA205E104MAA 


012C1823 


281-0775-00 




CAP,FX0,CER DI:0.1UF,20X,50V 


04222 


MA205E104MAA 


012J1820 


131-2514-00 




CONN, RCPT, ELEC :Cia 80,2 X 10, MALE 


00779 


86479-1 


012L1731 


108-0336-00 




C0IL,RF:FIXE0,100UH 


80009 


108-0338-00 


012P1120 


131-0590-00 




TERMINAL. PIN:0. 71 L X 0.025 SO PH BRZ 


80009 


131-0590-00 


012P1300 


131-0590-00 




TERMINAL, PIN:0. 71 L X 0.025 SO PH BRZ 


80009 


131-0590-00 


012P1320 


131-0590-00 




TERMINAL, PIN:0. 71 L X 0.025 SO PH BRZ 


80009 


131-0590-00 


012P1400 


131-0590-00 




TERMINAL, PIN:0. 71 L X 0.025 SO PH BRZ 


80009 


131-0590-00 


01201001 


151-0391-00 




TRANSIST0R:PNP,SI,X-81 


04713 


SPS6867K 


01201005 


151-0391-00 




THANSIST0R:PNP,SI,X-81 


04713 


SPS6867K 


01201101 


151-0391-00 




TRANSIST0R:PNP,SI,X-81 


04713 


SPS6867K 


01201105 


151-0391-00 




TRANSIST0H:PNP,SI,X-81 


04713 


SPS6867K 


01201201 


151-0391-00 




TRAN5IST0R:PNP,SI,X-81 


04713 


SPS6867K 


01201205 


151-0391-00 




TRANSISTOR:PNP,SI,X-01 


04713 


SPS6867K 


01201301 


151-0391-00 




TRANSIST0R:PNP,SI,X-91 


04713 


5PS6867K 


01201305 


151-0391-00 




TRANSIST0R:PNP,SI,X-81 


04713 


SPS6867K 


012R1121 


315-0912-00 




RES,FX0,FILM:9.1K 0HM,5Z,0.25N 


57668 


NTR25J-E09K1 


012R1123 


315-0563-00 




RES,FX0,FILM:56K OHM,5X,0.25N 


19701 


5043CX56K00J 


fl12R1125 


315-0912-00 




RES,FX0,FILM:9.1K OHM,5Z,0.25N 


57668 


NTR25J-E09K1 


fl12R1127 


315-0563-00 




RES,FXD,FILM:58X OHM,5Z,0.25N 


19701 


5O43CX56K0OJ 


012R1129 


315-0912-00 




RES,FX0,FIt>l:9.1X OHM,5X,0.25N 


57668 


MTR25J-E09n 


012R1221 


315-0583-00 




fi£S,FXD,FUM:56K OHM,5Z,0.25N 


19701 


5043CX56XO0J 


012R1223 


315-0912-00 




RES,FX0,FILM:9.1K 0HM,5I,0.25N 


57668 


NTR25J-E09X1 


012R1225 


315-0563-00 




RES,FX0,FILM:56K OHM,51,0.25N 


19701 


5043CX66K00J 


012R1227 


315-0912-00 




RES,FX0,FILM:9.1K OHM,5Z,0.25N 


57668 


NTR25J-E09X1 


012R1229 


315-0563-00 




RES,FX0,FILM:56K 0HM,5X,0.25N 


19701 


5043CX66XOOO 


012R1311 


315-0563-00 




RES,FXD,FIIM:56K OHM.SX,0.25N 


19701 


5043CX56KOOJ 


012R1313 


315-0563-00 




RES,FX0,FIIM:56X 0HM,SZ,0.25N 


19701 


5043CX56K00J 


012R1315 


315-0563-00 




RES,FX0,FILM:56K OHM,5I,0.25N 


19701 


5043CX56X00J 


D12R1321 


315-0912-00 




RES,FX0,FILM:9.1K 0HM,5Z,0.25N 


57668 


NTR25J-E09K1 


012R1323 


315-0912-00 




RES,FX0,FILM:9.1K OHM,5X,0.25N 


57668 


NTR25J-E09K1 


012R1325 


315-0912-00 




RES,FX0,FILM:9.1K 0HM,5I,0.25N 


57668 


NTR25J-E09X1 


Q12R1511 


315-0151-00 




RES,FX0,FUN:150 0HM,5X,O.25N 


57868 


NTR25J-E150E 


012R1513 


315-0151-00 




fiES.FXD,FIlM;150 0HM,5Z,0.25N 


57668 


NTR25J-E150E 


012R1515 


315-0151-00 




RES,FX0,FUM:150 0HM,5I,0.25N 


57668 


NTR25J-E150E 


012R1517 


315-0151-00 




RES,FX0,FILM:150 0HM,5I,0.25N 


57668 


NTR25J-E150E 


012R1519 


315-0151-00 




RES,FX0,FILM:150 0HM,5I,0.25N 


57668 


NTR25J-E150E 


fl12R1611 


315-0151-00 




RES,FX0,FILM:150 OHM,5X,0.25N 


57668 


NTR25J-E150E 


01201613 


315-0151-00 




RES. FXO, FILM: 150 0HM,5Z,0.25N 


57668 


NTR25J-E150E 



REV JUN 1986 



9-5 




Replaceable Electrical Parts DM 5010 



Tektronix Serial /Assembly No. Mfr . 

Component No. Part No, Effective Dscont Name & Description Code Mfr. Part No. 



012R1615 


315-0151-00 






RES.FXD,FIU4:150 OHM,5X,0.25N 


57868 


NTR25J-E150E 


ft12R18Z1 


307-0107-00 






RES,FXD,CMPSN:5.6 OHH,5X,0.25H 


01121 


C856G5 


A12U1040 


156-0469-02 






MJCR0CKT,DGTL:3/8 LINE OCDR 


01295 


SN74LS138NP3 


012U1130 


156-0140-02 






MICR0Cn,MTL:HEX BUFFERS N/OC HV OUT. 


18324 


N7417(N8 OR FB) 


012U1230 


156-0140-02 






H1CR0CKT.DGTL:HEX BUFFERS H/OC HV OUT. 


18324 


N7417(N8 OR FB) 


fl12U1330 


156-0140-02 






M1CR0CKT,DGTL:HEX BUFFERS H/OC HV OUT, 


18324 


N7417(NB OR FB) 


Q12U1420 


156-1528-00 






MICROCn,DGTL:0IPOU>R,OUftRO 2-INP NflNO PMR 
ORVR 


56289 


UHP-408 


Q12U1520 


156-1528-00 






N!CROCKT.DGTL:BIPOLAR,OUDRO 2-INP NONO PHR 
DRVR 


56289 


UHP-408 


012U1220 


156-0277-00 






MICROCn.LINEflR:VOLTOGE REGULATOR 


04713 


IM340T-5.0 


013 


670-6818-00 






CIRCUIT BO ASSY;MAIN INTERCONNECT 


80009 


670-6810-00 


013J1701 


131-1362-01 






COW, RCPT, ELEC :Oa BO, 15/30 CONTACT 


80009 


131-1362-01 


013J1711 


131-1362-01 






CONN,RCPT,ELEC;C)a BO, 15/30 CONTACT 


80009 


131-1362-01 


A13J1713 


131-1362-01 






CONN, RCPT, ELEC :Oa BO. 15/30 CONTACT 


80009 


131-1362-01 


A13J1731 


131-2063-00 






CONN.RCPT,ELEC;CIRCUIT BOARD. 15/30 FEMALE 


05574 


000-201-4986 


Q13J1733 


131-2063-00 






CONN, RCPT. ELEC:CIRCUIT BOARD. 15/30 FEMALE 


05574 


000-201-4986 


014 


670-6815-00 


B010100 


8010989 


CIRCUIT BO ASSY:CPU 


80009 


670-6815-00 


014 


670-6815-01 


B010990 




CIRCUIT BO ASSY:CPU 


80009 


670-6815-01 


014BT1121 


146-0037-00 






BATTERY .ST0RAGE:2.4V,0.15AH 3 14MA, (2)1/3 A 


19209 


41B021AC00101 










CELLS, NICAO 






014C1101 


281-0775-00 






CAP.FXO.CER Dl:0.1UF,20X.50V 


04222 


MA205E104MAA 


014C1102 


281-0775-00 






CAP.FXO.CER 01:0. 1UF.201, 50V 


04222 


MA205E104MAA 


014C1133 


281-0775-00 






CAP.FXO.CER 01:0. 1UF.20X, BOV 


04222 


MQ20BE104MAQ 


fl14C12t)1 


281-0775-00 






CAP.FXO.CER 01:0. 1UF.20Z, BOV 


04222 


HQ205E104MAA 


014C1213 


283-0643-00 






CAP, FXO, MICA OI:22PF.O.SZ,500V 


00853 


D105E220DO 


014C1215 


283-0643-00 






CAP, FXO, MICA OI:22PF,0.5Z.500V 


00853 


D105E22000 


014C1ZZ3 


290-0524-00 


B010100 


8010989 


CAP , FXO , E LCT LT : 4 . 7U F , 20Z . 1 0 V 


05397 


T368A475M010AZ 


014C1223 


290-0527-00 


B010990 




CAP.FXO,ELCTLT:15UF.20X.20V 


05397 


T3688156M020AS 


014C1233 


281-0775-00 






CAP.FXO.CER DI:0.1UF,20X,50V 


04222 


HA205E104MAA 


014C1235 


281-0775-00 






CAP.FXO.CER DI:0.1UF,20Z,50V 


04222 


MA205E104MAA 


014C1301 


281-0775-00 






CAP.FXO.CER DI:0.1UF,20X,50V 


04222 


HA205E104MAA 


014C1302 


281-0775-00 






CAP.FXO.CER 01:0. 1UF.20X, BOV 


04222 


MA2Q5E104MAA 


014C1321 


281-0775-00 






CAP.FXO.CER 01:0. 1UF, 201, BOV 


04222 


MA205E104HAA 


014C1401 


281-0775-00 






CAP.FXO.CER 01:0. 1UF. 201, BOV 


04222 


MA205E104MAA 


014C14Z1 


281-0775-00 






CAP.FXO.CER DI:0.1UF,201.B0V 


04222 


MA205E104MAA 


014C1426 


281-0775-00 






CAP.FXO.CER DI:0.1UF,20Z,50V 


04222 


MA20BE104MAA 


014C1431 


281-0775-00 






CAP.FXO.CER DI:0.1UF,20X,50V 


04222 


MA205E104MAA 


014C1435 


281-0775-00 






CAP.FXO.CER OI:0.1UF,20X,50V 


04222 


MA2Q5E104MAQ 


014C1501 


281-0775-00 






CAP.FXO.CER DI:0.1UF.20X,50V 


04222 


MA205E104MAA 


014C1521 


281-0775-00 






CAP.FXO.CER 01:0. 1UF.20X. BOV 


04222 


MA205E104HAA 


014C1523 


281-0775-00 






CAP.FXO.CER 01:0. 1UF .201, BOV 


04222 


MA205E104MAA 


014C1601 


281-0775-00 






CAP.FXO.CER OI:0.1UF,20X,50V 


04222 


MA205E104MAO 


014C1602 


281-0775-00 






CAP.FXO.CER DI:0.1UF,20X,50V 


04222 


MA205E104MAA 


014C1621 


281-0775-00 






CAP.FXO.CER DI:0.1UF,20I,50V 


04222 


MA205E104MAA 


014C1631 


281-0775-00 






CAP.FXO.CER OI:0.1UF,20X,50V 


04222 


MA205C104MAA 


014C1721 


281-0775-00 






CAP.FXO.CER DI:0.1UF.20Z,50V 


04222 


MA205E104MflA 


014C1723 


283-0108-00 


B010990 




CAP.FXO.CER 0I:220PF.10Z,200V 


31433 


C320C221K2G5CA 


014C1731 


283-0177-00 






CAP.FXO.CER 01:1UF.+80-20Z.25V 


04222 


SR302E105ZAATR 


014CR1133 


152-0245-00 






SEMICONO OVC.OI:SN. SI ,40V, 00-7 


03508 


0A2740 


014CR1235 


152-0245-00 






SEMICONO 0VC.01:SN, SI ,40V, 00-7 


03508 


DA2740 


014J1132 


131-0608-00 






TERMINAL, PIN:0. 365 L X 0.025 BRZ GLD PL 
(QTY 3) 


22526 


48283-036 

48283-036 


014J1425 


131-0608-00 






TERMINAL. PIN;0. 365 L X 0.025 BRZ GLD PL 
{QTY 3) 


22526 




014J1721 


131-0600-00 






TERMINAL, PIN:0. 365 L X 0.025 BRZ GLO PL 
(on 3) 


22526 


48283-036 

48283-036 


014J1723 


131-0608-00 






TERMINAL, PINtO. 365 L X 0.025 BRZ GLD PL 


22526 



(OTY 3) 



9-6 



REV JUN 1986 





Replaceable Electrical Parts - DM 5010 



Tektronix Serial /Assembly No. Mfr. 



Comoonent No. Part No. 


Effective 


Dscont 


Name & Description 


Code 


Mfr. Part No, 


fl140l121 


151-0190-00 






TRONSISTOR:NPN,SI,TO-92 


80009 


151-0190-00 


014Q1123 


151-1103-00 






TRANSISTOR;FE,N CHANNEL, SI JO-72 


17856 


OM1Q01 


Q14R1101 


315-0472-00 






RES,FX0 Jim:4,7K 0HM,5Z,0.25H 


57668 


NTR25J-E04X7 


fl14R1121 


315-0103-00 


8010100 


8010989 


RES,FX0 JILN:10K 0HM,5I,0.25H 


19701 


5043CX10K00J 


ft14R1123 


315-0103-00 






RES,FX0 JimnOK 0HN,5I,0.25H 


19701 


5043CX10X00J 


ai4R1129 


315-0103-00 






RES,FX0 JUN:10K 0HN,5I,0.25H 


19701 


5043CX10K00J 


ai4R1131 


315-0101-00 






RES,FXD,FILN:100 0HN,5I,0.25H 


57668 


MTR25J-E 100E 


014R1132 


315-0103-00 






RES.FXD JILNtlOK 0HM,5Z,0.25H 


19701 


5043CX10K00J 


fl14R1133 


315-0223-00 






RES,FX0,FIIM:22K 0HM,SI,0.291 


19701 


5043CX22X00J92U 


fl14R1134 


315-0223-00 






R£S,FX0JILN:22K OHH.5Z.0.25N 


19701 


5043CX22X00U92U 


fl14R1135 


315-0101-00 






RES,FXO,FILM:100 OHN,5X,0.25« 


57668 


MTR25J-E 100E 


Q14R1221 


315-0222-00 






RES,FX0 ,FUN:2.2K 0HN,5Z,0.25M 


57668 


KTR25J-E02X2 


Q14R1223 


315-0104-00 






RES,FX0,FILM:100K OHM, 51,0. 291 


57668 


NTR25J-E100K 


fl14R1225 


315-0103-00 






RES,FX0,FILM:10K OHM, 51,0. 25H 


19701 


5O43CX10K00U 


ai4R1227 


315-0103-00 


8010100 


8010989 


RES,FX0,FILM:10K 0HM,5X,0.25H 


19701 


5043CX10KQ0J 


fl14R1227 


315-0133-00 


8010990 




RES,FX0,FILM:13K 0HM,5Z,0.25M 


19701 


5O43CX13K0OJ 


fl14R1231 


321-0216-00 






RES,FX0,FILM:1.74K OHM, n,0. 1291, TC=T0 


07718 


CEA017400F 


A14R1232 


321-0666-00 






RES,FXD,FIW:3.04K 0HM,0.5X,0.125N,TC=T2 


07718 


CEAC304000 


014R1233 


315-0102-00 






RES,FX0,F1LM;1K 0HM,5X,0.25M 


57668 


NTR25UE01X0 


ft14R1311 


315-0393-00 






RES,FX0,FILM:39K 0HM,5X,0.25»1 


57668 


NTR25J-E39X0 


fl14R1313 


315-0472-00 






R£S,FXD,FIIH:4.7K 0HM,5Z,O.25« 


57668 


NTR25J-E04X7 


fl14R1321 


315-0472-00 






R£S,FXII,FILM:4.7K 0HM,5Z,0.25N 


57668 


NTR25J-E04K7 


ft14R1811 


307-0445-00 






RES NT«K,FX0,FI:4.7K 0HM,2OX, (9)R£S 


32997 


4310R-101-472 


fl14R1621 


307-0445-00 






RES NTNK,FXD,FI:4.7K 0HM,20X, (9)R£S 


32997 


4310R-101-472 


fl14R1623 


315-0271-00 


8010990 




RES,FXO,FILM:270 0HM,5I,0.25M 


57668 


MTR25J-E270E 


01451515 


260-1721-00 






SH1TCH,RQCK£R:8,SPST,125M0,30VDC 


81073 


76SB08S 


fl14TP1531 


214-0579-00 






TERM, TEST P01NT:BRS CD PL 


80009 


214-0579-00 


A14TP1533 


214-0579-00 






TERM, TEST PQlNTrBRS CD PL 


80009 


214-0579-00 


014TP1535 


214-0579-00 






TERM, TEST P01NT:BRS CD PL 


80009 


214-0579-00 


014TP1621 


214-0579-00 






TERM, TEST P0INT;BRS CD PL 


80009 


214-0579-00 


ft14TP1625 


214-0579-00 






TERM, TEST P01NT:8RS CD PL 


80009 


214-0579-00 


ft14U1100 


156-1414-00 






MlCROCia,DGTL:TTL,OCTAL GPIB XCVR DATA BUS 


01295 


SN75160 (N OR J) 


fl14U1105 


156-1444-00 


8010100 


8101819 


MICROCia,OGTL:GPIB ADAPTER 


01295 


TMS9914NL 


fl14U1105 


156-1441-01 


8010820 




M1CR0CKT,LINEAR:10 BIT VIDEO SPEED 0/A CONV 


80009 


156-1441-01 


ft14U1110 


156-1415-00 






MICR0Cn,0GTL;TTL, OCTAL GPIB XCVR MGT BUS 


01295 


SN75161A N 


A14U1200 


160-1329-00 






MICROCia,0GTL:4096 X 8 EPROM, PROGRAMMED 


80009 


160-1329-00 


A14U1220 


156-0887-00 






MICR0CKT,0GTL:CM0S,256 X 4 RAM 


34371 


HM 1-6562-9 


A14U1230 


156-1225-00 






MICROCXT,LINEAR:OUAL COMPARATOR 


01295 


IM393P 


A14U1235 


156-0956-02 






MICR0CKT,DGTL:0CTAL BFR M/3 STATE OUT 


01295 


SN74LS244NP3 


A14U1300 


160-1328-00 






MICR0Cn,0GTL:4096 X 8 EPROM, PROGRAMMED 


80009 


160-1328-00 


014U1305 


160-1327-00 






MICR0CXT,DGTL:4096 X 8 EPROM, PROGRAMMED 


80009 


160-1327-00 


014U132Q 


156-1342-00 






HICR0Cia,D6TL:NM0S.8 BIT M/CLOCK & RAM 


04713 


HC6802P 


014U1400 


160-1326-00 






M1CR0CKT,DGTL:4096 X 8 EPROM, PROGRAMMED 


80009 


160-1326-00 


A14U1420 


156-0956-02 






MICROCKT,OGTL;OCTAL BFR M/3 STATE OUT 


01295 


5N74LS244NP3 


014U1425 


156-0385-02 






MlCROCia,DGTL;HEX INVERTER 


07263 


74LSO4PC0R 


A14U1430 


156-0914-02 






MICROCia,DGTL:OCT ST BFR M/3 STATE OUT 


01295 


SN74LS240NP3 


A14U1435 


156-1111-02 






MICROCia,OGTL;OCTAL BUS TRANSCEIVERS 


01295 


SN74LS245N3 


A14U1505 


156-1127-01 






MICROCn,0GTL:1024 X 4 STATIC RAM 


80009 


156-1127-01 


A14U1510 


156-0541-02 






MICR0CXT,06TL;DUAL 2-TO 4-LINE OCDR/OEMUX 


04713 


SN74LS139N0S 


A14U1520 


156-0469-02 






MICR0CKT,06TL:3/8 LINE DCDR 


01295 


SN74LS138NP3 


014U1600 


156-1127-01 






MICROCKT,OGTL:1024 X 4 STATIC RAM 


80009 


156-1127-01 


A14U1605 


156-1535-00 






MICROCKT,DGTL:NMOS, PROGRAMMABLE KYBD/DLY IN 


34335 


AM8279-5(N OR J) 










TERFACE, 






A14U1610 


156-0914-02 






MlCROCia,DGTL:OCT ST BFR M/3 STATE OUT 


01295 


SN74LS240NP3 


A14U1620 


156-0469-02 






MlCR0Cia,DGTL;3/8 LINE DCOR 


01295 


SN74LS138NP3 


R14U1630 


156-0386-02 






MlCR0Cia,06TL:TRIPLE 3-INP NANO GATE 


07263 


74LS10PC0R 


A14in?20 


156-0804-02 






MICR0CKT,0GTL;0UA0RUPLE S-R LATCH 


01295 


SN74LS279NP3/JP4 


A14U1730 


156-0724-02 






MICROCia,OGTL:HEX INV M/OC OUT,SCRN, 


01295 


SN74LS05NP3 


A14VR1232 


152-0667-00 






SEMICONO 0VC,DI:ZE>i,SI,3.0 V 1 21 AT 2MA 


04713 


SZG30025RL 



REV JUN 1986 



9-7 



Replaceable Electrical Parts - DM 5010 



Tektronix 

ComDonent No. Part No. 


Serial /Assembly No, 
Effective Oscont 


Name & Description 


Mfr. 

Code 


Mfr. Part No. 


ft14Y1221 


158-0251-00 






XTOL UNIT, QTZ:4.0MH2,0. 0011, flNTIRESONQNT 


33096 


P8 1370 


ai5 


670-6814-00 


B010100 


8021245 


CIRCUIT 80 OSSY: ISOLATION 


80009 


670-6814-00 


ai5 


670-6814-01 


0021245 


8021349 


CIRCUIT BD ASSY: ISOLATION 


80009 


670-6814-01 


015 


670-6814-02 


8021 350 




CIRCUIT 80 ASSY: ISOLATION 


80009 


670-6814-02 


015C1001 


281-0775-00 






CAP,FX0,CER D1:0.1UF,20X,50V 


04222 


HA205E104HAA 


015C1005 


283-0198-00 






CAP,FX0,CER 01:0. 22UF, 201, 50V 


05397 


C330C224H5U1CA 


015C1021 


281-0775-00 






CAP,FX0,CER 01:0. 1UF,20I, 50V 


04222 


Ha2O5E1O4MA0 


015C1101 


281-0775-00 






CAP,FX0,CER 01:0. 1UF,20X, 50V 


04222 


HA205E104MOA 


015C110? 


281-0775-00 






CAP,FXD,CER 01:0. 1UF.201, BOV 


04222 


HA205E104HAA 


fl15C1111 


283-0212-00 






CAP,FX0,CER 01:2UF,20I,50V 


04222 


SR405E205H0A 


fl15C1113 


290-0755-00 






CAP , FXO , ELCTLT : 100UF ,+601-101 , 10V 


54473 


ECE-A10V100L 


015C1121 


281-0775-00 






CAP,FXD,CER OI:0.1UF,201,50V 


04222 


HA205E104HAA 


015C1131 


281-0775-00 






CAP,FX0,CER 01:0. 1UF, 201, BOV 


04222 


H0205E104HAQ 


015C1201 


283-0100-00 






CAP,FXD,CER 01:0, 0047UF. 101,200V 


04222 


SR3O6O472K0A 


015C1203 


283-0212-00 






CAP,FXD,CER DI:2UF,201,50V 


04222 


SR405E205MAA 


015C1215 


281-0775-00 


8010100 


8010369 


CAP,FXD,CER 01:0. 1UF, 201, 50V 


04222 


HA205E104HAA 


015C1215 


281-0813-00 


8010370 




CAP,FXD,CER DI:0.047UF,201,50V 


05397 


C412C473H5V2CA 


015C1216 


281-0775-00 


8010100 


8010369 


CAP,FXD,CEfi DI:0.1UF,201,50V 


04222 


HA205E104MAA 


015C1216 


281-0813-00 


8010370 




CAP,FXD,CER DI:0.047UF,201,50V 


05397 


C412C473H5V2CA 


015C1221 


290-0114-00 






CAP . FXD , ELCTLT : 47UF ,201 . 6V 


05397 


T1108476M006AS 


015C1223 


281-0775-00 






CAP,FXD,CER DI:0.1UF,201,50V 


04222 


MA205E104MAA 


015C1301 


281-0116-00 






CAP, VAR, AIR 01:1. 5-9. 1PF,530V 


74970 


189-0754-075 


015C1321 


281-0775-00 






CAP,FXO,CER DI:0.1UF,201,50V 


04222 


HA2Q5E104MAA 


015C1326 


281-0775-00 






CAP,FX0,CER OI:0.1UF,201,50V 


04222 


HA20SE104HAA 


015C1331 


281-0775-00 






CAP,FXO,CER DI:0.1UF,201,50V 


04222 


HA205E104HAA 


015C1401 


283-0434-00 


8010100 


8010499 


CAP,FXO,CER OI:26.5PF,21,1000V 


59660 


808000COG02659F 


015C1401 


283-0109-00 


8010500 




CAP,FXO,CER 01 :27PF,51, 1000V 


59660 


858-534C0G0270J 


015C1403 


283-0199-00 






CAP,FXO.CER 01 :25PF, 101,4000V 


59660 


0818617C060250K 


015C1404 


281-0184-00 






CAP ,VAR .PLA5TI C :2-18PF ,500VDC 


TX1727 


2222-809-05003 


015C1421 


281-0775-00 






CAP,FXD,CER 01:0. 1UF.201, BOV 


04222 


HA205E104HQC 


015C1426 


281-0775-00 






CAP,FXO,CER 01:0. 1UF.201, BOV 


04222 


HA205E104HAA 


015C1501 


281-0775-00 






CAP,FXO,CER 01:0. 1UF, 201, 50V 


04222 


HA205E104MAA 


015C1502 


281-0775-00 






CAP,FXO,CER 01:0. 1UF.201, BOV 


04222 


H0205E104MAA 


015C1503 


290-0768-00 






CAP , FXD , ELCTLT : 10UF ,+50-101 , 100V0C 


54473 


ECE-A100V10L 


015C1504 


281-0775-00 






CAP,FXD,CER 01:0. 1UF, 201, BOV 


04222 


HA205E104MAA 


015C1505 


290-0950-00 






CAP, FXD. ELCTLT:100UF, +50-101, BOV 


55680 


ULfllHIOITJAANA 


fl15C1511 


281-0775-00 






CAP.FXD.CER 01:0. 1UF, 201, BOV 


04222 


HA205E104HAA 


015C1513 


281-0775-00 






CAP.FXD.CER DI:0.1UF,201,50V 


04222 


H0205E104MAA 


015C1515 


290-0768-00 






CAP . FXD .ELCTLT : 10UF ,+50-101 . 100VDC 


54473 


ECE-A100V10L 


015C1521 


281-0775-00 






CAP.FXD.CER DI:0.1UF,201,50V 


04222 


H0205E104M0A 


015C1526 


281-0775-00 






CAP.FXD.CER 01:0. 1UF, 201, BOV 


04222 


HA205E104HaO 


01 5C 1601 


290-0950-00 






CAP . FXD , ELCT LT : 100UF , +50-101 ,50V 


55660 


ULB1H101TJOANA 


015C1603 


290-0745-00 






CAP . FXD , ELCT LT : 22UF , +50-101 . 25V 


54473 


ECE-A25V22L 


015C1611 


290-0768-00 






CAP , FXO , ELCTLT : 10UF, +50-101 , 100VDC 


54473 


ECE-A100V10L 


015C1821 


281-0775-00 






CAP.FXD.CER OI:0.1UF,201.50V 


04222 


HA205E104MAA 


015C1626 


281-0775-00 






CAP.FXD.CER DI:0.1UF,201,50V 


04222 


HA205E104HAA 


015C1201 


281-0775-00 






CAP.FXD.CER 0I:0.1UF.2Ol,50V 


04222 


HA205E104HAA 


015C1702 


281-0775-00 






CAP.FXD.CER OI:0.1UF,201,50V 


04222 


HA205E104HAA 


Q15C1713 


281-0775-00 






CAP.FXD.CER OI:0.1UF,201,50V 


04222 


HA205E104HAA 


015C1721 


281-0775-00 






CAP.FXD.CER 01:0. 1UF,201, BOV 


04222 


HA205E104MAA 


015C1731 


283-0177-00 






CAP.FXD.CER 01 :1UF, +80-201, 25V 


04222 


SR302E105ZAATR 


015CR1201 


152-0574-00 






SEHICONO DVC,D1:SN,S1 , 120V, 0.1BA, 00-35 


12969 


N0P566 


015CR1203 


152-0574-00 






SENICOND DVC, 01 :SN. SI, 120V, 0.15A, 00-35 


12969 


N0P566 


015CR1211 


152-0574-00 






SD4IC0ND DVC.DI :SN , SI. 120V ,0.15A, 00-35 


12969 


NDP566 


015CR1212 


152-0574-00 






SENICONO DVC,0I:SN, SI, 120V, 0.15A, 00-35 


12969 


N0P566 


015CR1501 


152-0574-00 






SEHICONO DVC,DI:SH,Sl,120V.0.15A,00-35 


12969 


N0P566 


015CR1503 


152-0574-00 






SEHI CONO DVC ,D1 :SH .SI , 120V ,0. 15A .00-35 


12969 


N0P566 


015CR1505 


152-0574-00 






SEHICONO DVC, DI:SN, SI, 120V.0.15A, 00-35 


12969 


N0P566 


015CR1507 


152-0779-00 






SEHICONO DVC, D1:RECT,SI ,200V ,0.75A 


05828 


RH02M 



9-8 



REV JUN 1986 





Replaceable Electrical Parts - DM 5010 



Tektronix 

Component No. Part No. 


Serial/Assembly No. 
Effective Dscont 


Name & Description 


Mfr. 

Code 


Mfr. Part No. 


ft15CR1509 


152-0574-00 




SEMICOND DVC,Dl:SH, SI, 120V,0. 150, 00-35 


12969 


N0P566 


A15CR1B15 


152-0779-00 




SEMICONO DVC,0I:RECT.5I, 200V, 0.750 


05828 


RH02M 


fli SCR 1605 


152-0307-00 




SEHICONO DVC,0I:SK,SI,100V,0.130,D0-92 


04713 


SS01150 


A15CR1715 


152-0141-02 




SEMICONO DVC,0I:SN,SI,30V,150MO,30V 


03508 


002527 (1N4152) 


fl15F1111 


159-0015-00 




FUSE,C0RTRI06E:30G,30,250V,0.65SEC 


75915 


312 003 


fl15F1113 


159-0025-00 




FUSE, C0RTRI0CE:3O6, 0.50, 250V, 0.25SEC 


71400 


OGC-CN-1/2 


Q15L1201 


108-0200-00 




C0IL,RF;FIXED,52UH 


80009 


108-0200-00 


Q15L1203 


108-0200-00 




C0IL,RF:FIXED,52UH 


80009 


108-0200-00 


Q1501101 


151-0301-00 




TRONSISTOR:PNP,SI,TO-18 


04713 


ST898 


01501104 


151-0188-00 




TR0N5IST0R:PNP,SI,T0-92 


80009 


151-0188-00 


Q1501105 


151-0190-00 




TR0NSIST0R:NPN,SI,T0-92 


80009 


151-0190-00 


01501201 


151-0200-00 




TR0NSI5T0R:NPN,SI,T0-5 


04713 


2N3499 


01501202 


151-0200-00 




TR0N5IST0R:NPN,SI,T0-5 


04713 


2N3499 


01501211 


151-0190-00 




TRONSIST0R:NPN,SI,T0-92 


80009 


151-0190-00 


01501212 


151-0190-00 




TRflN5IST0R:NPN,SI,T0-32 


80009 


151-0190-00 


01501213 


151-0188-00 




TR0N5IST0R;PNP,SI,T0-92 


80009 


151-0188-00 


01501214 


151-0188-00 




TR0NSIST0R:PNP,SI,T0-92 


80009 


151-0188-00 


01501421 


151-0190-00 




TR0NSIST0R;NPN,SI,T0-92 


80009 


151-0190-00 


01501615 


151-0301-00 




TR0NSIST0R:PNP,SI,T0-18 


04713 


ST898 


015R1001 


315-0431-00 




RES,FXD,FILH;430 OHM,5Z,0.25N 


19701 


5043CX430R00 


015R1003 


315-0333-00 




RES,FX0,FILM:33X OHM,5Z,0.25N 


57668 


NTR25J-E33K0 


015R1005 


315-0102-00 




RES,FXD,FILM;1K QHM,5X,0.25H 


57668 


NTR25JE01KO 


Q15R1101 


315-0201-00 




RES,FXO,FILM:200 0HM,5X,0.291 


57668 


NTR25J-E200E 


015R1102 


315-0821-00 




RES, FXO, FILM: 820 OHM, 51,0. 25N 


19701 


5O43CX82OR0J 


015R1103 


315-0123-00 




RES,FX0,FILM:12K 0HM,5Z,0.25« 


57668 


NTR25J-E12K0 


015R1104 


315-0562-00 




RES,FX0,FILM:5.6K OHH,5I,0.25N 


57668 


NTR25J-E05K6 


015R1105 


315-0333-00 




RES.FX0,FILM:33X OHM,5Z,0.25H 


57668 


NTR25J-E33X0 


015R1106 


317-0047-00 




RES,FX0,CHPSN:4.7 OH«,5Z,0.125« 


01121 


8B47G5 


015R1107 


315-0391-00 




RES,FX0,FIL>(:390 0HN,5I,0.25H 


57668 


NTR25J-E390E 


015R1108 


315-0123-00 




RES,FX0,FILM:12K OHM,5I,0.25H 


57668 


NTR25J-E12X0 


015R1109 


315-0123-00 




HES,FX0,FUM:12K OH«,5%,0.25« 


57668 


NTR25U-E12K0 


015R1201 


315-0910-00 




RES,FXD,FILM:91 0HM,5Z,0.25H 


19701 


5O43CX91R00J 


015R1211 


315-0102-00 




RES,FX0,FUM:1K OHM,5X,0.25H 


57668 


NTR25JE01X0 


015R1212 


315-0102-00 




RES,FXD,FIIM:1X OHM,5Z,0.25H 


57668 


NTR25JE01X0 


015R1213 


315-0751-00 




RES,FXD,FIIM:750 0HM,5Z,0.25H 


57668 


NTR25J-E750E 


015R1214 


315-0751-00 




RES,FXD,FILM:750 OHH,5Z,0.25M 


57668 


NTR25U-E750E 


015R1215 


315-0271-00 




RES,FXD,FILM:270 OHM, 51,0. 25M 


57668 


NTR25J-E270E 


015R1216 


315-0271-00 




RES,FXD,FIIM;270 0HM,5Z,0.25M 


57688 


NTR25U-E270E 


015R1217 


315-0122-00 




RES,FXD,FIL>I;1.2K 0HM,5X,0.291 


57668 


KTR25J-E01X2 


015R1421 


315-0122-00 




R£S,FXD,FILM;1.2K OHM, 51,0. 25H 


57668 


MTR25J-E01K2 


015R1521 


315-0271-00 




RES,FXD,FILM:270 OHM, 51,0. 25H 


57868 


NTR25J-E270E 


015R1526 


315-0271-00 




RES,FX0,FILHl270 0HM,5Z,0.25H 


57668 


NTR25J-E270E 


015R1531 


315-0102-00 




RES,FX0,FILM:1K OHM, 51,0. 25H 


57868 


NTR25JE01K0 


015R1615 


315-0242-00 




RES,FX0,FILM:2.4K 0HM,51,0.25M 


57868 


NTR25J-E02X4 


Q15R1621 


315-0271-00 




RES,FX0,FILM:270 OHM,5X,0.25M 


57868 


KTR25J-E270E 


015R1626 


315-0271-00 




R£S,FX0,FILH:270 OHM,51,0.25H 


57668 


NTR25J-E270E 


015R1701 


315-0102-00 




RES,FX0,FILM:1K OHM, 51,0. 25H 


57668 


NTR25JE01KO 


01 5R 1703 


315-0562-00 




R£S,FX0,FILM:5.6K OHM,51,0.25H 


57868 


NTR25J-E05K6 


015R1711 


315-0562-00 




R£S.FX0,FILM:5.6K OHM,51,0.25« 


57668 


NTR25J-E05X6 


015R1712 


315-0750-00 




RES,FX0.FIIM:75 OHM, 51,0. 25H 


57668 


NTR25J-E75E0 


015R1713 


315-0102-00 




R£S,FX0,FIIM:1K OHM, 51,0. 25M 


57668 


NTR25JED1K0 


015R1715 


315-0303-00 




RES,FX0,FILM;30X OHM,51,0.25H 


19701 


5043CX30X00J 


015R1721 


315-0750-00 




RES,FXD,FILM;75 OHM,51,0.25H 


57668 


NTR25J-E75E0 


015T1311 


120-1349-00 




TRONS FORMER, RF: ISO LOTION 


80009 


120-1349-00 


015TP1421 


214-0579-00 




TERM, TEST P0INT:BRS CD PL 


80009 


214-0579-00 


01 5U 1000 


158-0067-00 




MICR0CXT,L1N£0R:0PNL 0MPL,SEL 


04713 


MC1741CP1 


015U1020 


156-0412-02 




MICROCia,DGTL:SYN 4 BIT UP7D0NN CNTR 


27014 


0M74LS193NQ+ 


Q15U103Q 


156-0382-02 




MICR0CKT,DGTL:0U00 2 INP MONO GOTE BURN 


18324 


N74LS00NB 


015U1120 


156-0412-02 




MICROCKT,DGTL:SYN 4 BIT UP/DOHN CNTR 


27014 


0M74LS193N0* 



REV JUN 1986 



9-9 






Replaceable Electrical Parts - DM 5010 



Tektronix 

Ck>iTiDonent No, Part No. 


Serial 7 Assembly No. 
Effective Oscont 


Name & Descriotion 


Mfr. 

Code 


Mfr. Part No. 


015U1125 


156-0299-02 






HICR0CKT.DGTL:TTL, 16-BIT DATA SELECTOR 


18324 


N74150(NB OR FB) 


015U1130 


156-0412-02 






HICR0CKT,DGTL:SYN 4 BIT UP/OONN CNTR 


27014 


0M74LS193NA+ 


Q15U1135 


156-0306-02 






MICROCKT.DOTLrTRIPLE 3-INP NANO GATE 


07263 


74LS10PC0R 


Q15U1220 


156-0412-02 






MICR0CICT,DGTL:SYN 4 BIT UP/DONN CNTR 


27014 


0M74LS193NA+ 


fl15tJ1230 


156-0567-02 






NICR0CKT,DGTL:DUAL J-K NEG EDGE TRIG FF 


27014 


0H74LS113NA+ 


fl15U1235 


156-0844-02 






HICR0CIi:T,DGTL:SYN 4 BIT CNTR 


01295 


SN74LS161A(NP3) 


fl15U1320 


156-0567-02 






MICR0Cia,DGTL:DU0L J-K NEG EDGE TRIG FF 


27014 


DM74LS113NA+ 


ft15U1325 


156-0567-02 






NICROCn,DCTL:DUAL J-K NEG EDGE TRIG FF 


27014 


0M74LS113NA+ 


015U1330 


156-0567-02 






NICROCKT.DGTLlOUOL J-K NEG EDGE TRIG FF 


27014 


BM74LS113N0+ 


015U1335 


156-0464-02 






MICROCKT,DGTL:DUQL 4-lNP NANO GATE 


01295 


SN74LS20NP3 


015U1420 


156-0382-02 






NICROCKT.OGTLlQUAO 2 INP NANO GATE BURN 


10324 


N74LSOONB 


015U1425 


156-0567-02 






HICROCKT,DGTL:DUAL J-K NEG EDGE TRIG FF 


27014 


DM74LS113NA+ 


015U1430 


156-0302-02 






MICROCKT,DGTL:gUAO 2 INP NANO GATE BURN 


18324 


N74LS00N8 


fl15U1435 


156-0400-02 






MICROCKT.DGTL:OUAO 2-INP 6 GATE 


01295 


SN74LS08NP3 


fl15U1510 


156-1522-00 






CPLR,OPTO£LECTR:LED S PHOTOTRANSISTOR 


50434 


HCPL-2601 


fl15U1515 


156-1522-00 






CPLR,OPTOELECTR:LED & PHOTOTRANSISTOR 


50434 


HCPL-2601 


015U1520 


156-0302-02 






MICROCn,DGTL:QUAD 2 INP NANO GATE BURN 


18324 


N74LS00N8 


015U1525 


156-0545-01 






HICR0CKT.DGTL:12 BIT BINARY CNTR 


02735 


CD4040BFX 


015U1530 


156-0382-02 






MICROCta.OGTLlOUAO 2 INP NANO GATE BURN 


18324 


N74LS00N8 


fl15U1535 


156-0041-05 


B010100 


B021349 


HICROCKT.DGTUDUAL 0 FLIP FLOP SCRN 


01295 


SN7474NP3 


015U1535 


156-0331-03 


B021350 




HICROOa,DGTL;DUAL 0 TYPE POSITIVE EDGE 


01295 


SN74S74NP3 


015U1605 


156-0991-00 






MlCROaa,LINEAR:VOLTAGE REGULATOR 


04713 


MC78L05ACP 


A15U1610 


156-1522-00 






CPLR.OPTOELECTR:LED S PHOTOTRANSISTOR 


50434 


HCPL-2601 


015U1813 


156-0991-00 






HICROCKT.UNEARrVOLTAGE REGUUTOR 


04713 


HC78L05ACP 


ai5U1615 


156-1522-00 






CPLR,OPTOELECTR:LED S PHOTOTRANSISTOR 


50434 


HCPL-2601 


ai5U1620 


156-0465-01 






NICROCKT,OGTL:0-INP NANO GATE.CHK 


80009 


156-0465-01 


015U1625 


156-0465-01 






N1CROCKT.OGTL:0-INP NANO GATE,CHK 


80009 


156-0465-01 


ai5in630 


156-0388-03 






HICROCia.OGTL:DUAL 0 FLIP-FLOP 


01295 


5N74LS74ANP3 


ft15U1635 


156-0386-02 






NICROCKT,DGTL:TRIPLE 3-INP NANO GATE 


07263 


74LS10PC0R 


A15U1710 


156-1522-00 






CPLR,OPTOELECTR:LED ft PHOTOTRANSISTOR 


50434 


HCPL-2601 


ft15U1720 


158-0465-01 






MICROCKT.DGTL:0-INP NANO GATE.CHK 


80009 


156-0465-01 


ft15U1730 


156-0784-02 






«ICROCta.DCTL;SYNCHRONOUS 4-BIT BINARY CNTR 


01295 


SN74LS163AN P3 


fl15VR1001 


152-0662-00 






SEMICONO DVC,DI:2EN,SI,5V.1X.400HH,00-7 


04713 


SZG195RL 


fl16VR1216 


152-0279-00 






SEMICOND DVC.DI:ZEN.SI.5.1V,5X,0.4H,00-7 


14552 


T03810989 


016 


670-6816-00 






CIRCUIT BO ASSY:RMS 


80009 


670-6016-00 


016C1001 


285-0809-00 






CAP, FXD, PLASTIC: 1UF, 101, 50V 


56289 


LP66A1A105K 


016C1013 


290-0768-00 






CAP , FXO , ELCTLT : 10UF ,+50-101 , 100VDC 


54473 


ECE-A100V10L 


016C1101 


290-0121-00 






CAP , FXO , E LCT LT : 2U F . +75- 1 01 , 25V 


01002 


76F92KC2R0 


016C1103 


290-0488-00 






CAP , FXO , ELCT LT : 2 . 2U F , 1 01 . 20V 


05397 


T322B225K020AS 


016C1105 


281-0775-00 






CAP.FXO.CER OI:0.1UF,201,50V 


04222 


MA205E104MAA 


016C1107 


281-0775-00 






CAP.FXO.CEfi OI:0.1UF,201,50V 


04222 


MA205E104MA0 


fl16C1111 


281-0775-00 






CAP,FXD,CER DI:0.1UF,201,50V 


04222 


MA205E104MAA 


016C1113 


281-0775-00 






CAP,FXD,CER DI:0.1UF,201,50V 


04222 


HA205E104HAA 


016C1301 


281-0775-00 






CAP.FXO.CER OI:0.1UF,201.50V 


04222 


MA205E104MAA 


016C1303 


281-0775-00 






CAP.FXO.CER OI:0.1UF,201,50V 


04222 


MA205E104MAA 


016C1311 


283-0593-00 






CAP, FXO, MICA 01:0. 01UF, 11, 100V 


00853 


D3O1F103FO 


Q16C1403 


281-0248-00 






CAP,VAR,A1R 01:1. 8-10. 16PF,75KV0C 


74970 


186-0613-105 


016C1405 


283-0676-00 






CAP, FXO .MICA DI:82PF.11.500V 


00853 


D105EB20FO 


016C1415 


281-0775-00 






CAP,FXO,CER DI:0.1UF,201,50V 


04222 


HA205E104HAA 


016C1417 


283-0203-00 






CAP,FXO,CER DI:0.47UF,201,50V 


04222 


SR305SC474MAA 


016C1503 


281-0064-00 






CAP , VAR , PUST 1 C : 0 . 25-1 . 5PF , 600V 


52769 


ER-530-013 


016C1505 


281-0658-00 


8010100 


B010199 


CAP,FXO,CER DI:6.2PF,+/-0.25PF.500 


52763 


2ROPLZ007 6P20CC 


016C1505 


281-0645-00 


0010200 




CAP.FXO.CER DI:8.2PF,+/-0.25PF.500V 


52763 


2RDPLZ007 0P2OCC 


016C1513 


281-0775-00 






CAP.FXO.CER DI:0.1UF,201,50V 


04222 


MA205E104HAA 


016C1515 


283-0203-00 






CAP.FXO.CER D1:0.47UF,201,50V 


04222 


SR305SC474MAA 


016C1525 


283-0203-00 






CAP.FXO.CER DI:0.47UF,201,50V 


04222 


SR305SC474MAA 


016C1526 


281-0775-00 






CAP.FXO.CER DI:0.1UF,201,50V 


04222 


MA205E104HAQ 


016C1527 


283-0203-00 






CAP.FXO.CER 01 :0.47UF, 201,50V 


04222 


SR305SC474MA0 


016C152Q 


281-0775-00 






CAP.FXO.CER 01:0. 1UF.201, 50V 


04222 


MA205E104H0A 



9-10 



REV JUN 1986 







Replaceable Electrical Parts - DM 5010 



ComDonent No. 


Tektronix Serial/Assembly No. 
Part No. Effective Dscont 


Name & OescriDtion 


Mfr. 

Code 


Mfr. Part No. 


fl16C1601 


281-0775-00 


CflP,FX0,CER DI:0.1UF, 201,50V 


04222 


MA205E104MAA 


016C1603 


281-0775-00 


CflP,FX0,CEH DU0.1UF,20X,50V 


04222 


H0205E1Q4MA0 


B16C1605 


281-0064-00 


COP , VOR , PLBST I C :0 . 25-1 . 5PF , 800V 


52769 


ER-530-013 


fl18C1607 


281-0064-00 


COP , VBR , PUST I C : 0 . 25-1 . 5PF , 600V 


52789 


ER-530-013 


Q18C1609 


283-0342-00 


CflP,FX0,CER 01:6. 5PF,0.5X, 2000V 


59680 


838564COH08590 


Q18C1621 


285-1077-00 


cap, FXO,PL05TIC;0.1UF,20X, 600V 


14752 


23081 FI 04M 


016CR1011 


152-0704-00 


SEMICOND 0VC,DI:RECT,Sl,1fl,1KV,00-41 


05828 


1N4007G 


B16CR1021 


152-0141-02 


SEMICONO OVC.OI:S«,SI,3OV,15OHO,30V 


03508 


0A2527 (1N4152) 


B16CR1023 


152-0141-02 


SEMICONO DVC,DI:SH, SI, 30V, 150MB, 30V 


03508 


002527 (1N4152) 


ai6CR1121 


152-0141-02 


SEMICONO 0VC,DI:SN,SI, 30V, 150MB, 30V 


03508 


002527 (1N4152) 


B16CR1225 


152-0704-00 


SEMICONO DVC,DI:RECT,SI, 10. 1KV, 00-41 


05828 


1N4007C 


616CR1227 


152-0141-02 


SEMICONO DVC,DI:SN,SI,30V,150M0,30V 


03508 


002527 (1N4152) 


B18CR1231 


152-0141-02 


SEMICONO DVC , 0 I :SH , S I , 30V , 150M0 , 30V 


03508 


0A2527 (1N4152) 


B16CR1233 


152-0141-02 


SEMICONO DVC , 01 : SN ,S 1 , 30V , 150M0 , 30V 


03508 


002527 (1N4152) 


B16CR1ft15 


152-0141-02 


SEM I CONO DVC , 0 I : SH , S I , 30 V , 1 50M0 , 30V 


03508 


002527 (1N4152) 


B16CR1511 


152-0141-02 


SEMICONO DVC,DI:SN,SI,30V,150M0,30V 


03508 


002527 (1N4152) 


fl16CR1513 


152-0141-02 


SEMICONO DVC , 0 1 : SH ,S 1 , 30V . 150M0 , 30V 


03508 


002527 (1N4152) 


B18CR1527 


152-0141-02 


SEM I CONO DVC , 0 1 : SH , S 1 , 30V , 1 50M0 , 30V 


03508 


002527 (1N4152) 


B16CR1529 


152-0141-02 


SEMICONO DVC,DI:SH,SI,30V,150M0.30V 


03508 


DA2527 (1N4152) 


B16CR1613 


152-0323-00 


SEMICONO 0VC,0I:SH,SI,35V, 0.10,00-7 


14433 


HG1518 


B16CR1815 


152-0323-00 


SEMICONO DVC, 01 :SH, SI, 35V, 0.10, 00-7 


14433 


HG1518 


B16IC1031 


148-0141-00 


RELBY,REED:1 FORM 0,0.5O,100VOC,C0IL 15V0C, 


15636 


R7820-2 






2.2K OHM 






B16K1131 


148-0141-00 


REIBY,REED:1 FORM fl,0.5O,100V0C,C0IL 15VQC, 


15636 


R7620-2 






2.2K OHM 






B16K1201 


148-0126-00 


RELBY,REED:FORM O,OOMO,250VOC,COIL 5V0C 


15636 


R8895-1 


B16K1231 


148-0141-00 


RELBY,REED:1 FORM 0,0.5B,100VOC,COIL 15V0C, 


15636 


R7620-2 






2.2K OHM 






B16K1313 


148-0126-00 


REUY, REED: FORM 0,00Mfl,250V0C,C0IL 5V0C 


15638 


R6895-1 


ai6K1485 


148-0128-00 


REUY,REED:FORM 0,00MB, 2S0V0C, COIL 5V0C 


15638 


R6895-1 


B18K1503 


148-0126-00 


REUIY, REED: FORM fl,OOMO,25OVOC,C01L 5V0C 


15638 


R6895-1 


B16K1821 


148-0141-00 


RELAY, REED:1 FORM fl,0.5fl,100VDC,C0IL 15V0C, 


15636 


R 7820-2 






2.2K OHM 






B16K1633 


148-0141-00 


RELAY, REEDll FORM 0,0.5fl,100V0C,C0IL 15V0C, 


15636 


R7620-2 






2.2K OHM 






B1801021 


151-1131-00 


IRONS I STOR : FE , N-CHONNEL, S I ,T0-72C 


17856 


FN4582 


B18Q1320 


156-1527-00 


MICR0Cn,LINEAR:5 XSTR ARRAY 


02735 


C031830E-98 


ai 80 1420 


156-1527-00 


MICR0C»rr,LINE0R;5 XSTR ARRAY 


02735 


C031830E-98 


B18R1D01 


311-1337-00 


RES,VBR,N0NHH:TRMR,25K 0HM,0.5H 


32997 


30Q6P-H84-253 


B16R1003 


315-0103-00 


RES,FXD,FUM:10K OHM,5X,0.25H 


19701 


5043CX10K00J 


B16R1013 


315-0103-00 


RES,FX0.FIIM:10K OHM,5X,0.25H 


19701 


5O43CX1OK0OJ 


B16R1021 


315-0101-00 


R£S,FXD,FIIM:100 OHM,5Z,0.25H 


57668 


NTR25J-E 100E 


B16R1031 


325-0355-00 


RES,FXD,FIIM:1M 0HM,0.1X,0.25H 


91637 


PTF65T16100038 


B18R1032 


315-0162-00 


RES,FXD,FIIM:1.6K 0HM.5I,0.25H 


19701 


5043CX1K600J 


B18R1033 


321-1389-07 


RES,FXD,FUM:111K 0HM.0.1X,0.125H,TC=T9 


19701 


5Q33RE111388298F 


B18R1101 


321-0959-03 


RES,FXD,FIIM:24.01K 0HM,0.25Z,0.125H,T2 


24546 


NC55C24.01KC 


B18R1121 


321-0908-02 


RES,FX0,FILM:1.31X 0HM,0.5X,0.125H,TC=T2 


24546 


NC55C13110 


016R1123 


321-1310-03 


RES,FX0,FILM:16.7K OHM,0.25I,0.125H,TC=T2 


19701 


5033RC16K72C 


B16R1201 


321-0318-07 


RES,FX0,FILM:20.0K 0HM,0.1I,O.125H,TC=T9 


19701 


5Q33RE2QK008CM 


B16R1211 


321-0703-00 


RES,FX0,FILM:2.19K 0HM,0.25X,0.125H,T0=T9 


19701 


5033RE2X190C 


B16R1221 


321-0289-00 


RES,FX0,FILM:10.0X OHM, 11,0. 125H,TC=T0 


19701 


5O33ED10K0F 


B18R1223 


321-0364-03 


RES,FX0,FILM:60.4K 0HM,0.25X,0.125H,T=T2 


19701 


5033RC60K40C 


B16R1225 


321-0481-01 


RES,FX0,FILM:1M 0HM,0.5I,0.125H,TC=T0 


07716 


CEOD100030 


B16R1229 


323-0443-01 


RES,FX0,FILM:402K OHM,0.5I,O.5H,TC=TO 


24546 


N0650 40230 


B16R1231 


315-0162-00 


RES,FX0,FILH;1.6K OHM, 51,0. 25H 


19701 


5043CX1X600J 


B18R1233 


315-0182-00 


RES,FXD,F1LM:1.6K 0HM,5X,0.25H 


19701 


5043CX 1X600 J 


B18R1303 


315-0184-00 


RES,FX0,FIIM:180K OHM, 51,0. 25H 


19701 


5043CX180K0J 


B16R1305 


311-1337-00 


RES,V0R,N0NKH:TRMR,25K 0HM,0.5H 


32997 


3006P-H84-263 


B16R1307 


321-0222-07 


R£S,FXD,FILM:2.0K 0HM,0.1I,0.12SH,TC=T9 


19701 


5Q33RE2KOOOe 



REV JUN 1986 



9-11 







Replaceable Electrical Parts - DM 5010 



Tektronix 

Comoonent No. Part No. 


Serial /Assembly No. 
Effective Dscont 


Name 6^ Descriotion 


Mfr, 

Code 


Mfr. Part No. 


ft15R1309 


321-0222-07 






RES , FXO , FI LM : 2 .OK OHM ,0 . 11 ,0 . 125M , TC=T9 


19701 


5033RE2K000B 


018R1321 


323-0445-01 






RES , FXO , FI LH: 422K ,0H« ,0 . 5X , 0 . 5H . TC=T0 


24546 


NA60D 42230 


016R1323 


322-0254-02 






RES,FX0,nLM:4.32K 0Hk.0.5X,0.25N,TC=T2 


24546 


NC60C4321C 


018R1325 


315-0562-00 






RES,FX0,FILM:5-6K OHM,5X,0.25H 


57668 


NTR25J-E05K6 


(J18R1327 


316-0562-00 






RES,FX0,FILM;5.6K OHM,5X,0.25« 


57668 


NTR25J-E05K6 


016R1331 


325-0354-00 






RES.FXD,FILM:10K 0HM,0.1I,0.25H 


19701 


5033ZA10K008 


A16R1333 


325-0349-00 






RES,FX0,FILM:10M OHH.O. 251,0. 5H,TC=T9 


03888 


PME70 10MOHM.2SX 


016R1401 


321-1610-03 






RES,FXD,FILM:22.22K OHH,0.25X,0.125M,TC=T2 


19701 


5033RC22K22G 


016R1A03 


321-0414-07 






RES , FXO , FI LM : 200K 0H« ,0 . 11 , 0 . 125H , TC=T9 


24546 


NE55E2003B 


Q16R1415 


321-1133-02 






RE5,FX0,FILM:240 OHM,0.5X,0.125H,TC=T2 


24546 


MC600240Q0 


016R1421 


315-0562-00 






RE5,FXD,Fim:5.6K OHM,5I,0.25W 


57668 


NTR25J-E05K6 


fl16R1423 


315-0562-00 






RES,FXD,Fim:5.6K OHH,5X,0.25« 


57668 


NTR25J-E05K6 


016R1425 


315-0562-00 






R£S,FX0,FIU*;5.6K 0HH,5Z,0.25W 


57668 


NTR25J-E05K6 


016R1426 


315-0582-00 






RE5,FXD,FILJ<;5.6K OHM,5Z,0.25« 


57668 


NTR25J-E05K6 


fl16R1427 


315-0562-00 






RES,FXD,FILH:5.6K OHH,5X,0.25« 


57668 


NTR25J-E05K6 


fl16R1429 


315-0562-00 






RES,FX0,F1L>I:5.6K OHM,5X,0.25H 


57668 


NTR2SJ-E05K6 


fl16R1501 


321-0510-07 






RE5,FX0,Fim:2.00 MEG OHM,0.1I.0.125M,TC=TO 


19701 


5033RE2M008 


fl16R1521 


315-0562-00 






RES,FXD,FIU4:5.6K OHM,5I,0.25M 


57668 


NTR25J-E05K6 


ai6R1523 


315-0122-00 






RES,FX0,FILH:1.2K OH«,5I,0.25« 


57668 


NTR25J-E01K2 


A16R1525 


315-0122-00 






RE5,FX0,FILM:1.2K OHM,5X,0.25H 


57668 


NTR25J-E01K2 


A16R1601 


311-1337-00 






RE5,VAR,N0NHH:TRMR.25K 0HM,0.5H 


32997 


3006P-N84-253 


Q18R1603 


323-0510-07 


B010100 


8010709 


RES,FX0,FILM;2.0«EG OHM,0.n.0.5M,TC=T9 


91637 


CMF65116-C20003B 


ai6R1603 


325-0385-00 


8010710 




RES,FX0.F1LM:2M 0HM,0.1X,0.5«,TC=T9 


03688 


PME70 2M0HM .IX 


016R1609 


321-0306-00 






RES,FXO,FILH:15.0K OHM,1X,0.125H,TC=T0 


19701 


5033E015J00F 


fl16R1621 


315-0201-02 






RES.FXD,CHPSN:200 OHM,5X,0.25M 


01121 


C82015 


A16R1633 


315-0102-00 






RES,FX0,FILM:1K OHM,5X,0.25H 


57868 


NTR25JE01K0 


016RT1011 


307-0862-00 






RES. THERMAL: 1K OHM.40X 


50157 


180010216 


ft16HT1227 


307-0767-00 






RES,THERMAL;5K OHM.+40X-20X 


50157 


180050203 


A16TP1201 


214-0579-00 






TERH.TEST P0INT;BRS CD PL 


80009 


214-0579-00 


018TP1503 


214-0579-00 






TERM.TEST P0INT:BRS CO PL 


80009 


214-0579-00 


A18TP1701 


214-0579-00 






TERM.TEST POINT:BRS CD PL 


80009 


214-0579-00 


fl16TP1703 


214-0579-00 






TERM.TEST P0INT:BRS CD PL 


80009 


214-0579-00 


fl16U1100 


156-1457-01 






MICROCKT.LINEARrTRUE RMS TO DC CONVERTER, 


24355 


0041134 


016U1120 


156-1149-01 






MICROCia,LINEAR:OPERATION AMP JFET INPUT 


27014 


AL160307 


016U1200 


156-0742-01 






MICROCKT.LINEAR;OPNL AMPL. FUNCTIONAL TEST 


80009 


156-0742-01 


016U1330 


156-0796-00 






MICR0CKT.D6TL:9 STG SHF 6 STORE BUS RGTR 


02735 


CD40948F 


016U1417 


156-1529-00 






MICR0Cia,LINEAR:3-TERM ADJ OUT POS V RGLTR 


04713 


LM317LZ 


016U1430 


156-0796-00 






MICR0CKT.0GTL:8 STG SHF i STORE BUS RGTR 


02735 


CD4094BF 


016U1500 


158-1156-00 






MICROCKT,LINEAR:OPEROTIONAL AMPLIFIER 


27014 


LF356N 


fl16U1515 


156-0991-00 






MICROCKT,LINEAR;VOLTAGE REGULATOR 


04713 


MC78L05ACP 


018U1525 


156-1207-00 






MICROCKT.LINEAR:VOLTAGE REGUUT0R.-12 V 


04713 


MC79L120CG 


fl18U1527 


156-1160-00 






MICROCKT,L1NEAR:VOLTAGE REGUUTOR 


04713 


MC78L120CG 


B16U1530 


156-0480-02 






MICROCKT,DGTL:QUAD 2-INP t GATE 


01295 


SN74LS08NP3 


A18VR1013 


152-0278-00 






SEMICONO OVC.OI;ZEN,S1.3V.5X,0.4«.OO-7 


04713 


SZG35009K20 


A18VR1123 


152-0611-00 






SEHICONO 0VC.0I;ZEN,SI,9V,2X,0.4M,D0-7 


04713 


SZ14347 


A16VR1415 


152-0278-00 






SEMICONO OVC,OI;ZEN,SI,3V.5X,0.4H,DO-7 


04713 


SZ635009K20 


A16H1105 


131-0566-00 






BUS, CONO; DUMMY RES. 0.094 00 X 0.225L 


24546 


QMA 07 


A17 


672-1015-00 


8010100 


8020979 


CIRCUIT BO ASSY:RELAY 


80009 


672-1015-00 


A17 


672-1015-01 


B020980 


8021903 


CIRCUIT BD ASSY:RELAY 


80009 


672-1015-01 


A17 


672-1015-03 


8021904 




CIRCUIT 80 ASSY:RELAY 


80009 


672-1015-03 


A17C1001 


281-0775-00 






CAP.FXO.CEfi 01:0. 1UF.20X. BOV 


04222 


MA205E104MAO 


A17C1013 


281-0775-00 






CAP.FXO.CER 01:0. 1UF.20X. BOV 


04222 


MA2O5E104MOO 


A17C1017 


281-0770-00 






CAP.FXO.CER 01:1000PF.20X,100V 


04222 


MA101C102HOO 


A17C1019 


281-0770-00 






CAP.FXO.CER OI:1000PF.20X,100V 


04222 


MA101C1O2HOO 


A17C1021 


290-0770-00 


8010100 


8010369 


CAP ,FXO , ELCTLT : 100UF .+50-10X .25VDC 


54473 


ECE-A25V100L 


A17C1031 


290-0770-00 


8010100 


8010369 


CAP.FXO,ELCTLT:100UF.+50-10X,25VDC 


54473 


ECE-A25V100L 


A17C1123 


281-0775-00 






CAP.FXO.CER 01:0. 1UF.20X. BOV 


04222 


MA2O5E104H00 


A17C1126 


281-0811-00 






CAP.FXO.CER OI:10PF,10X,100V 


04222 


M01010100KAA 


A17C1128 


281-0775-00 






CAP.FXO.CER OI:0.1UF.20X,50V 


04222 


MA205E104MQA 



9-12 



REV JUN 1986 




Replaceable Electrical Parts - DM 5010 





Tektronix 


Serial/ Assembly No. 






Mfr. 




Component No. 


Part No. 


Effective 


Dscont 


Name & Description 




Code 


Mfr. Part No. 


ni7C1131 


281-0775-00 






CBP,FX0,CER 01:0. 1UF,20X. 50V 




04222 


MA205E104M00 


R17C1133 


290-0770-00 


8010100 


8010389 


CAP , FXD ,ELCTLT : 100UF,+50-10X,25VDC 




54473 


ECE-A25V100L 


fl17C1135 


290-0770-00 


8010100 


8010369 


CAP , FXD , ELCTLT : 100UF ,+50-10Z , 25VDC 




54473 


ECE-A25V100L 


A17C1137 


281-0775-00 






CAP,FX0,CER 01:0. 1UF,20X, 50V 




04222 


Ma205E104M0Q 


ft17C1139 


285-0809-00 






CAP,FXO,PLASTIC:1UFJ0I,5OV 




56289 


LP6601A105K 


A17C1Z02 


281-0788-00 






CAP,FXD,CER DI:150PF,10X,100V 




04222 


M01010151KOO 


017C120A 


281-0786-00 






CAP,FX0,CER DI:150PF, 101,100V 




04222 


M01010151KAQ 


Q17C1208 


281-0786-00 






CAP,FX0,CER 01 :150PF, 101,100V 




04222 


M0ioioi5iicaa 


A17C1211 


281-0786-00 






CAP,FX0,CER OI:150PF, 101, 100V 




04222 


MOIOIQISIKQO 


A17C1221 


283-0801-00 






CAP,FX0,kICA DI:22PF, 101, 300V 




00853 


0155E220K0 


A17C1225 


285-1220-00 






CAP , FXO , PmST IC : 1200PF , 101 , 200V 




14752 


A1509 


fl17C1311 


281-0788-00 






CAP,FX0,CER 0I:150PF, 101, 100V 




04222 


M0101A151KAA 


A17C1312 


281-0786-00 






CAP,FX0,CER DI:150PF,101,100V 




04222 


M010iai51K0A 


fl17C1323 


281-0775-00 






CAP,FX0,CER 0I:0.1UF,201,50V 




04222 


M0205E1Q4HAA 


fl17C1331 


290-0770-00 






CAP , FXO , ELCTLT : 100UF, +50-101, 25VDC 




54473 


ECE-025V100L 


fl17Ciai1 


281-0788-00 






CAP,FXD,CER 0I:150PF,101,100V 




04222 


M0101A151KOA 


ni7C1412 


291-0788-00 






CAP,FXD,CER 0l:150PF, 101, 100V 




04222 


M0101A151KBA 


A17C1513 


281-0775-00 






CAP,FXD,CER DI;0.1UF,201,50V 




04222 


M0205E104HA0 


A17C1514 


290-0177-00 






CAP,FXD,ELCTLT;1UF,201,50V 




05397 


T3200105M0500S 


01PC1601 


281-0775-00 






CAP,FXD,CER 01:0. 1UF, 201, 50V 




04222 


MA205E104MAA 


ai7C1602 


283-0203-00 






CAP,FX0,CER 01:0. 47UF,201, 50V 




04222 


SR305SC474M0A 


fl17C1803 


281-0775-00 






CAP,FX0,CER 01:0. 1UF, 201, 50V 




04222 


M0205E104H00 


fl17C1604 


283-0203-00 






CAP,FX0,CER 01:0. 47UF,201, 50V 




04222 


SR305SC474MDA 


A17C1605 


281-0775-00 






CAP,FX0,CER 01:0. 1UF,201, 50V 




04222 


HA205E104M0A 


A17C1606 


283-0203-00 






CAP,FX0,CER 01:0. 47UF,201, 50V 




04222 


SR305SC474MAa 


fl17C1611 


281-0775-00 






CAP,FX0,CER 01:0. 1UF, 201, 50V 




04222 


M0205E104MQO 


A17C1612 


290-0177-00 






CAP , FXO , ELCT LT : 1UF ,201 , 50V 




05397 


T320A105M050aS 


Q17C1613 


283-0212-00 






CBP,FX0,C£R DI:2tJF,201,50V 




04222 


SR4Q5E205MAQ 


Q17C1723 


283-0109-00 






CAP,FX0,CER DI:27PF,51,1000V 




59680 


858-534COG0270J 


ft17CR1111 


152-0141-02 






S I CONO OVC , 0 1 : SM , S 1 , 30V , 1 50MA , 30V 




03508 


002527 (1N4152) 


fl17CR1113 


152-0141-02 






SEHICONO DVC,01:SH,SI,30V,150MA,30V 




03508 


002527 (1N4152) 


fl17CR1121 


153-0057-00 


8010100 


8021489 


SEMICONO 0VC,D1:SELECTED 




80009 


153-0057-00 


A17CR1121 


152-0323-00 


8021470 




SEHICONO DVC,0I:SH,SI,35V,0.1A,00-7 




14433 


HG1518 


A17CR1122 


153-0057-00 


8010100 


8021469 


SEHICONO DVC,01:SELECTED 




80009 


153-0057-00 


A17CR1122 


152-0323-00 


8021470 




SEHICONO 0VC,Ol:SH,SI,35V,O.1A,OO-7 




14433 


HG1518 


ft17CR1123 


153-0057-00 


8010100 


8021489 


SEHICONO DVC,OI:SELECTED 




80009 


153-0057-00 


A17CR1123 


152-0323-00 


8021470 




SEHICONO 0VC,0I:SN,S1,35V, 0.10,00-7 




14433 


HG1518 


Q17CR1125 


153-0057-00 


8010100 


8021489 


SEHICONO 0VC,0I:SELECTED 




80009 


153-0057-00 


017CR1125 


152-0323-00 


B021470 




SEHICONO 0VC,0I:SN,SI,35V,0.10,D0-7 




14433 


HG1518 


Q17CH1129 


152-0141-02 






SEHICONO 0VC,0I:S«,SI,30V,150M0,30V 




03508 


002527 (1N4152) 


A17CR1221 


153-0057-00 


8010100 


8021469 


SEHICONO 0VC,0I:SELECTE0 




80009 


153-0057-00 


A17CR1221 


152-0323-00 


8021470 




SEHICONO OVC, DI:SN, SI, 35V, 0.10, 00-7 




14433 


HG1518 


A17CR1223 


153-0057-00 


8010100 


8021469 


SEHICONO OVC,DI:SELECTED 




80009 


153-0057-00 


A17CR1223 


152-0323-00 


8021470 




SEHICONO OVC, 0I;SN,5I,35V, 0.10, 00-7 




14433 


HG1518 


017CR1419 


152-0141-02 






SEHICONO OVC,Dl:SH,5I,3OV,15OH0,3OV 




03508 


002527 (1N4152) 


fl17CR1511 


152-0141-02 






SEHICONO 0VC,DI:SH,SI,30V,150M0,30V 




03508 


002527 (1N4152) 


017CR1517 


152-0141-02 






SEH 1 CONO OVC , 0 1 : SH , S 1 , 30V , 1 50M0 , 30V 




03508 


DA2527 (1N4152) 


Q17CR1519 


152-0141-02 






SEHICONO DVC,0I:SN,SI,3OV,150HO,3OV 




03508 


002527 (1N4152) 


Q17CR1611 


152-0141-02 






S EH I CONO OVC , 0 1 : SH , S 1 , 30V , 1 SOMA , 30V 




03508 


002527 (1N4152) 


A17CR1612 


152-0141-02 






SEHICONO OVC ,0 I : SH , S I , 30V , 150M0 , 30V 




03508 


002527 (1N4152) 


017CR1621 


152-0141-02 






SEHICONO OVC ,0 I : SH , S I , 30V , 150M0 , 30V 




03508 


0A2S27 (1N4152) 


017CR1623 


152-0141-02 






SEHICONO OVC,OI:SH,SI,3OV,15OHO,30V 




03508 


002527 (1N4152) 


017K1425 


148-0141-00 






RELAY, REED:1 FORM 0,0.5A,100VDC,COIL 
2.2K OHM 


15V0C, 


15636 


R7620-2 


A17K1525 


148-0141-00 






RELAY,REED:1 FORM 0,0.5A,100VOC,COIL 
2.2K OHM 


15VDC, 


15636 


R7620-2 


01 7K 1527 


148-0141-00 






RELAY, REED:1 FORM 0,0.5A,100V0C,C0IL 15VDC, 


15636 


R7620-2 










2.2K OHM 








017K1831 


— 






(RELAY, ARMATURE:4 FORM C,6V,20) 









REV JUN 1986 



9-13 




Replaceable Electrical Parts - DM 5010 



Component No. 


Tektronix 
Part No. 


Serial/Assembly No, 
Effective Dscont 


Name & Description 


Mfr, 

Code 


Mfr. Part No. 


Q17L1723 


108-1134-00 




(PORT OF 01701 ONLY) 
C0IL,RF:FIXED,5.3OH 


80009 


108-1134-00 


flITQIOOl 


151-0350-00 




TR0NSlST0R:PNP,SI,T0-92 


04713 


SPS6700 


01701015 


151-0347-00 




TR0NSIST0R;NPN, SI JO-92 


04713 


SPS7951 


01701017 


151-0347-00 




TRQNSIST0R:NPN, SI JO-92 


04713 


SPS7951 


01701021 


151-0350-00 




TR0NSIST0R:PNP .SI JO-92 


04713 


SPS6700 


01701101 


151-0407-00 




TR0NSIST0R;NPN,SI JO-39 


04713 


SS2456 


01701105 


151-1133-00 




TRONSI STOP : FE , N-CHONNEL , SI , T0-18C 


17056 


FN4579 


01701106 


151-1133-00 




TRANSISTOR : FE , N-CHONNEL , S I J0-18C 


17856 


FN4579 


01701111 


151-0406-00 




TRDNSIST0R:PNP, SI JO-39 


04713 


ST1264 


01701112 


151-1133-00 




TRDNSIST0R:FE,N-CH0NNEL,SI .T0-18C 


17856 


FN4579 


01701114 


151-1133-00 




TRANSISTOR: FE.N-CHONNEL, SI .T0-18C 


17056 


FN4579 


01701201 


151-0347-00 




TRDNSISTORiNPN.SI JO-92 


04713 


SPS7951 


01701202 


151-0347-00 




TRDNSIST0R:NPN,SI,T0-92 


04713 


SPS7951 


01701211 


151-0347-00 




TRANSISTOR; NPN.Sl.TO-92 


04713 


SPS7951 


01701212 


151-0347-00 




TRANS 1 5T0R:NPN, SI JO-92 


04713 


SPS7951 


01701215 


151-0347-00 




TRONSI5TOR:NPN,S1 JO-92 


04713 


SPS7951 


01701217 


151-1134-00 




TRONS15TOR:FE.N-CHOWEL.SI JO-72 


17056 


FN4594 


01701222 


151-1131-00 




TRONS I STOR ; FE .N-CHWWEL .SI, T0-72C 


17856 


FN4582 


01701311 


151-0347-00 




TRONSISTOR:NPN,SI,TO-92 


04713 


SPS7951 


01701313 


151-0347-00 




TR0NSIST0R:NPN, SI JO-92 


04713 


SPS7951 


01701315 


151-1134-00 




TRflNSlST0R:FE.N-CHONNEL.SI ,T0-7Z 


17856 


FN4594 


01701317 


151-1134-00 




TRONSISTORiFE. N-CHONNEL. SI ,T0-72 


17856 


FN4594 


01701319 


151-1134-00 




TRONS1STOR:FE.N-CHOWI£L.SI ,T0-72 


17856 


FN4594 


01701321 


151-1131-00 




TRONSlSTOR:FE,N-CHOfWEL.SI .T0-72C 


17856 


FN4582 


01701323 


151-1131-00 




TRONSISTOR:FE.N-CHONNEL.SI .T0-72C 


17856 


FN4502 


01701327 


151-1131-00 




TR0NS1ST0R:FE.N-CH0NNEL,SI .T0-72C 


17856 


FN4582 


01701411 


151-0347-00 




TRONSISTOR:NPN,SI ,T0-92 


04713 


SPS7951 


01701413 


151-0347-00 




TRONS15TOR:NPN.S1 ,T0-92 


04713 


SP57951 


01701511 


151-0301-00 




TR0NS1ST0R:PNP,SI.T0-18 


04713 


ST898 


01701512 


151-0190-00 




TRDNSISTOR:NPN,SI,TO-92 


80009 


151-0190-00 


01701513 


151-0347-00 




TRONSISTOR:NPN,SI.TO-92 


04713 


SPS7951 


01701514 


151-1066-00 




TRONS I STOR : FET , P-CHON .SI. TO-92 


04713 


SPF3038 


01701515 


151-0347-00 




TRONSISTOR:NPN,SI.TO-92 


04713 


SPS7951 


01701611 


151-0254-00 




TRONSISTOR:DQRLINGTON,NPN.SI 


03508 


X30L3110 


01701613 


151-0134-00 




TRONSlSTOR:PNP,SI,TO-39 


04713 


SM3195 


017R1001 


321-0178-00 




RES . FXD . FI LM: 698 OHN . 11 .0. 125N ,TC=T0 


07716 


CEOD698ROF 


fl17R1011 


315-0513-00 




R£S.FXD,FIU(:51X 0HM.5Z.0.25N 


57668 


NTR25J-E51K0 


017R1013 


321-0178-00 




RES , FXO . FI LM : 690 OHM . 1Z .0 . 125H , TC=T0 


07716 


CE0D698R0F 


017R1033 


315-0432-00 




RES.FX0.FILM:4.3K 0KM,5X,0.25N 


57668 


NTfi25J-£04K3 


017R1101 


325-0350-00 




R£S.FX0.FILM;5.9K OHM, 0. 11,0. 125N 


19701 


5033205X9006 


017R1102 


325-0351-00 




RES,FX0.FILM:53K OHM,0.11,0.125H 


19701 


50332053X000 


01701103 


315-0513-00 




RES.FX0.FILM:51K OHM, 51.0. 25M 


57868 


NTR25O-E51X0 


01701104 


315-0105-00 




R£S.FX0,FILM;1M OHM,51,0,25H 


19701 


5O43CX1MOO0J 


017R1115 


315-0562-00 




R£S.FX0.FILM:5.6K OHM. 51,0. 25N 


57668 


NTR25J-E05X6 


017R1116 


315-0104-00 




RES,FXO.FILM:100K 0HM.51.0.25N 


57668 


NTR25J-E100X 


017R1117 


315-0510-00 




RES,FX0,FILM:51 0HM,51,Q.25M 


19701 


5043CX51ROOJ 


017R1120 


321-0983-00 


B010370 


RES,FX0.FILM:4.5 MEG OHM ,11,0. 125M ,TC=T0 


91637 


CMF55116-G45003F 


Q17R1121 


315-0303-00 




HES.FX0,F1LM:30K OHM. 51,0. 25N 


19701 


5O43CX30X00J 


017R1122 


315-0510-00 




RES,FXD,FILM:51 0HM,51,0.25H 


19701 


5043CX51R00J 


fl17R.l124 


315-0243-00 




RES,F1D,FILM:24X OHM. 51,0. 25N 


57668 


NTR25J-E24K0 


017R1125 


315-0432-00 




R£S.FXD.FILM:4.3K 0HM,51,0.25N 


57660 


NTR25J-E04X3 


017R1126 


315-0432-00 




RE5.FXD.FILM:4.3K OHM, 51,0. 25N 


57668 


NTR25J-E04X3 


017R1129 


315-0362-00 




RES. FXD. FUN: 3. 6>: 0HM.51.0.25N 


19701 


5043CX3X600J 


017R1139 


315-0472-00 




RES.FXD.FUN:4.7X OHM, 51,0. 25N 


57668 


NTR25J-E04X7 


Q17R1201 


315-0363-00 




RES.FXD,FILM:36X OHM. 51,0. 25N 


57668 


NTR25J-E36X0 


017R1203 


315-0363-00 




RES,FXD,FILM:36K OHM. 51,0. 25N 


57668 


NTR25J-E36X0 


017H1205 


315-0363-00 




R£S,FXD.FUN:36X 0HH.51.0.25N 


57668 


NTR25J-E36K0 


01701207 


315-0363-00 




RES,FXD.FILM;36K OHM, 51,0. 25N 


57668 


NTR25J-E36X0 



9-14 



REV JUN 1986 






Replaceable Electrical Parts - DM 5010 





Tektronix 


Serial/Assembly No. 




Mfr. 




ComDonent No. 


Part No. 


Effective 


Dscont 


Name & Oescriotion 


Ck)de 


Mfr. Part No. 


H17R1212 


315-0105-00 






RES,FX0,FIL>l:1M 0HW,5l,0.25H 


19701 


5043CX1MOOOJ 


Q17R1213 


321-0685-00 






RES,FX0,FILH:30K OHM,0.5X,0.125« JC=T2 


19701 


5033RC30K000 


A17R1214 


321-1427-02 






RES,FX0,FILH:277K 0H«,0.5I,0.1294 JC=T2 


19701 


5033RC277K0D 


017R1215 


321-0846-00 






RES,FX0.FILH:200K OHk,0.5X,0.125H JC=T2 


07716 


CEAC200020 


017R1222 


315-0243-00 






RES,FXD.FILH:24K 0Hk,5X,0.25« 


57888 


NTR25J-E24X0 


017R1223 


315-0752-00 






RES.FXD,FIL*I:7.5K OHM, 51,0, 25H 


57660 


NTR25J-E07K5 


A17R1225 


315-0752-00 






RES,FXD,FIUI:7.5K 0Hk,5I,0.25« 


57668 


NTR25J-E07K5 


fl17R1227 


315-0473-00 






RES,FXD,Fim:47K 0HI«,5Z,0.25H 


57688 


NTR26J-E47K0 


017R1228 


321-0510-00 


8010100 


8010769 


RES,FX0,FUil:2.00M 0Hk,1I,0.125H,TC=T0 


03888 


PME55Q20QQ3F 


017R1229 


325-0352-00 


8010100 


8010769 


RES,FXD,FIUI:71.5K 0HM,0.1l,0.125« 


19701 


5033ZA71K508 


017R1229 


325-0353-00 


8010770 




RES,FX0,Fim:90K 0HM,0.1I,0.125M 


19701 


S033ZA9QK008 


A17R1231 


325-0353-00 


8010100 


8010769 


RES,FX0,FIL>I:90K OHM,0.1I,0.125H 


19701 


5033Z090K008 


A17R1231 


325-0384-00 


8010770 




RES,FX0,FILM:117K 0HM,0.1I,0.125H,TC=T16 


19701 


5023Zai17KOB 


A17R1233 


321-0381-00 






RE5,FXD,Fim:56.2K 0HH,1l,0.125«,TC=T0 


07716 


CEAD56201F 


017R1301 


307-0839-00 






RE5,FXD,FIUI:200K 0HH,1Z,3H,TC=250PPM/0EG C 


07716 


GS3 200K 0HM*-11 


A17R1313 


315-0383-00 






RES,FX0,FILM:38K 0HM,5Z,0.25« 


57868 


NTR25J-E36K0 


A17R1314 


315-0363-00 






RES,FXD,FIU;36K 0HM,5Z,0.25« 


57668 


NTR25J-E36K0 


A17R1315 


315-0203-00 






RES,FXD,Fim:20K 0HM,5X,O.25« 


57668 


NTR25J-E 20K 


H17R1316 


315-0203-00 






RES,FXD,FILM:20K 0HM,5S,0.25H 


57668 


NTR25J-E 20X 


017R1321 


321-0182-00 






RES,FX0,FIUI:768 OHH,1X,0.125H,TC=TQ 


07716 


CEAD768R0F 


017R1323 


315-0271-00 






RES,FX0,FIUI:270 OH«,Sl,0.2SH 


57668 


NTR25J-E270E 


Q17R1331 


315-0123-00 






RES,FX0,FIU<:12K OH«,5l,0.25H 


57668 


NTR25J-E12K0 


Q17R1413 


315-0363-00 






R£S,FX0,Fim:36K 0HM,5I,0.25M 


57668 


NTR25J-E36K0 


A17R1414 


315-0363-00 






R£S,FX0,FIL«:38K OHM, 51,0. 25« 


57668 


NTR25J-E36K0 


017R1415 


315-0104-00 






RES,FX0,FU>I:100K OHM, 51,0. 25H 


57668 


NTR250-E100K 


ft17R1416 


315-0203-00 






R£S,FXD,FIU:20IC OHM, 51,0. 2SH 


57668 


NTR25J-E 20K 


017R1417 


315-0562-00 






RES,FXD,FILM:5.6K OHM, 51,0. 25H 


57668 


NTR25U-E05K6 


Q17R1418 


321-0648-00 






RES,FXO,FItM;200K OHH,0.5l,0.125M,TC=T2 


07716 


CEAC200020 


017R1419 


315-0162-00 






RES,FXD,FILM:1.6tC OHM, 51,0. 25M 


19701 


5043CX1K600J 


A17R1427 


321-0645-00 






RES, FXO, FILM: 100K 0HM,0.5l,0.125M,TC=T2 


19701 


5033RC10Q30 


B17R1429 


307-0769-00 






RES NTHK,FXD,F1:1,9.9M 0HM,90K 0HM,10K OHM, 
0.25H,1200VDC 


19647 


1776-9 


ft17R1501 


315-0272-00 






RES,FX0,FILM:2.7K OHM, 51,0. 25M 


57668 


NTR250-E02l(7 


fi17R1511 


315-0473-00 






RE5,FXD,Fim:47K OHM, 51,0. 25M 


57668 


NTR25J-E47K0 


017R1512 


315-0242-00 






RES,FX0,FILM:2.4K OHM, 51,0. 25H 


57668 


NTR25J-E02X4 


017R1513 


315-0102-00 






RES,FXD,FILM:1K 0HM,51,0.25H 


57668 


NTR25vlE01X0 


017R1514 


315-0364-00 






RES,FXD,FUM;360K OHM, 51,0. 25H 


57868 


NTR25J-E360K 


fl17R1515 


315-0132-00 






RES,FXD,FIIM:1.3K OHM, 51,0. 25H 


57868 


NTR25J-E01K3 


017R1518 


315-0562-00 






RES,n(0,FILM:5.8K 0HM,5l,0.25H 


57668 


NTR25J-E05X6 


A17R1517 


315-0162-00 






RES,F10,FILM:1.6K OHM,51,0.25M 


19701 


5043CX1K600J 


ai7R1518 


315-0562-00 






HES,FX0,FILM:5.6K OHM,5l,0.25M 


57668 


NTR25J-E05K6 


017R1519 


315-0162-00 






RES,F10,FILM:1.6K 0HM,51,0.25M 


19701 


5043CX1X800J 


ft17R1521 


307-0839-00 






RES,F10,FILH:200K 0HM,11,3M,TC=250PPM/0EG C 


07716 


GS3 200X 0HM+-11 


fl17R1611 


315-0202-00 






RES,FX0,FILH:2K 0HM,5l,0.25M 


57668 


NTR250-E 2K 


fi17R1615 


308-0642-00 






RES,FXO,NH:40.0 0HM,0.51,0.5K 


91637 


RS12840ROOO 


Q17R1621 


315-0103-00 






RES,FXD,FILM:10K 0HM,51,0.25M 


19701 


5O43CX1OKO0J 


017R1626 


315-0105-00 






HES,FXD,FUM:1H OHM,51,0.25H 


19701 


5043CX1M000J 


fi17R1837 


308-0788-00 






RES,FXD,MH:20 0HM,51,1H 


75042 


8H-20F-20R00J 


017S1731 


260-1518-00 






SMITCH ,SENS : DPOT ,5fl , 125VAC ,MOMENTQRY 


01983 


E61-000 


fl17U1110 


156-1149-01 






MICR0CKT,LINEflR:0PERflTI0N AMP JFET INPUT 


27014 


AL160307 


ft17U1120 


156-1156-00 






MICR0CKT,LINEAR:0PERATI0NAL AMPLIFIER 


27014 


LF356N 


B17U1210 


156-1492-01 






MICROCKT,LINEAR:OPERAT10NAL AMPLIFIER, SCRN 
(EARLY INSTRUMENTS MAY USE SELECTED 
156-0921-01. PARTS ARE INTERCHANGEABLE.) 


24355 


A040764 


A17U1230 


156-1306-00 






MICR0CCT,L1N£AR:TTL,4.5 DIGIT A/0 CONVERTER 


17856 


SU32004 


017U1300 


156-0796-01 






MICR0Cia,[)6TL:8 STG SHF % STORE BUS RGTR 


02735 


C040948FX 


017U1400 


156-0350-01 


B010100 


8021903 


MICROCJCT,D6TL;CMOS,OUAO 2-INPUT NANO GATE 


80009 


156-0350-01 


fl1?81400 


156-0350-05 


8021904 




MICROCia,()GTL:OUAO 2 INPUT NANO GATE 


02735 


CD4011BFX 


017U1500 


156-0798-01 






MICR0CKT,DGTL:8 STG SHF & STORE BUS RGTR 


02735 


C04094BFX 



REV JUN 1986 



9-15 




Replaceable Electrical Parts - DM 5010 



Tektronix 

Comoonent No. Part No, 


Serial /Assembly No. 
Effective Dscont 


Name & Deschotion 


Mfr. 

Code 


Mfr. Part No. 


A17U1601 


156-1160-00 






MICR0C»CT,LINEAR:V0LTAGE REGULATOR 


04713 


MC78L12ACG 


Q17U1603 


156-0991-00 






MICR0Cia,LINEAR:V0LTAGE REGULATOR 


04713 


MC78L05ACP 


AiTtnoos 


156-1207-00 






MICROCKT.LINEARrVOLTAGE REGULATOR. -12 V 


04713 


MC79L12ACG 


A17VR1001 


152-0278-00 






SEMICONO DVC,DI:ZEN,SI,3V,5X,0.4«.00-7 


04713 


SZG35009K20 


A17VR1011 


152-0227-00 






SENICOND DVC,DI:ZEN,SI.6.2V,5X,0.4H,00-7 


04713 


SZ13903 


A17VR1013 


152-0278-00 






SENICOND DVC,0I:ZEN,SI.3V,5X,0,4H.D0-7 


04713 


SZG35009K20 


A17VR1015 


152-0227-00 






SEMICONO DVC,0I:ZEN,SI,6.2V,5I,0.4H,DO-7 


04713 


SZ13903 


A17VR1124 


152-0278-00 






SEMICONO DVC.0I:ZEN,SI.3V,5X,O.4N,D0-7 


04713 


SZG35009K20 


A17VR1125 


152-0278-00 






SEMICONO DVC,DI:ZEN,SI.3V,5X,0.4«,DO-7 


04713 


SZG35009K20 


A17VR1129 


152-0217-00 






SEMICONO DVC,DI:ZEN,SI,8.2V,5Z,0.4N,00-7 


04713 


SZG20 


A17VR1223 


152-0778-00 






SEMICONO OVC.DI :ZEM, SI ,22V, 21, 0.4N, 00-35 


04713 


SZG30337RL 


A17VR1225 


152-0778-00 






SEMICONO OVC.DI :ZEN, SI ,22V, 21. 0.4N, 00-35 


04713 


SZG30337RL 


A17VR1321 


152-0526-00 






SEMICONO DVC,DI:ZEN,SI,6.35V,1l,0.4N,00-7 


14552 


0T840615A 


A17VR1501 


152-0195-00 






SEMICONO 0VC,DI:ZEM,SI.5.1V.51,0.4N.DO-7 


04713 


SZ11755RL 


A17VR1514 


152-0777-00 






SEMICONO DVC,DI:ZEN.SI ,27V, 21, 0.4N, 00-35 


04713 


SZG30343RL 


A17N1613 


131-0566-00 






BUS, CONO: DUMMY RES, 0.094 00 X 0.225L 


24546 


OMA 07 


A17A1 


670-6945-00 


B010100 


B021903 


CIRCUIT BO A5SY:RELAY 


80009 


670-6945-00 


A17Q1 


670-6945-01 


B021904 




CIRCUIT BO AS5Y:REUY 


80009 


670-6945-01 



(NO ELECTRICAL PARTS) 



9-16 



REV JUN 1986 



Section 10 — DM 5010 

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS 5 

c 



Symbols 

Graphic symbols and class designation letters are 
based on ANSI Standard Y32.2-1975. 

Logic symbology is based on ANSI Y32. 14-1 973 in 
terms of positive logic. Logic symbols depict the logic 
function performed and may differ from the manufac- 
turer's data. 

The overline on a signal name indicates that the signal 
performs its intended function when it is in the low state. 



r 

r 

Y14.15, 1966 Drafting Practices. o 

Y14.2, 1973 Line Conventions and Lettering. ^ 

Y10.5, 1968 Letter Symbols for Quantities Used in ~ 

Electrical Science and Electrical 2 

Engineering. 

American National Standard Institute 
1430 Broadway 
New York, New York 10018 

Component Values 



Abbreviations are based on ANSI Y1. 1-1972. 

Other ANSI standards that are used in the preparation 
of diagrams by Tektronix, Inc. are: 



Electrical components shown on the diagrams are in 
the following units unless noted otherwise: 

Capacitors = Values oneorgreater are in picofarads (pF). 

Values less than one are in microfarads 
(aF). 

Resistors — Ohms (O). 



The information and special symbols below may appear in this manual. 



Assembly Numbers and Grid Coordinates 

Each assembly in the instrument is assigned an 
assembly number (e.g., A20). The assembly number 
appears on the circuit board outline on the diagram, in the 
title for the circuit board component location illustration, 
and in the lookup table for the schematic diagram and 
corresponding component locator illustration. The 
Replaceable Electrical Parts list is arranged by assemblies 
in numerical sequence; the components are listed by 
component number *(see following illustration for 
constructing a component number). 



The schematic diagram and circuit board component 
location illustration have grids. A lookup table with the 
grid coordinates is provided for ease of locating the 
component. Only the components illustrated on the facing 
diagram are listed in the lookup table. When more than 
one schematic diagram is usedto illustratethe circuitry on 
a circuit board, the circuit board illustration may only 
appear opposite the first diagram on which it was il- 
lustrated; the lookup table will list the diagram number of 
other diagrams that the circuitry of the circuit board 
appears on. 




Modified Component 
(Depicted in Grey, or With 
Grey Outline) • See Parts List 



Strap or Link 



Plug to E.C. Board 



Box I - Identifies Panel 
Controls, Connectors and 
Indicators 



Coaxial connectors: 

male 

female 

Plug Index; signifies pin No. 1 
External Screwdriver Adj. 
Shielding 



Selected value, see Parts List 
and Mamtenance Section for 
Selection Criteria 



Decoupled or Filtered 
Voltage 

Refer to Diagram Number 



REV DEC 1981 



Schematic Name 
and Number 






DM 5010 



Extrigger Jumper ^9 
P1721 ^ 




Fig. 10-1 Jumper and GPIB address switch locations- 




WARNING 



] 



Dangerous \^oltages may be encountered in making 
internal adjustments. Do not contact the internal ad- 
justments, since they may be at the DM 5010 input 
potential; use only an insulated adjustment toot for 
adjustments. 



Step 5 

Amp Out, TP 1201 



Amp Offset, R1305 



Atten Out, TP 1503- 
Atten Offset, R1601 



Lo, TP 1701 







m 

step 7 

20 V H.F. Comp. Cl 403 



L< 2 V/200 mV H.F. Comp. C1503 



Cl 60S 



200 V H.F. Comp. Cl 607 




TOP VIEW 



2994-37 



2994-38 



Fig. 10-2. Location of DM 5010 adjustments and test points. ^3 



Anu AUJUO I mKN I s 






DM 5010 




@ 



2994-112 



DM 5010 BLOCK DIAGRAM 
































Table 10-1 

COMPONENT REFERENCE CHART 



*See Parts List for 
serial number ranges. 



P/0 A1 7 ASSY 






ADC BOARD 


CIRCUIT 

NUMBER 


SCHEMATIC 

LOCATION 


BOARD 

LOCATION 


CIRCUIT SCHEMATIC 

NUMBER LOCATION 


BOARD 

LOCATION 


C1001 


B6 




R1001 


“C7 


B2 


B2 


R1011 


88 


B2 


C1013 


C9 


B3 


R1013 


C9 


B2 


C1017 


D7 


B3 


R1033 


19 


C5 


C1019 


D8 


B3 


R1101 


G7 


D1 


C1021* 


J6 


B4 


R1102 


G7 


D2 


C1031* 


J7 


B5 


R1103 


G6 


D2 


C1123 


J6 


C4 


R1104 


G6 


D2 


C1126 


C6 


D4 


R11 15 


E5 


D2 


C1128 


J9 


C5 


R11 16 


F8 


D2 


C1131 


J7 


C5 


R11 17 


D7 


D2 


C1133* 


J9 


C5 


R1120* 


H6 




C1135* 


19 


D5 


R1121 


H7 


C4 


Cl 137 


J9 


C5 


R1122 


D9 


04 


C1139 


J7 


D6 


R1124 


D6 


D4 


C1221 


C6 


D4 


R1125 


17 


C5 


C1225 


K6 


E4 


R1126 


16 


C4 


C1323 


K8 


F5 


R1129 


L6 


D5 


C1331 


J8 


F5 


R1139 


J7 


C5 


Cl 723 


C3 


L5 


R1212 


H8 


E2 








R1213 


H8 


E3 


CR1111 


D7 


C2 


R1214 


H8 


E3 


CR1113 


D9 


C3 


R1215 


L3 


E3 


CR1121- 


D8 


C4 


R1222 


C5 


E3 


CR1122* 


C8 


C4 


R1223 


13 


D4 


CR1123* 


H6 


C4 


R1225 


J4 


D4 


CR1125* 


H7 


C4 


R1227 


K6 


E5 


CR1129 


L6 


D4 


R1228 


J7 


E5 


CR1221* 


D5 


D4 


R1229 


J6 


E5 


CR1223* 


C5 


D4 


R1231 


K6 


E5 


CR1419 


G5 


G3 


R1233 


J7 


E5 


CR1517 


F5 


H3 


R1301 


L5 


F2 


CR1519 


F2 


H3 


R1315 


K3 


E3 


CR1621 


C2 


J3 


R1316 


K5 


F3 


CR1623 


D1 


J4 


R1321 


J7 


F5 








R1323 


J7 


F5 


J1731 


B2 


N5 


R1331 


L7 


F5 








R1415 


J4 


G3 


K1425 


G4 


H4 


R1416 


J4 


G3 


K1525 


F4 


H5 


R1418 


K5 


G3 


K1527 


F2 


H5 


R1419 


G5 


G3 


K1631 


D1 


K5 


R1427 


G3 


G4 








R1429 


G4 


H4 


L1723 


C2 


M5 


R1517 


E4 


H3 








R1S19 


F2 


H3 


P1713 


H9 


K3 


R1521 


G3 


G5 








R1615 


Cl 


J3 


Q1001 


C7 


B2 


R1626 


E3 


L3 


Q1015 


C8 


B3 


R1637 


E2 


J5 


Q1017 

Q1021 


E7 

E8 


B3 

C4 


S1731 


B3 


NS 


Q1101 

Q1105 

Q1106 

Q1111 

Q1112 


D6 

F7 

H7 

D9 

F6 


C2 

02 

D2 

C3 

D2 


U1110 

U1120 

U1210 

U1230 


D8 

J7 

D5 

L7 


C3 

C5 

D2 

E5 


Q1114 

Q1217 

01222 

01315 

01317 

01319 

01321 

01323 

01327 


G6 

K3 

I5 

K5 

K4 

J3 

H4 

I3 

H3 


D2 

E3 

E4 

F3 

F3 

F3 

F4 

F4 

F4 


VR1001 

VR1011 

VR1013 

VR1015 

VR1124 

VR1126 

VR1129 

VR1223 

VR1225 


B7 

C6 

B9 

C8 

17 

16 

L6 

14 

J3 


B2 

B2 

B3 

B3 

C4 

C4 

05 

E4 

E4 








VR1321 


J8 


F5 








W1613 


Cl 


J3 


P/0 A17 ASSY also shown on 





DM 5010 



PARTS LOCATION GRID 



ECR1111® 



®CR1113a 



^ RIO^^ / 

0 vRiooi g I, 011 01 i 
rV CIOOW g V I QJ 

■^vRioj^^ gCRflU® )< 

:^ R101 1-® ^ ^ 

^'ri^3^ I / \ 

B VR1013 @ 01111, 

r^ C1O13-0 \ jl- / —I h^ri 

^VR1P15-^ ®CR 1 1 1 33 ?^Ri 

01015 qi6i7:i 

>C1017<g ^ 

■»- C1019 -g^' 

©CR11210 

BCR1122S 

^ RviTi -© 

@CR112306VR1126S 
. — . 1123 -0 r? R 1 1 26 ® 

/ B \2VR11243 
(C1021 ) ^ CR1125 ® 

V y ^R1 125-0 I i 



tmt 

0- R1102 \ -@ 0- R12O3 -0 

0-R11O3-© Q 12021 ^01204-0 
^R11O40 ^ R 1205 0 

(^ 01206 0 

012111 0.R1^0 

\F ^ 0- C1211 0 

01112 Q11 14 Q 1 ^ 2-^p 1919 

®;a 

0- R1115 0 0- R1214~ 0 

^R1 1 1^0 R1215 00121 



01105 iQ1 106 

0 ^ xg> ^ 



© ®" 

» U1300 i 

®— ® 

R1301 



2" © I'D © ® © @ 

U1400 

a 0 @ @ © © @ 



©00000®® 

I U1500 

a 0 0- 0 s* 0 ® ® 



^ C160^ 



c C16d^ 

g ?7604 a 

aC1606o 



CR1221 



\\_7/ 

;» R1117 0 ^@0^ of^7 c 
mi2io — ^ ' 

(?H R1122 0 0 @ 

^R11240 g CR 1T23® 

^ C1 126 0 g^ Q-1221 0 

126S ^R12230©^VHT223=0 

126® (^ R12250^VR1225 ^ 

C1225 -0 

EVR1129® ^_r]| 28-’^ 
n^ 0 ^ R1231 0 

C 1135 1 R1233 0 



060 _ ~| ^ ^ HV^OI S n ( ^R1512 0 

157^^— R1301 — ® (^ R1^1 0 (^ R1S140 

g||||:iiilliMII^I|ii|S# 

gV R151_5 0 0161 

^5 01 V 47 V ^ ^ 

V ^'“ty — 0141 3j Q15131 j RIP 

^ \»_q7T7q^ '^ R-151j 0^. R1519 0^ Rit 



[yi60llui603il U1605 



/<S"Ss\ 

01323 

01327 




^ C1131 ^ 

>rTO330 



^ 01126 0 

^C1137® 

^R1J390 



^R1321^ 
0- VR132iH 
^R13230 
O C 1323 0 





R1331 



® K1527 @ 



L0 "^ 01611 0 

1=0 t?,CR1611 g 

l'*=0 ^R161l t® 

a=^S>fci612p^ 

tTl613 
■ R1615 
B «R162 0 
e^- i^T621 0 
0CR16230 



K1631 

• • 
• • 
• • 
• • 
• • 
• • 



Relay Board 
, P/0 A17 



Cl 723 



C J1731 



Fig. 10-3. ADC Board (A17) 



ASSY A17 






Static Sensitive Devices 

See Mimien»nce Secfion 



COMPONENT NUMBER EXAMPLE 




Cidii'j'S R'ou itr -1 :Dn;x.rrr.is nave nc ^serbi» Njnbf' 
ptfti— sr-^ R3C oi ftepdceaWe Liectr-cai ^«its .isi 



A17 ADC 

REV JULY 1986 









Table 1 0-2 

INPUT & ATTENUATION SWITCHING 



II? 

w c 

a> 5 03 
"2 ^2 

I II 

0. 3 Q. 



^ {— 

C E <B 

o c 
« O « 



U. 3 3 

o» <2 52 

C ™ w 



leSBBISSSiHQBi^iSSSiESSS^IIS^S^^ 



m 

IM 



immmkmmm^m^mm^mmms 

lBS8BSSSgS»BlESS3SS39SS^I»S8ag^^^;^ 

l!S8SS{BiBIS!SiHB8^BSBgS^;SS8g£^S3 









<0 O -n 

o <0 ro 

••t^ c 3 

5 « o 

CO )- < 



d 

— ^ »- 

. o rt 

«j «o 

cc cn ^ 



^ o ® 
m m .2^ 

CJ CM w 

to CO ^ g:^ 

5 5 5 if^ 



|.^i«-ioo) C3-K!2 Sc^|'^ 

,- f- ■»- »- o o »— »~ 

cown« 

O 5 O O OOi 5 O O O 































DM 5010 



B 



D 



H 



J 



K 



L 



M 




<- 



INPUT & ATTEN SWITCHING 







Table 10-3 

COMPONENT REFERENCE CHART 
(See Fig. 10-3) 



P/O A17 ASSY 






ADC BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


NUMBER 


LOCATION 


LOCATION 


NUMBER 


LOCATION 


LOCATION 


C1202 


J6 


E1 


01513 


J7 


H3 


Cl 204 


J5 


E2 


01514 


E3 


J3 


Cl 206 


J4 


E2 


01515 


J8 


J3 


C1211 


J5 


E2 


01611 


J7 


J3 


C1311 


J2 


E2 


01613 


06 


K2 


C1312 


J4 


F2 








C1411 


J3 


G2 


R1201 


J7 


E1 


C1412 


J2 


G2 


R1203 


J6 


E2 


C1513 


G5 


H3 


R1205 


J5 


E2 


C1514 


E3 


J2 


R1207 


J5 


E2 


C1601 


D3 


J1 


R1313 


J2 


E2 


Cl 602 


B3 


K1 


R1314 


J4 


F2 


Cl 603 


04 


J1 


R1413 


J3 


G2 


C1604 


B4 


K1 


R1414 


J3 


G2 


Cl 605 


05 


J2 


R1417 


J8 


G3 


Cl 606 


B5 


K2 


R1501 


FI 


H2 


C1611 


06 


K2 


R1511 


El 


H2 


C1612 


C6 


J3 


R1512 


El 


J2 


C1613 


C5 


J3 


R1513 


G2 


H2 








R1514 


E3 


J2 


CR1511 


F2 


H2 


R1515 


F2 


H3 


CR1611 


B6 


K2 


R1516 


J7 


H3 


CR1612 


C6 


J3 


R1518 


J8 


H3 








R1611 


C6 


K2 


01201 


J6 


01 


R1621 


J7 


J3 


01 202 


J6 


02 








01211 


J5 


02 


U1300 


H5 


F2 


01212 


J5 


02 


U1400* 


12 


G2 


01215 


J2 


E3 


U1500 


F6 


H2 


01311 


J4 


F3 


U1601 


C2 


J2 


01313 


J3 


F3 


U1603 


C4 


K2 


01411 


J3 


G3 


U1605 


C4 


K2 


01413 


J8 


H3 








01511 


F2 


H2 


VR1501 


El 


H2 


01512 


G2 


H2 


VR1514 


B5 


J2 


P/O A17 ASSY also shown on 



*See Parts List for 
serial number ranges. 










fl' 



B 



C 



D 




MM 



DM 5010 




J17I3-9e 




COMPONENT NUMBER EXAMPLE 



Asseirbly 

Number 



Component Number 

A23A2 R1234 

[ r ' Scbematic 

- I ’ ' — » Circuit 

Subessembly 
Number (it used) 



Chassis-mounted components have no Assembly Number 
prefu— see end of Replaceable Electrical Parts List. 




Static Sensitive Devices 

See Maintenance Section 





OJO 



INPUT SiG COND CONTROL < 
COMPONENT REFERENCE CHART 




















Table 10-4 

COMPONENT REFERENCE CHART 



A16 ASSY 








RMS BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


NUMBER 


LOCATION 


LOCATION 


NUMBER 


LOCATION 


LOCATION 


C1001 


19 


B2 


R1003 


K7 


B2 


C1013 


12 


B3 


R1013 


13 


B3 


C1101 


J7 


B2 


R1021 


HI 


B3 


C1103 


16 


C2 


R1031 


K3 


B5 


C1105 


J6 


C2 


R1032 


L6 


B5 


C1107 


J8 


D2 


R1033 


K3 


B5 


C1111 


G3 


C3 


R1101 


19 


C2 


C1113 


12 


C3 


R1121 


H3 


C3 


C1301 


F8 


E2 


R1123 


G2 


C3 


Cl 303 


F9 


E2 


R1201 


H7 


D2 


C1311 


G9 


F3 


R1211 


H8 


D2 


Cl 403 


G8 


F2 


R1221 


G2 


D3 


Cl 405 


G8 


F2 


R1223 


G1 


D3 


C1415 


El 


G3 


R1225 


HI 


03 


C1417 


Cl 


G3 


R1229 


11 


E3 


Cl 503 


F7 


H2 


R1231 


L5 


E5 


Cl 505 


F7 


H2 


R1233 


L6 


E5 


C1513 


D3 


H3 


R1303 


H7 


E2 


C1515 


C3 


H3 


R1305 


H7 


F2 


Cl 525 


C3 


H4 


R1307 


G7 


F2 


Cl 526 


D3 


H4 


R1309 


G9 


F2 


Cl 527 


C2 


H4 


R1321 


11 


E3 


Cl 528 


D2 


H4 


R1323 


D2 


E3 


C1601 


E8 


J2 


R1325 


K5 


F4 


Cl 603 


E9 


J2 


R1327 


K6 


F4 


Cl 605 


D9 


J2 


R1331 


K3 


E5 


Cl 607 


D8 


K2 


R1333 


J2 


E5 


Cl 609 


D8 


K2 


R1401 


G7 


F2 


C1621 


C7 


J5 


R1403 


G7 


F2 








R1415 


D1 


G3 


CR1011 


J3 


B3 


R1421 


K6 


F4 


CR1021 


H2 


B3 


R1423 


K5 


F4 


CR1023 


L5 


B4 


R1425 


K8 


G4 


CR1121* 


H2 


C3 


R1426 


K8 


G4 


CR1201 


L8 


D2 


R1427 


K7 


G4 


CR1225 


J2 


D3 


R1429 


K9 


G4 


CR1227 


12 


D3 


R1501 


E7 


G2 


CR1231 


L4 


E4 


R1521 


K9 


G4 


CR1233 


L6 


E4 


R1523 


L9 


H4 


CR1415 


L5 


G3 


R1525 


L9 


H4 


CR1511 


L7 


G3 


R1601 


E7 


J2 


CR1513 


L7 


H3 


R1603 


D7 


J2 


CR1527 


L9 


H4 


R1609 


C8 


K2 


CR1529 


L8 


H4 


R1621 


C7 


K4 


CR1613 


D7 


J3 


R1633 


B7 


K6 


CR1615 


D7 


K3 


RT1011 


J3 


A3 








RT1227 


12 


D3 


K1031 


L6 


B5 








K1031 


K3 


B5 


TP1201 


17 


E2 


K1131 


L3 


C5 


TP 1503 


F7 


H2 


K1131 


L6 


C5 


TP1701 


D7 


K1 


K1201 


H8 


D2 








K1201 


L8 


D2 


U1100 


J7 


C2 


K1231 


J4 


D5 


U1120 


H2 


C4 


K1231 


L5 


D5 


U1200 


H7 


E2 


K1313 


G1 


F3 


U1200 


E9 


E2 


K1313 


L5 


F3 


U1330 


14 


F5 


K1405 


L8 


G2 


U1417 


D1 


G3 


K1503 


F7 


H2 


U1430 


G4 


G5 


K1503 


L7 


H2 


U1500 


D9 


H2 


K1621 


L9 


K4 


U1500 


E7 


H2 


K1621 


C8 


K4 


U1515 


C3 


H3 


K1633 


L9 


K5 


U1525 


D3 


H4 


K1633 


C7 


K5 


U1527 


D2 


H4 








U1530 


E8 


H5 


P1711 


B7 


L3 


U1530 


F5 


H5 


Q1021 


13 


B4 


VR1013 


13 


B3 


01320 


L4 


F4 


VR1123 


G3 


D3 


01420 


L7 


G4 


VR1415 


G4 


G3 



*See Parts List for 
serial number ranges. 






^ > BOARD (A16) 

COMPONENT REFERENCE CHART 



DM 5010 



PARTS LOCATION GRID 



A 



1 



2 



3 



4 



5 



6 



B 


c 


D 


E 


F 


G 


H 


■H 















r 







Fig. 10-4. RMS Board (A16). 




Static Sensitive Devices 

See Maintenance Section 



COMPONEM NUMBER EXAMPLE 



Component Number 



A23 A2 R1234 



‘isernb:. 



Subjissem ' * 



Cnasiis !7iour:(d cc.-ipcnents have ro Assenbl, Nurbc- 
ore'll— <,ee ep.j ji Replaceable Elect'icai Par's eis- 




















LO z 

6Q 

T“ 

0 < 

Z 

H LU 

!< 

oS 



























[51151 



COMPONENT number 



,A23, ,A2, .R1234, 

ASSEPiaLY 11^ I SCHEMATIC 

NUMBER-^ t ► CIRCUIT 

SUBASSEMBLY NUMBER 

NUMBER UE USED I 






















Table 10-6 

COMPONENT REFERENCE CHART 



P/0 A15 ASSY 






ISOLATION BOARD 


CIRCUIT 

NUMBER 


SCHEMATIC 

LOCATION 


BOARD 

LOCATION 


CIRCUIT 

NUMBER 


SCHEMATIC 

LOCATION 


BOARD 

LOCATION 


mmm 






CR1509 




H5 


H2 








CRISIS 




H6 


G3 








CR1605 




H8 


J2 


C1101 


E2 


Cl 










C1107 


F1 


C2 


F1111 




B1 


C3 


C1111 


G1 


C2 


F1113 




C7 


C3 


C1113 


HI 


C2 










Cl 121 


J3 


C5 


L1201 




F8 


02 


C1131 


J3 


C6 


LI 203 




F5 


02 


Cl 201 


F6 


02 










Cl 203 


E7 


E2 


P1031 




B1 


A6 


C1215 


08 


03 










C1216 


07 


E3 


Q1 101 




F2 


Cl 


C1221 


13 


E4 


Q1104 




02 


C2 


Cl 223 


J3 


E5 


Q1105 




C2 


C2 


Cl 301 


H9 


FI 


Q1201 




F8 


01 


C1321 


J3 


E5 


01202 




F6 


02 


C1326 


J3 


F5 


01211 




E8 


03 


C1331 


J3 


E6 


01212 




E6 


E3 


C1401 


19 


G2 


01213 




09 


03 


C1403 


H9 


G2 


01214 




07 


E3 


C1404 


19 


G1 










C1421 


J3 


F5 


R1001 




02 


B2 


C1426 


K3 


G5 


R1003 




03 


B2 


C1501 


J6 


HI 


R100S 




F3 


B2 


Cl 502 


J7 


J2 


R1101 




El 


C1 


Cl 503 


J6 


HI 


R1102 




E2 


C1 


Cl 504 


J7 


J2 


R1103 




02 


C2 


Cl 505 


17 


J1 


R1104 




C2 


C2 


C1511 


J6 


H2 


R1105 




F3 


01 


C1513 


J6 


H3 


R1106 




F2 


01 


C1515 


16 


J2 


R1107 




E1 


Cl 


C1521 


K3 


H5 


R1108 




B2 


C2 


C1526 


K3 


H5 


R1109 




B2 


C2 


C1601 


17 


J1 


R1201 




F6 


E2 


C1603 


J8 


K1 


R1211 




E8 


03 


C1611 


16 


J2 


R1212 




E6 


E3 


C1621 


K3 


J5 


R1213 




08 


03 


Cl 626 


K3 


J5 


R1214 




06 


E3 


C1701 


J6 


K1 


R121S 




08 


03 


C1721 


K3 


K5 


R1216 




06 


E3 


C1731 


13 


L6 


R1217 




E4 


03 


CR1201 


F7 


02 


T1311 




G6 


F2 


CR1203 


F5 


02 


TP1421 




B4 


F3 


CR1211 


E6 


02 










CR1212 


E5 


E2 


U1000 




E2 


B1 


CR1501 


15 


H2 


U1325 




C7 


F4 


CR1503 


H5 


H2 










CR1S05 


IS 


H2 


VR1001 




03 


B2 


CR1507 


H7 


H2 


VR1216 




E4 


E3 


P/0 A15 ASSY also shown on 









DM 5010 



PARTS LOCATION GRID 



A 


B 


C 


D 


E 


F 


G 


H 


J 


K 


L 

























1 



iS_28A] 



g ^ I 






- 1A 1 P1031 



,'S 

ifuiooo^i 

t 









S ^R 1102 ‘@^R 1107 -@ 






B VRIOOl ® ^ R1103 -®^ C1107 -® 

^ C 1001 ’@ g»’R 1104 -© ^ R 11 Q 8 -@ 

^Wl 00 R 1 1 09 •© ffiCR120lffln>(^R1201<e 
®-SioolHj^^ ^ /—S. C12((, rf755h ® ,5 

0- R1OO5 -@^ ^ /C1113\ gCRTIOagSLS^ La— ^ 




cC1005° 




L1203 






14 



eCRIlll© i0CflT5l2© 

Q1211 Q1213 Q1212 Q1214 
^ Ty <ay 



^ R1213 -@ ^ R1214 - 

^ R 1215 -@ ^ R 1216 -® 

^ 01215 '^ ®-C1216-® 

e» R1217 ‘@ BVR1216® 



T1311 






to 






J ^ 



I by' 



-TU 



®»C1501-@ 



12® ®CR150ig 
ISCR1503® 
@CR 15050 
11® ECR1509® 




15B 

[t: 



® -C1502 -@ 

®-C1504-@ 



®- C1511 -® /ci5^ 
CR 1 5 15l I ra 



® -C1702 -@ 

CR1605 UieosT^i^^ 
\^g?®’R_1703'® 

TJ ® -R1711 -@ 
/^®- R1712 ^ 
*(JU^v»-R 1713 -® 

- Z ®- C1713 -e 

®- R1615 ^®I^ R1715 ’@ 
P 1 ^ 5 ®CR 1715 a 



P1701 



9 



“ \ 

& (tJj 

B ® j® @ 

^U 1020 ^! 1 ^U 1120 ^( 



®- ci 02 i ‘® ®*crm-® 




© 



I i I 

® ® ® 

Uu 1130^1 U 

^ I 1 ^"*^ I 1 ^^ I 

^ @ @1 

I® .,. ®' j® ®j 

(»cii3i-@ r 





ib: 



TP^21^ 

^ ^R1421-®®-R1521-®®-R1526-®(^R1621-®^R1626-® 

GND TT 



@ 



1 r: 



^ I 

® @ @: 

®j I® @1 

l;ui325ll l?U1420?i 




"U 1425 I 1 



[i 

® ® 
© @ 



I I 



a’ui 520 'Jl i?U 1525 jl l;U 1620 jl 

® :!i iS Si i; Si 



® P 
! 



®J i® 



I i: 




^ — " " ^ ^ — 

^C1223’4 ®* C1326 ® ®- C1421 ® ^ C1426 ® ®< C1521 ® ^ C1621 ® ^ C1626 ® ^ 01721 ® 



J ®-C1331® 



Ji 

Ijui 335 ri I^U 1430 ®J 

I® j® ©.“ 

I® © ® ® 

! !iSi I 

J 






© 


1^ 




[7 


©1 


[7 




1® 


©t 


® 


© 




© 


® 


®( 




@1 




® 


@ 


© 


® 


© 


© 








1© 




® © 

g^uisaoj, 




l|ui630®l 


© © 

i:^U 1635^1 


;© ©j 

UU1730^ 


® 


© 


© 


© 


® 


© 




© 


© 


© 




- ®l 


© 




li. 




1.^ 

if. 


- ®1 


fr 








®-R1531® 










i® 


- 



15B 

IZ 



PI 733 



C1731 («: 






pr^ 



Fig. 10-5. Isolation Board (A15). 






Static Sensitive Devices 

See Main/enance Section 



ASSY A15 



COMPONENT NUMBER EXAMPLE 



Comfx>nent Number 

A23 A2R1234 



Number Subassembly 

Number (<f used) 



Scr\emauc 

Ofcuit 

Number 



Chassis- mounted components nave no Assembl> Number 
prefijc— see end of Replaceable Electrical Parts List 



@ 










DM 5010 



A 



B 



C 



D 



E 



F 



G 



H 



I 



J 



K 



L 



M 




DM 5010 



2994-103 
REV DEC 1982 



POWER SUPPLIES 



SEE PARTS LIST FOR LARUER 
VALUES Also RFR'A? F'UMBER 
RANGES OF PARTS OUTLSNED 
OR DEPICTED IN GREV, 




STATIC SENSITIVE DEVICES 
SEE MAINTENANCE SECTION 



COMPONENT NUMBER EXAMPLE 



COMPONENT NUMBER 



,A23, ^ .R1254, 

ASSEMBLY ^ [ SCHEMATIC 

NUMBER-^ ▼ ‘ ^ CIRCUIT 

SUBASSEMSL’^ ‘JUMBER 

NUM0ER l[^ USEDJ 



CHASSIS-MOUNTED COMPONENTS HAVE NO ASSEMBLY 

number prefix-see end of replaceable 
electrical parts list 








Table 10-7 

COMPONENT REFERENCE CHART 
(See Fig. 10-5) 



P/0 A1 5 ASSY ISOLATION BOARD <5 



CIRCUIT 


SCHEMATIC 


BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


NUMBER 


LOCATION 


LOCATION 


NUMBER 


LOCATION 


LOCATION 


Cl 702 


M3 


K2 


R1713 


L5 


K2 


C1713 


M6 


K2 


R1715 


M7 


K2 


CR1715 


M7 


K3 












U1135 


J5 


C6 


P1701 


M7 


L2 


U1230 


17 


06 


Q1421 






U1330 


G2 


E5 


13 


G3 


U1335 


F5 


F5 


01615 


K7 


K3 


U1420 


J8 


F4 


R1421 






U1425 


01 


G4 


17 


G4 


U1430 


E6 


F5 


R1521 


J1 


H4 


U1435 


E1 


G5 


R1S26 


J2 


H4 


U1510 


K6 


H3 


R1615 


L7 


J2 


U1515 


K1 


H3 


R1621 


J3 


J4 


U1530 


Cl 


H5 


R1626 


J4 


K4 


U1605 


L2 


K2 


R1701 


LI 


K2 


U1610 


K2 


J3 


R1703 


L2 


K2 


U1613 


L5 


K2 


R1711 


L4 


K2 


U1615 


L3 


K3 


R1712 


L5 


K2 


U1710 


L4 


K3 



<e><3> 



P/O A15 ASSY also Shown on 




DM 5010 



A 

J1733-T 

4 > 



B 



H 



K 



L 



M 




COMPONENT NUVBER EXAMPLE 



Component Number 

A23 A2 R1234 



, ' Schematic 

Asumbly , ! * L_^ 

Number Subassembiy hlamber 
Number (if uied) 



Chassrs-moiinted components have no AssernWy Number 
prelix— see end o1 RfipidceaWe tJecirica? Parrs list 

® static Sensitive Devices 

See Mamtertance Section 



REV DEC 1982 

2994-1 B4 



COMPONENT REFERENCE CHART^/ 















Table 10-8 

COMPONENT REFERENCE CHART 
(See Fig. 10-5) 



P/0 A15 ASSY 






ISOLATION BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


NUMBER 


LOCATION 


LOCATION 


NUMBER 


LOCATION 


LOCATION 


PI 733 


M6 


L5 


U1220 


IS 


E4 








U1235 


J6 


E5 


R1531 


E1 


H6 


U1320 


K7 


E4 








U1520 


F6 


H4 


U1020 


L8 


B4 


U1525 


E5 


H4 


U1020 


G5 


B4 


U1535* 


D1 


H5 


U1030 


L6 


B5 


U1620 


F6 


J4 


U1120 


L8 


C4 


U1625 


F7 


J4 


U1120 


H5 


C4 


U1630 


12 


J5 


U1125 


K6 


D4 


U1635 


F7 


JS 


U1130 


L9 


C5 


U1720 


F8 


K4 


U1130 


J5 


C5 


U1730 


D2 


K5 


U1220 


L8 


E4 








P/0 A 1 5 ASSY also shown on 



*See Parts List for 
serial number ranges. 











DM 5010 



A 

J1 733-1 IB 



J1733-80 



J1733-MA 



B 



H 



K 



M 




0 

H 

■os 

Oz 

01 

zfi» 

-»o 

305 

s“ 

o aa 

m J 

OH 

|i 



DM 5010 



2394-105 















Table 10-9 

COMPONENT REFERENCE CHART 



P/O A1 4 ASSY 






CPU BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


NUMBER 


LOCATION 


LOCATION 


NUMBER 


LOCATION 


LOCATION 


C1101 


E4 


B1 


R1223 


E3 


D4 


C1102 


E4 


Cl 


R1225 


D2 


D4 


C1201 


E4 


D1 


R1227 


C2 


D4 


C1213 


E3 


E3 


R1231 


C3 


D5 


C1215 


F3 


E3 


R1232 


C2 


D5 


Cl 223 


D3 


C5 


R1233 


B3 


D6 


Cl 233 


E4 


D6 


R1311 


F3 


F3 


Cl 235 


E5 


E6 


R1313 


F2 


F3 


C1301 


E5 


El 


R1321 


F2 


E4 


Cl 302 


E5 


FI 


R1621 


H3 


J4 


C1321 


E4 


E4 








Cl 401 


E4 


G1 


TP1531 


B5 


H6 


C1421 


E4 


G3 


TP1533 


H3 


J5 


Cl 426 


E4 


G3 


TP 1535 


K5 


J6 


C1431 


E5 


G6 


TP1621 


L6 


K4 


Cl 435 


E5 


H5 


TP 1625 


K5 


K4 


C1501 


E5 


HI 








C1521 


E4 


H3 


U1230 


E2 


D5 


Cl 523 


E4 


H4 


U1235 


E6 


E5 


Cl 601 


E4 


J1 


U1320 


G1 


F4 


Cl 602 


E4 


K1 


U1420 


E7 


G4 


C1621 


E5 


K4 


U142S 


H4 


G3 


C1631 


E5 


K5 


U1430 


K3 


G5 


C1721 


E5 


K4 


U1435 


K1 


G5 


C1731 


D4 


L5 


U1S10 


16 


H3 








U1520 


K8 


H4 


J1425 


13 


G4 


U1620 


K5 


J4 








U1720 


L7 


K4 


PI 425 


13 


G4 


U1730 


L9 


K5 


P1731 


B4 


L5 














VR1232 


B2 


D5 


R1129 


D2 


C5 








R1132 


D3 


C5 


Y1221 


E3 


E4 


R1221 


E2 


D4 









<^<e> 



P/O A14 ASSY also shown on 





COMPONENT REFERENCE CHART 



DM 5010 



PARTS LOCATION GRID 






See Note 



s' 



ft 

runooTi 



0‘.C11O2-@ 



^C1201 -@ 





^R1123<@ 



« ^R1221 -@ 
‘0l R1223 -@ 
^ ^1225 -® 
®“ R1227 -@ 

-'a • ^ 

o \® 



®-C1301-® 



® ^1302H ® 



®-fel401-@ 



® hri31i -@ 

®-R1313-@ 




?U1235^ 



R1231 k ?) j® 

"r 1232 H® i® ®r 

£t VR1232 S j® ® 

|I^233 -@ i® ^ 



®-C1501-® ® -C1601 -@ ® -C1602H ® 

10 ■ ®f fa • s' — — 



l®U1505g 



® jC1421h ® 04C1426-®i 

ja^ i 

j® ® ® 0 

j® ® © © ' 

® ^ @U 14253, 

i®U1420;| ® ® 

® ® © ® 

l/Tr\ AT\I I ■' I 



^U1510|t ]^15l|r|f| 

a J. u ^R.161 



@U1600g 



:ui6idfi 



^C1523 -@ 



1520^1 






TP1531 



I R1621 

I' 



R1623 

'IN ^ 1® 



TP1533 SU1630S 



TP 1535 



TP1625®mi 720 
I ,^U1 720^1 Cl 721 



■j@U1730S| 



J1723 

O 

PI 731 



C1731 1*^ ~ 
IB — 



® Static Sensitive Devices 

See 4<ifnfenanc< Section 

COMPONENT ftUMBER EXAMPLE 
Component Number 

A23 A2 R1234 

Assembly J | i Scbemjhc 
^‘rmber * Sub^ — 
dumber (jf use<fj 

Chassis mounted components have no Assembly Number 
prefii— see end o( Replaceable flectrical Parts Lisb 



Shaded areas indicate coated areas of circuit board (both sides). 
See CPU Board Coating in Maintenance section. 

Note: Even numbered connections on side shown. 

Odd numbered connections on back side of connector. 



Fig. 10-6. CPU Board (A 14). 



REV JUL 1984 



2994-42 






Jl731-t5A 

J1731-1S8 

JI731-IA 

J1731-18 



JI73I-2A 
Jl 731-20 
J1731-5A 
J1731-3B 







H 



DATA 



K 



M 



Ul T05 



1-19 



\ PT731-3A 


n 


/ 

\ PI 731-30 





TYPE 


♦5V 


CNO 


LH393 


8 


4 


74US04 


\A 


7 


74LS05 


t4 


7 


74LS279 


16 


B 



U1235 

74LS244 



V A0 


2 


^ A1 


17 


■v A2 


4 


vA3 


IS 


^ A4 


6 


vA5 


13 


V AB 


e 





1 1 



IB 


BA8 




3 


BAl 




1R 


BA2 




5 


BA3 




14 


BA4 




7 


BAS 




12 


BA6 




.a 


_Si2 


► 



U1420A 

7ALS2AA 








AS 


6 




A10 


2_. 




All 


4 



1A4 1Y4 

1A3 1Y3 



14 


BAS 


— 


► 




BAIfl 






10 


RA1 T 











6A6 
BAS 
BA1S 
BAt 1 



U1320 

6802 





□0 


'^CC 


01 


Vcc 


D2 




03 




04 


wiT 


05 




06 




07 


HATf 






A0 


HR 


A1 


REsrr 






A2 


XTo] 


A3 




A4 




AS 


EXTol 


A6 




A7 




A8 




A9 




A10 


IRQ 


A1 1 


A12 


RE 


A13 


'^SS 


A14 




A1S 




R/V 




VHA 




E 



i2 



U1435 

74LS245 



33 






D0 


2 


32 


01 




01 


3 


31 


□2 




02 


4 


30 


03 




D3 


5_ 


29 


04 




04 


6 


2B 


OS 




05 


7 


27 


06 




06 


8 


26 


07 




07 


9 


9 


A0 i 




mm L 



10 


A1 




1 1 


A2 




12 


A3 




13 


A4 




14 


AS 




15 


A6 




16 


A7 




17 


A8 




16 


A9 




19 


A10 




28 


All 




22 


A12 






A13 






24 


A14 




25 


A15 










34 


R/W 




5 


VHA 





SEE PARTS LIST FOR EARLIER 
VALUES AND SERIAL NUMBER 
RANGES OF PARTS OUTLINED 
OR DEPICTED IN GREY. 



; R1621A 
- 4.7K 



TP1533 

DIS 

U1425A 

74LS04 



U1425S 

741S04 



A rx 

^ JH25 






5-5 



N 

■ BD0 
-BOl 

■ BDZ 
. BQS U1Z00 



■ 8M 

■ BD5 
■BD6 

■ BD7 



C8. 





R1621F< 

4.7K; 


1’ 




p? 




u 

3 




□ 1 




18^ 




oz 




5 p 




03 




16 q 




□4 




7 p 




tjs 




14 ^ 




06 




9 p 




07 




12 I 



U1430 

74LS240 




2G ’CC Ml 

IG 2A3 

2Y4 1AZ 

1Y1 2*2 

2Y3 1 AS 

51f2 2A1 

2Y2 1A4 

1Y5 

2Y1 2A4 

1Y4 CND 



INOP buffer! 



10 ,, 

m 



U142SC U1425DI 

74LS04 74LS04 



UM25E 

74LS04 



U1510 

74LS139 



T 



_ii5_ 



_a^2 



8^2 



U1B05-3 

U1630A-1 

P1731-na 



< 5 > 



N 



Lg 74LS136 



3 ^ 


EROMF 




0 ^ 


EROME 




3 5 


EROMO 




_ 4 


EROHC 











Ul 280-1 8 
Ul 300-1 e 
U1 305-1 e 
U1400 



-1b ^ 

-10 J 



«CC Y0 



U1730B 

74LS0S 

.8 RQ P1731-9S’ 




^ ► J1731-7B 



Ul 520 I mcic^ 

74LS130 I 





k 6A18 


t 


k- 


A12 


3 




A13 








VMA 





XNOTEs 

JUHPEA SHOWN IN NORMAL 
OPeRATINC POSTION. 







DM 5010 



PROCESSOR , ADDRESS DECODE 



COMPONENT NUMBER EXAMPLE 



Component Number 




'a23,A2,R1234 






flssem^jy ^ f ; 




Wii m be- Svba sserTfiiJy 




^umba (:f \jsed) 





ChassTi- mounted com^wnenis have no As^vemtly Number 
pfpf X— see end of RepiaceAble flectrita Parts List 






static Sensitive 

See Maintenance 



Oevices 

Sedwn 



2994-106 









Component Number 



A23 A2 R1234 

, , , ! ' Scfiemjtjc 

Number Subeisembly Number 

Nurnget (if usedl 























Table 10-10 

COMPONENT REFERENCE CHART 
(See Fig. 1 0-6) 



P/0 A14 ASSY 






CPU BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


NUMBER 


LOCATION 


LOCATION 


NUMBER 


LOCATION 


LOCATION 


BT1121 


19 


C5 


R1131 


18 


C6 








R1133 


J8 


C6 


C1133 


J8 


C6 


R1134 


18 


CS 


CR1133 


18 


C6 


R113S 


H8 


C6 


CR1235 


H8 


D6 














U1200 


D2 


D2 


J1132 


17 


C5 


U1220 


K6 


D3 


J1505 


H5 


H2 


U1300 


F2 


E2 








U130S 


H2 


F2 


P1132 


17 


CS 


U1400 


K2 


G2 








U150S 


H5 


H2 


01123 


18 


C4 


U1600 


F5 


J2 



<$>< 3 > 



P/0 A14 ASSY also shown on 




COMPONENT REFERENCE CHART 



DM 5010 



PARTS LOCATION GRID 












Table 10-11 

COMPONENT REFERENCE CHART 
(See Fig. 1 0-6) 



P/0 A1 4 ASSY 



CIRCUIT 


SCHEMATIC 


BOARD 


NUMBER 


LOCATION 


LOCATION 




K4 

L4 


J1723 


C5 


L4 


P1011 


K5 


A3 


P1721 


C3 


L4 


P1723 


C5 


L4 


Q1121 


J7 


C4 


R1101 


G7 


C1 


R1121 


H6 


C4 


R1123* 


J7 


C4 


R1611 


D6 


J3 




CIRCUIT 


SCHEMATIC 


BOARD 


NUMBER 


LOCATION 


LOCATION 




U1100 


J5 


B2 


U1105 


H5 


C2 


U1110 


J7 


B3 


U1605 


11 


K2 


U1610 


F6 


J3 


U1630 


G1 


J5 


U1720 


D3 


K4 


W1820 


K2 


L2 



P/0 A14 ASSY also shown on 




*See Parts List ^or 
serial number r-tngBS. 




Table 10-14 
REAR INTERFACE 
CONNECTOR ASSIGNMENTS 
ISOLATION BOARD (A 15) 



FUNCTION 


PIN 

B 




PIN 

A 


FUNCTION 


GROUND 


16 




16 


EXTRIG * 




15 




15 






14 




14 






13 




13 




+26V DC 


12 




12 


+26V DC 


COLLECTOR LEAD OF 
PNP SERIES PASS 


11 




1 1 


BASE LEAD OF 
PNP SERIES PASS 




10 




10 


EMITTER LEAD OF 
PNP SERIES PASS 


GROUND 


g 




g 


GROUND 




e 


TH 5000 


6 




COLLECTOR LEAD OF 
NPN SERIES PASS 


7 


BARRIER 

SLOT 


7 


EMITTER LEAD OF 
NPN SERIES PASS 


PWR 


6 




6 


BASE LEAD OF 
NPN SERIES PASS 




5 




5 




GROUND 


4 




4 


GROUND 




3 




3 




+8 FILTERED VDC 


2 




2 


+8 FILTERED VDC 




1 




1 





^REQUIRES INSTALLATION OF INTERNAL JUMPER. 

PLUG-IN REAR VIEW 






Table 10-15 
REAR INTERFACE 
CONNECTOR ASSIGNMENTS 
ADC BOARD (A 17) 



FUNCTION 


PIN 

B 




PIN 

A 


FUNCTION 


HI INPUT 


28 


DM 

BARRIER 


28 


LO INPUT 




27 


27 






26 


26 






25 


25 






24 


24 






23 


23 






22 


22 






21 


21 






221 


20 






19 


19 






18 


18 






17 


SLOT 


17 






16 


16 






IS 


15 






14 


14 





PLUG-IN REAR VIEW 












































DM 5010 



A 



B 



C 



D 



F 



H 



J 



K 



TYPE 


+5V ; 


GND 


74LS10 


14 . 


7 


74LS279 


16 


8 



❖ 



U1630B 

74LS10 



B«2 5 



MISCELLANEOUS BUFFER 



<z> 



U1730C-12- 
U1B30A-12- 
U1520-12- 
U1425D-8 - 



+5V 

L0 



U1605 

8279-5 



^CS 



8^2 



Jt73t-5A 

J1731-4A 








BA0 


21 




BD0 


12 


/ 


BD1 


13 


'' 


BD2 


14 


'' 


BD3 


15 


'' 


BD4 


16 




BD5 


17 




BOG 


IB 




BD7 


19 



|^I731-13A 



4 



7 



8 




RD 


SL0 




SLl 




SL2 




80 




81 


UR 






82 


CS 


83 


CLX 


A0 




A1 




A2 


A0 






A3 




RL0 


DB0 

DB1 


RL 1 


RL2 


DB2 


RL3 


DB3 


RL4 


0B4 




DBS 




0B6 




DB7 




V 

*ss 





7 



32 


SCI 


14 ■ _ 


33 


SC2 


16 - 


34 


SC3 


18 , ^ 


31 


COl 


I , ^ 


30 


C02 


3 , ^ 


29 


C03 


5 , ^ 


28 


CD4 


7 


27 


CDS 


all 


26 


CD6 


11 . 


25 


CD7 


13 - 


24 


COB 


15 1 


38 


RW1 




39 


RW2 


. -4 


1 


RW3 


6 , , 


2 


RW4 


8 _ ^ 


5 


RW5 


10 



P1820 

VIA 

W1820 



FRONT 

PANEL 

CONTROL 

0C00-0FFF 



+5V *8V 

L 



/77 



I CP IB I 



U1 100 

75160 






1A1 


'^CC 




2Y4 


2A4 


1Y2 


IA2 


2Y3 




1Y3 


2A3 


2Y2 


1A3 


1Y4 




2Y1 


2A2 




1A4 




2At 




1^ 








2G 






GND 



5 BD1 /I 




16 BD2y 




5 B03 y 




14 BD4/ 




7 BD5 / 




12 BD6 / 




9 BD7 / 







s BD0 


10 




sBDI 


1 1 




^B02 


12 




V0D3 


13 




^ B04 


14 




>.905 


15 




^806 


16 




L 0 O 7 


17 


^9A0 


6 


^8A1 


7 


k8A2 


8 



R1101 . 

4.7H- 



SWITCHES 



U 1320-34 
U1 620-1 5 
U1230A-1 
U 1320-4 



»N0TE : 

JUMPERS AND SVITCFCS SHOWN [N NORMAL 
OPERATING POSITION. CPIB ADDRESS SWITCHES 
A1 THROUGH A5 SHOWN SET TO SHIPPING ADDRESS 
DECIMAL 16. 



V 


CC DI01 




DI02 


D7 


0103 


D6 


DI04 


□S 


0105 


D4 


0106 


D3 


0107 


D2 


0108 


01 




D0 




RS0 




RSI 




RS2 




ACCGR 


TE 


>0 




WE 






DAV 




NO AC 


OBIN 






NRFD 


CE 


EOI 




IFC 


RESET 


REN 


I NT 




ATN 


V 


SS 





37 


18 


36 


17 


35 


16 


34 


15 


33 




32 


13 


31 


12 


.-PV 




PM7-< 







1 1 



21 


1 




1 


30 


1 1 


26 


15 


2A 


17 


25 


16 


27 


14 


23 


18 


22 


19 


29 


12 


28 


13 



01 


Vcc 


B1 


D2 




82 


03 




B3 


D4 




B4 


DS 




85 


06 




B6 


□7 




87 


08 




88 


PE 






TE 








GND 














.. ^ 




+5V 


u 




20 




TE 


Vcc 


DAV 


DC 




NDAC 


DAV 




NRFD 


NDAC 




EOI 


NRFO 




IFC 


EOI 




REN 


IFC 




SRQ 


REN 




ATN 


SRQ 






ATN 








GND 







3 


0102 


P1011-3 


4 


DI03 


P1011-5 < 


5 


□ 10^ 


P1011-7 < 


6 


□ 105 


P1011-2 < 


7 


DI06 


P1011-4 \ 


8 


DI07 


P1011-6 < 


s 


0108 


P1011-8 < 




Q1 121 



4 


NDAC 


P101 1-17 < 


s 


NRFD 


P101 1-15 \ 


7 


EOI 


Pi0ii-n \ 


3 


IFC 


P1011-12 < 


2 


REN 


P1011-1B < 


g 


SRQ 


P10I 1-14 < 


8 


ATN 


P101 1-16 < 



SEE P.&RTS UST FOR EARLIER 
VALUES ANO SERIAL NUMBER 
RANGES OF PARTS OUTUNED 
OR DEPICTED IN GREY. 



STATIC SENSITIVE DEVICES 
SEE MAINTENANCE SECTION 



COMPONENT NUMBER EXAMPLE 



COMPONENT NUMBER 



ASSEMBLY 

NUMBER 



,A 2 g, iA 2 i .R 1254 , 

I~J nP [ ^SCHEMATIC 



CIRCUIT 
SUBASSEMBLY NUMBER 

NUMBER IIP USED) 



P/0 A14 CPU BOARD 



CHASSIS-MOUNTED COMPONENTS HAVE NO ASSEMBLY 
NUMBER PREFIX- SEE END OF REPLACEABLE 
ELECTRICAL PARTS LIST 



DM 5010 



REV JUL 1984 
2994-108 



GPIB > F.B. CONTROL 






COMPONENT REFERENCE CHART 









REAR INTERFACE CONNECIUHb 



dm 5010 

PARTS LOCATION GRID 




Component Number 

A23 A2 R1234 

! ScJiewJbc 

Assembly „ ; » c,fcjii 

Numbei SutussernWr Number 
Number fr< usedj 



Table 10-12 

COMPONENT REFERENCE CHART 



A13 ASSY MAIN INTERCONNECT BOARD 


CIRCUIT SCHEMATIC BOARD 

NUMBER LOCATION LOCATION 


CIRCUIT SCHEMATIC BOARD 

NUMBER LOCATION LOCATION 


J1701 El E3 
J1711 G1 C4 
J1713 J1 B4 


J1731 C6 E5 

J1733 E6 E4 



Table 10-13 
REAR INTERFACE 
CONNECTOR ASSIGNMENTS 
CPU BOARD (A 14) 



FUNCTION 


PIN 




PIN 


FUNCTION 


DI01 


1 




2 


0105 


DI02 


3 




4 


0106 


DI03 


5 




6 


□ 107 


0104 


7 




8 


0108 




9 




10 




EOI 


1 1 




12 


IFC 


□AV 


13 




14 


SRQ 


NRFO 


15 




16 


ATN 


NOAC 


17 




18 


REN 




19 




20 





PLUG-IN REAR VIEW 



REV DEC 1982 




Ch»$sis m(>unteO components Mve no Assembly Number 
pietnr— see enrt oi Repieceable Electnca' Parts Lrst 










































ISOLATION 

J 1701 



12 

V 

Y 

^<S>I 

9 

V 

Y I 



-27V 

-17.SV LPS 



I ^ y Y ^ I 

I I ^ [ 

<^ y Y ^ I 

^<g>l 

I tB 10 

‘ y Y - 

V Y ^ ^ 

1 <j> N? - N ?- <S> I 

\ <S> Y Y ^ I 

y Y ^ ^ 

'Y Y ^ 



1 ^ 

I<s>| 

i< 3 >^ 

i< 3 >'^ 



1 t 

\/ V 



ISOLATED SECTION 



CROUNOEO SECTION 





iSOUTION 

J1733 



S? V 

13 13 



l<^ -!> -V- < 5 > 



a a 

V V 



i^t 



REV DEC 1982 
2994-1 BS 



1. BOARD AS VIEVED FROM FRONT OF INSTRUMENT 



COMPONENT NUMBER EXAMPLE 

Component Number 

A23 A2 R1234 

, I I ! Schemiiic 

Number Subassembly 

Number (il used) 

fhsssis' mounted components tis^e no Assembly Numbet 
prelni— see end of Repisceable Electrical Parts List. 

Static Sensitive Devices 

See Ma/nfenance Secf/on 



A13 MAIN INTERCONNECT BOARD 



MAIN INTERCONNECT <10 



MAIN INTERCONNECT 










DM 5010 



PARTS LOCATION GRID 




Fig. 10-9. Front Panel Board (All). 



ASSY A1 1 




static Sensitive Devices 

See Uamtendnce Section 



COMPONENT NUMBER EXAMPLE 




Chassis-mounted components nave no Assembly Number 
prefiK— end of fieptaceaUe Electrical Parts List 



@ 



Table 10-17 

COMPONENT REFERENCE CHART 



All ASSY 








FRONT PANEL BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


CIRCUIT 


SCHEMATIC 


BOARD 


NUMBER 


LOCATION 


LOCATION 


NUMBER 


LOCATION 


LOCATION 


DS1000 


B5 


A2 


SI 025 


H7 


B4 


DS1005 


05 


B2 


S1030 


I7 


A5 


DS1010 


K2 


A3 


S1032 


I7 


B5 


DS1015 


J1 


B3 


S1035 


J7 


A5 


DS1020 


H2 


A4 


SI 037 


J7 


B5 


DS1030 


J3 


A5 


SI 039 


G7 


B6 


DS1032 


J5 


B5 


S1110 


F7 


B2 


DS1100 


E5 


B2 


S1 115 


F8 


C2 


DS1105 


F5 


C2 


S1120 


H8 


C4 


DS1110 


K5 


B3 


S1130 


I8 


C5 


DS1115 


K5 


C3 


S1135 


J8 


C5 


DS1120 


H5 


C4 


S1 139 


G8 


C6 


OS1130 


J5 


C5 


S1210 


F8 


C2 


DS1135 


J2 


C6 


S1215 


F9 


02 


DS1200 


G5 


C2 


S1217 


G9 


03 


DS1210 


K3 


C3 


S1220 


H8 


C4 


DS1215 


K4 


03 


S1225 


H9 


04 


DS1217 


J2 


03 


SI 230 


I8 


C5 


DS1220 


H4 


C4 


SI 232 


I9 


05 


OS 1225 


H3 


04 


SI 235 


J8 


C5 


OS 1230 


J4 


C5 


SI 237 


J9 


05 


DS1237 


J3 


06 


S1239 


G8 


C6 


DS1302 


H5 


El 


S1310 


08 


E2 


DS1304 


H3 


E1 


S1315 


C9 


E3 


DS1306 


H2 


E2 


SI 320 


C7 


E3 


OS 1502 


K1 


FI 


SI 325 


C7 


E4 


OS 1504 


K2 


FI 


S1410 


08 


E2 


OS 1506 


K3 


F2 


S1412 


09 


F2 








S1415 


07 


E3 


J1120 


B7 


C4 


S1417 


07 


F3 


J1300 


B5 


02 


SI 420 


C8 


E3 


J1320 


B6 


03 


SI 422 


C8 


F3 


J1400 


B4 


F2 


S1425 


E7 


E4 








S1427 


E8 


F4 


S1010 


F7 


A2 


S1510 


E9 


F2 


S1015 


G7 


B3 


S1520 


E8 


F3 


S1020 


H7 


A4 


S1525 


E7 


F4 

















DM5010 



A 



B 



C 



D 



E 



F 



G 



H 



I J i K I L 




COMPONENT NUMBER EXAMPLE 



Component Number 




A23 A2 R1234 




I ■ ScrtefTJjftc I 


/Issempry ^ _ t i 


Circuit 


Sot>dSsefTihiy 


IVomOer 


Number i<f used) 





Chassis mounted components have no tesembiy Number 
preh* -see end o' Kcpiaceable Electrical Parts List 




Static Sensitive Devices 

See Maintenance Section 










U1420 



START/STOP 

U1510-13 



□ ^ O 

o o 

O 180 37C5 
O O 
O 160 6U28 
O O 
O 140 6321 
O O 
O 120 7791 
O O 




START/STOP 
U1 510-6 



U1435 



□ 

o 

o 


^ o 

o 

180 


51 4C 


o 


170 


45PP 


o 


160 


3411 


0 


ISO 


09P9 


o 


140 


UP91 


o 


130 


C5FH 


o 


120 


U7U0 


o 


no 


1 1 19 



START/STOP 

U1510-7 



U1435 


□ ^ 


' o 


O 


o 



0 


180 


7CU3 


0 


170 


U31S 


o 


160 


A645 


o 


ISO 


P740 


o 


140 


2022 


o 


130 


287U 


o 


120 


33PF 


o 


ll0 


H2F1 



■ AFTER TESTS ARE COMPLETED, RETURN 
NOP JUMPER TO DISABLE POSITION. 



DM 5010 



SIGNATURE TABLE 10A 
SIGNATURE VERSION 1 .0 

■ FOR TESTING: MICROPROCESSOR, ROMs, AND ADDRESS DECODING. 

■ ON ASSEMBLY: a1 4 , CPU BOARD. 

■ EQUIPMENT REQUIRED: SA 501 SIGNATURE ANALYZER 

TM 5000 SERIES POWER MODULE 
EXTENDER CABLE 1067-0645-02 1 

■ ELECTRICAL CONDITIONS 

NECESSARY TO PERFORM TEST: +5V SUPPLY REGULATING PROPERLY, 

■ DM 5010 SETUP: NOP JUMPER IN ENABLE POSITION. 



■ SA 501 SETUP: GND TO TP153U 
THRESHOLD - TTL. 

QUALIFIER OFF. 

CLOCK (SEE STEP 1 ,2 ,3 1 

START AND STOP TIED TOGETHER. MAKE CONNECTION TO CPU BOARD 

AS INDICATED IN INDIVIDUAL TESTS. 
START, STOP AND CLOCK SLOPE - REFER TO INDIVIDUAL TESTS, 




A14 



2994-54A 

Fig. 10-10. CPU board signature analysis. 



I . SA START 
SA STOP 
SA CLOCK 



U1320 




U1235 
□ O 

o o 

FFFF 03 180 UUUU 
O O 

START/STOP P703 05 160 8484 
U1 51 0-1 3 O O 

0356 07 140 1U5P 
O O 

6F9A 09 120 U759 
O O 



2 . SA START 
SA STOP 
SA CLOCK 

+5V 755U 

CNO 0000 




(U1 320-37] START/STOP 



U1510-12 



0U2U 



U1620 





* o 


0 


ISO 


o 


140 


o 


130 


o 


120 


o 


no 


07 1BO 


L9_ 


9 0| 



048A 

A3SA 

0H5S 

599H 

9970 

U94A 

8H41 



START/STOP 

U1510-12 



U1520 





^ o 


o 


150 4CP2 


o 


140 U1U2 


o 


130 P352 


o 


120 340A 


o 


no 8UH9 


07 100 2F2S 




9 0| F615 



3 . SA START 



U1435 



SA STOP 
SA CLOCK 




+5V P254 

CNO 0000 



START/STOP 

U1510-4 



O 

o 


• o 

o 

180 


2616 


o 


170 


9499 


o 


160 


PF18 


o 


150 


1429 


o 


140 


W^87 


o 


130 


H462 


o 


120 


P541 


0 


no 


454C 



U1435 

□ ^ O 
O O 
O 180 P06P 
O 170 987H 
START /ST OP O 160 3FAH 

U1510-5 O 150 C1AU 

O 140 F3F3 
O 130 52C1 
O 120 503A 
O 110 7796 



REV DEC 1981 






SIGNATURE TABLE 10B 
SIGNATURE VERSION 1.0 



FOR TESTING: RANCE SHIFT REGISTERS. 



ON ASSEMBLIES: A15, ISOLATION BOARD. 

A16, RMS BOARD. 

A17 , ADC BOARD. 

FOR EACH TEST , PLACE THE BOARD 
ON EXTENDER BOARD (SI. 



EQUIPMENT REQUIRED: SA 501 SIGNATURE ANALYZER. 

TM 5000 - SERIES ROVER MODULE. 

DM 5010 SERVICE KIT t067“1052-00) 
EXTENDER CABLE (067-0645-021. 



DM 5010 SETUP: SIGNATURE ANALYZER SWITCH CON CPU BOARD) 

TO SIGNATURE ANALYSIS POSITION. DO NOT 
CHANGE THE OTHER SWITCHES. 

SA 501 SETUP; THRESHOLD - TTL. 

QUALIFIER OFF. 

CLOCK - CONNECT TO TP 1535 ON CPU BOARD 

START “I - CONNECT TO TP 1621 ON CPU BOARD 

STOP J — - CONNECT TO TP1625 ON CPU BOARD 

GNO - CONNECT TO TP1531 ON CPU BOARD. 



SEE FIG. 10-10, CPU BOARD. 





DM 5010 



CONNECT U1515-5 (ISOLATED -27V) TO 
TP 1531 (CHASSIS GROUND) ON CPU BOARD. 

+5V 35PP 
GNO 0000 



U1515 U1B10 




CONNECT U 1500-8 (ISOLATED -27V) TO 
TP 1531 (CHASSIS GROUND) ON CPU BOARD. 



U1300 



U1S00 



SIUI 


FT' 




91 U1 


Q 1 ’ 




AP41 


02 


0 


4927 


O 2 


O 


W5P 


03 


o 


0H5P 


03 


O 


7514 


04 


130 35PP 


A2C1 


04 


130 


IP3H 


OS 


120 79PF 


0017 


05 


120 


40UA 


06 


O 


7047 


06 


0 


2CH3 


07 


10O 8C94 


P70U 


O 7 


10O 






9 0 4909 






90 



P718 

H2P1 

5720 

AP41 



CONNECT U1 330-8 (ISOLATED -27V) TO 
TP1531 (CHASSIS GROUND) ON CPU BOARD. 



U1330 U1430 U1530 



91U1 


□ 1 ^ 




91U1 


‘□T’ 


m~o 


049U □ 1 ^ 


^ O 


C3F0 


02 


O 


049U 


02 


o 


4909 02 


O 


0HSP 


03 


140 U191 


»«P 


03 


o 


91U1 03 


o 


U107 


04 


130 UU9C 




O 


0 


O 


o 


4P22 


05 


120 48C3 




O 


o 


O 


o 


3^ 


06 


no 75PA 




O 


1 1 O 26C5 


O 


0 


P719 


07 


O 




0 


O 


O 


o 




O 


9 0 4927 




o 


9 O C3F0 


O 


o 



■ AFTER TESTS ARE COMPLETED, RESET THE SIGNATURE ANALYSIS SWITCH 



TABLE 10B 











FIG. 1 EXPLODED 





Section 1 1-^DM 5010 



REPLACEABLE 
MECHANICAL PARTS 



PARTS ORDERING INFORMATION 

Replacement parts are available from orthrough your local 
Tektronix, Inc. Field Office or representative. 

Changes to Tektronix instruments are sometimes made to 
accommodate improved components as they become available, 
and to give you the benefit of the latest circuit improvements 
developed in our engineering department. It is therefore 
important, when ordering parts, to include the following 
information in your order: Part number, instrument type or 
number, serial number, and modification number if applicable. 

If a part you have ordered has been replaced with a new or 
improved part, your local Tektronix, Inc. Field Office or 
representative will contact you concerning any change in part 
number. 

Change information, if any, is located at the rear of this 
manual. 

SPECIAL NOTES AND SYMBOLS 

XOOO Part first added at this serial number 

OOX Part removed after this serial number 

FIGURE AND INDEX NUMBERS 

Items in this section are referenced by figure and index 
numbers to the illustrations 



INDENTATION SYSTEM 

This mechanical parts list is indented to indicate item 
relationships. Following is an example of the indentation system 
used in the description column. 

1 2 3 4 5 Name & Description 

Assembly and/or Component 

Attaching parts for Assembly and/or Component 

Detail Part of Assembly and/or Component 
Attaching parts for Detail Part 

Parts of Detail Part 

Attaching parts for Parts of Detail Part 



Attaching Parts always appear in the same indentation as 
the item it mounts, while the detail parts are indented to the right. 
Indented items are part of. and included with, the next higher 
indentation. The separation symbol — ’ — indicates the end of 
attaching parts. 

Attaching parts must be purchased separately, unless otherwise 
specified. 

ITEM NAME 

In the Parts List, an Item Name is separated from the 
description by a colon (:). Because of space limitations, an Item 
Name may sometimes appear as incomplete. For further Item 
Name identification, the U.S, Federal Cataloging Handbook H6-1 
can be utilized where possible. 



ABBREVIATIONS 





INCH 


ELCTRN 


ELECTRON 


« 


NUMBER SIZE 


ELEC 


ELECTRICAL 


ACTR 


ACTUATOR 


elctlt 


ELECTROLYTIC 


ADPTR 


ADAPTER 


ELEM 


ELEMENT 


ALIGN 


ALIGNMENT 


EPL 


ELECTRICAL PARTS LIST 


AL 


ALUMINUM 


EQPT 


EQUIPMENT 


ASSEM 


ASSEMBLED 


EXT 


EXTERNAL 


ASSY 


ASSEMBLY 


FIL 


FILLISTER HEAD 


ATTEN 


ATTENUATOR 


FLEX 


FLEXIBLE 


AWG 


AMERICAN WIRE GAGE 


FLH 


FLAT HEAD 


BO 


BOARD 


FLTR 


FILTER 


BRKT 


BRACKET 


FR 


FRAME or FRONT 


BRS 


BRASS 


FSTNR 


FASTENER 


BRZ 


BRONZE 


FT 


FOOT 


BSHG 


BUSHING 


FXD 


FIXED 


CAB 


CABINET 


GSKT 


GASKET 


CAP 


CAPACITOR 


HDL 


HANDLE 


CER 


CERAMIC 


HEX 


HEXAGON 


CHAS 


CHASSIS 


HEX HD 


HEXAGONAL HEAD 


CKT 


CIRCUIT 


HEX SOC 


HEXAGONAL SOCKET 


COMP 


COMPOSITION 


HLCPS 


HELICAL COMPRESSION 


CONN 


CONNECTOR 


HLEXT 


HELICAL EXTENSION 


COV 


COVER 


HV 


HIGH VOLTAGE 


CPLG 


COUPLING 


1C 


INTEGRATED CIRCUIT 


CRT 


CATHODE RAY TUBE 


)D 


INSIDE DIAMETER 


DEG 


DEGREE 


(DENT 


identification 


DWR 


DRAWER 


IMPLR 


IMPELLER 



IN 


INCH 


SE 


SINGLE END 


incand 


INCANDESCENT 


SECT 


SECTION 


INSUL 


INSULATOR 


SEMICOND 


SEMICONDUCTOR 


INTL 


INTERNAL 


SHLD 


SHIELD 


LPHLOR 


LAMPHOLDER 


SHLDR 


SHOULDERED 


MACH 


MACHINE 


SKT 


SOCKET 


MECH 


MECHANICAL 


SL 


SLIDE 


MTG 


MOUNTING 


SLFLKG 


SELF-LOCKING 


NIP 


NIPPLE 


SLVG 


SLEEVING 


NON WIRE 


not wire WOUND 


SPfl 


SPRING 


060 


ORDER BY DESCRIPTION 


SO 


SQUARE 


OD 


OUTSIDE DIAMETER 


SST 


STAINLESS STEEL 


OVH 


OVAL HEAD 


STL 


STEEL 


PH BRZ 


PHOSPHOR BRONZE 


SW 


SWITCH 


PL 


PLAIN or PLATE 


T 


TUBE 


PLSTC 


PLASTIC 


TERM 


terminal 


PN 


part NUMBER 


THD 


THREAD 


PNH 


PAN HEAD 


THK 


THICK 


PWR 


POWER 


TNSN 


TENSION 


RCPT 


RECEPTACLE 


TPG 


TAPPING 


RES 


RESISTOR 


TRH 


TRUSS HEAO 


BGD 


RIGID 


V 


VOLTAGE 


BLF 


RELIEF 


VAR 


VARIABLE 


RTNR 


RETAINER 


W/ 


WITH 


SCH 


SOCKET HEAD 


WSHR 


WASHER 


SCOPE 


OSCILLOSCOPE 


XFMR 


TRANSFORMER 


SCR 


SCREW 


XSTR 


TRANSISTOR 



@ 



11-1 




Replaceable Mechanical Parts - DM 5010 



CROSS INDEX > MFR. CODE NUMBER TO MANUFACTURER 

Mfr. 



Code 


Manufacturer 


Address 


City. State. Zio Code 


01536 

05820 


TDTRON INC 

OMCQR DIV 

SENS PRODUCTS UNIT 

EG m G NflKEFIELO ENGINEERING 


1818 CHRISTINA ST 
60 AUDUBON RO 


ROCKFORD IL 61108 
WAKEFIELD MA 01880 


06383 


PflNDUIT CORP 


17301 RIDGELAND 


TINIEY PARK IL 60477 


09922 


BURNDY CORP 


RICHARDS AVE 


NORWALK CT 06852 


13103 


THERMflLLOY CO INC 


2021 N VALLEY VIEW UJNE 


DALLAS TX 75234 


22526 


DU PONT E I DE NEMOURS OND CO INC 


P 0 BOX 34829 
30 HUNTER LANE 


CAMP HILL PA 17011 


71?85 


DU PONT CONNECTOR SYSTEMS 
TRN INC 


1501 MORSE AVE 


ELX GROVE VILLAGE IL 60007 


72228 


TRN CINCH CONNECTORS 
QMCR INTERNOTIONOL CORP 


459 MT PLEASANT 


NEW BEDFORD MA 02742 


75915 


CONTlNENTtJl SCREM CO DIV 
LITTELFUSE INC 


800 E NORTHWEST HWY 


OES PLAINES IL 60016 


78189 


ILLINOIS TOOL WORKS INC 


ST CHARLES ROAD 


ELGIN IL 60120 


80009 


SHOKEPROOF DIVISION 
TEKTRONIX INC 


4900 S W GRIFFITH OR 


BEAVERTON OR 97077 


83385 


MICROOOT MONUFflCTURING INC 


P 0 BOX 500 

3221 W 81G BEAVER RD 


TROY M! 48098 


63486 


GREER- CENTRAL DIV 
ELCD INDUSTRIES INC 


1101 SAMUELSON RO 


ROCKFORD IL 61101 


93907 


TEXTRON INC 


600 18TH AVE 


ROCKFORD IL 61101 


98978 


CflMCOR 01 V 

INTERNATIONAL ELECTRONIC RESEARCH 


135 W MAGNOLIA BLVD 


BURBANK CA 91502 


TK0435 


CORP 

SUB OF DYNAMICS CORP OF AMERICA 
LEWIS SCREM CO 


4114 S PEORIA 


CHICAGO IL 60609 


TK0502 


CONNOR SPRING AND MFG CO 


9400 NE COLFAX 


PORTLAND OR 97220 



11-2 



REV JUN 1986 



Replaceable Mechanical Parts - DM 5010 



Fig. « 

Index 

No. 


Tektronix 
Part No. 


Serial /Assembly No, 
Effective Dscont 


Qtv 


12346 Name 4 Description 


Mfr. 

C^de 


1-1 


337-2807-00 




2 


SHIELD, ELEC:SI0E, PLUG-IN UNIT 


80009 


-2 


105-0932-00 




4 


LATCH. PQNEL:SIOE 


80009 


-3 


214-3364-00 




4 


FOSTENER.UJTCHtOCaflL.SIL GRAY 


80009 


-4 


334-4460-00 




2 


WORKER, IDENT;MKD GPIB ADDRESS SNITCH 


80009 


-5 


366-1851-01 




1 


KNOB LATCHtIVORY GY ,0.625 X 0.25 X 1.09 


80009 




220-0833-00 




1 


NUT, PLAIN, KNURL;0. 25-28 X 0.375 00.8RS NP 


80009 


-7 


355-0170-00 




1 


STUD,SHLDRiSTEP;BINOING POST 


80009 


-8 


333-2736-00 




1 


PANEL, FRONT: 
CATTOCHING PARTS) 


80009 


-9 


213-0875-00 




1 


SCR.ASSEN HSHR:6-32 X 0.5.T0PTITE.PNH ,STL 


83486 


-10 


210-1365-00 




2 


NOSHER,FLAT:0.141 ID X 0.266 00 X 0.5.0L 


80009 


-11 


211-0537-00 




1 


SCR£H,M0CHINE:6-32 X 0.375,TRH,STL 
(ENO ATTACHING PORTS) 


TK0435 


-12 


334-4032-00 




1 


MARKER, IDENT:HKD DM510P PROGRAMMABLE 


80009 


-13 


378-0159-04 




1 


LENS, LED 0SPL:RED N/MORKING 


80009 


-14 


255-0581-00 




QR 


PLASTIC CH0NNEL:0.156 X 0.156, POLYETHYLENE 


80009 


-15 


333-2822-00 




1 


PANEL .REAR: 
(ATTACHING PORTS) 


80009 


-16 


213-0868-00 




2 


SCREW, TPG.TF:6-32 X 0.375 L.FILH.STL 


93907 


-17 


386-3657-01 




2 


SUPPORT, PLUG-IN: 

(END ATTACHING PORTS) 


93907 


-18 


426-1799-00 




1 


FR SECT,PLUG-IN:TOP 
(ATTACHING PORTS) 


80009 


-19 


211-0541-00 




2 


SCREN,MOCHlNE:6-32 X 0.25,FLH,100 DEG, STL 


TK0435 


-20 


211-0105-00 




2 


SCREN,H0CHINE:4-40 X 0.188.FLH.100 DEG 


TK0435 


-21 


213-0815-00 




2 


SCREN ,TPG ,TR;4-20 ,0.188L,PLASTITE, FLH .STL 
(ENO ATTACHING PARTS) 


72228 


-22 


214-1061-00 




1 


CONTACT, ELEC:GROUNOING,CU BE 


80009 


-23 


214-3089-00 




1 


LOCKOUT, PLUG-IN;PIASTIC 


80009 


-24 

-25 


351-0604-00 




2 

1 


GUIOE.Cta BOARO:PLASTIC 

CKT BOARD ASSY;FP DRIVER(SEE A12 REPL) 

(ATTACHING PARTS) 


80009 


-26 


211-0017-00 




5 


SCREN.HACHIN£:4-40 X 0.75,PNH,STL 
(ENO ATTACHING PARTS) 

CKT BOARD ASSY INCLUDES: 


93907 


-27 

-28 

-29 


361-1086-00 




5 

1 

29 


. SPACER. SLEEVE:0. 65 L X 0.125 ID.BRS 
CONN,RCPT.ELEC:(S££ A12J1820 REPL) 
CONTACT .ELEC: (SEE 012P1120 ,P1300 ,P1320 . 
P1400 REPL) 


80009 


-30 


342-0584-00 




1 


INSULATOR , PLATE:SHI ELD , POLYESTER 


80009 


-31 

-32 

-33 

-34 

-35 

-36 

-37 


337-2940-00 




1 

1 

29 

21 

17 

1 

1 


SHIELD. ELEC:CIRCUIT BOARD 
CKT BOARD ASSY:FRONT PONEL(SEE Oil REPL) 
.SOCKET, PIN TERM: (SEE 011J1120,J1300, 
.J1320,J1400 REPL) 

. SNITCH, PB ASSY;(SEE 01151025,51035, 
.51037,51039 ,51139 ,51232,51235 .S1239 , 
,51310,51315, 51320,51325,51410 ,51412. 
.51415,51417, 51420, S1422.S1425,S1427, 
.S1520 REPL) 

. SNITCH. PB OSSY:(SEE 01151010,51015,51020, 
.51135,51030.51032,51110.51115.51120, 
.51130,51210,51215, 51217, S1220.S1225, 

. 51230, S1237REPL) 

. SNITCH, P8 OSSY:(SE£ A11S1510 REPL) 

. SNITCH, PB ASSY: (SEE 01151525 REPL) 


80009 


-38 

-39 


386-4569-00 




1 

1 


SUBPONEL. FRONT: 

CKT BOARD ASSY:MAIN INTERCONNECT (SEE 013 RE 
(ATTACHING PORTS) 


80009 


-40 

-41 

-42 


211-0661-00 




5 

2 

3 


SCR.ASSEM NSHfl:4-40 X 0.25, PNH, STL. POZ 
(ENO ATTACHING PORTS) 

CKT BOARD ASSY INCLUDES: 

CONN. RCPT, ELEC: (SEE A13J1731 ,J1733 REPL) 
.CONN,RCPT,ELEC:(SEE A13J1701 .J1711 , 
.J1718REPL) 


01536 


-43 


407-2555-00 




2 


BROCKET, ONGLE:CIRCUIT BOARD, OL 


80009 


-44 


343-0946-00 




1 


RETAINER, CKT B0:0,123 OD X 4.99 L N/5-40 TH 
0 ONE ENO 


80009 



Mtr. Part No. 



337-2807-00 

105-0932-00 

214-3364-00 

334-4460-00 

366-1851-01 

220-0633-00 

355-0170-00 

333- 2738-00 

OROER BY DESCR 
210-1365-00 
ORDER BY DESCR 

334- 4032-00 
378-0159-04 
255-0581-00 
333-2822-00 

OROER BY DESCR 
OROER BY DESCR 

426-1799-00 

OROER BY DESCR 
OROER BY DESCR 
OROER BY DESCR 

214-1061-00 

214-3009-00 

351-0604-00 



OROER BY DESCR 



361-1086-00 



342-0584-00 

337-2940-00 



388-4569-00 



621-01655-024 



407-2555-00 

343-0946-00 



REV JUN 1986 



1 1-3 






Repiaceabie Mechanical Parts *- DM 5010 



P«g. 4 

Index 

No. 


Tektronix 
Part No. 


Serial /Assembly No. 
Effective Dscont 




12345 Name & Description 


Mfr. 

Code 


Mfr. Part No. 


1-45 


^ 






1 


CKT BOORO flSSY:PR0CESS0R(S£E fl14 REPL) 






-46 


175-3884-00 






1 


.Cfl 0SSY,SP,ELEC:20,28 flHG.6.65 L.RIBSON 


80009 


175-3884-00 


-47 


131-0993-00 






4 


.BUS, CONDUCTOR: SHUNT ASSEMBLY, BLACK 


22526 


65474-005 


-48 


- — — 






12 


.TERMINAL, PIN: (SEE A1401132 ,J1425,J1721 . 
















.J1723 REPL) 






-49 


136-0751-00 






4 


.SKT,PL-IN ELEK:MICR0CKT,24 PIN 


09922 


0HJ24P108 


-50 


136-0757-00 






3 


.Sia,PL-IN ELEK;M1CR0CIRCUIT,40 DIP 


09922 


0IIB40P-108 


-51 









5 


.TERM,TEST P0INT:(SEE A14TP1531 ,TP1533 , 
















.TP1535.TP1621,TP1625 REPL) 






-52 


343-0549-00 






2 


. STRAP, TIED0HN,E:0. 091 N X 4.0 L.ZYTEL 


06383 


PLT1M 


-53 









1 


CICT BOARD ASSY:CPU(SEE A15 REPL) 






-54 









1 


•TERM.TEST POINT: (SEE A15TP1421 REPL) 






-55 


344-0326-00 






4 


. CLIP, ELECTRICAL: FUSE.BRASS 


75915 


102071 


-56 


136-0751-00 






1 


.Sia,PL-IN ELEK:MICR0CKT,24 PIN 


09922 


0ILB24P10e 


-57 


351-0654-00 






4 


CUIDE.CKT B0ARD:PLASTIC,1.45 L 


80009 


351-0654-00 


-58 


337-2856-00 






1 


SHI ELD , ELEC :CONVERTER , BOTTOM 


80009 


337-2856-00 












(ATTACHING PARTS) 






-59 


213-0815-00 






2 


SCREM,TPG,TR:4-20.0.188L,PLASTITE,FLH,STL 


72228 


ORDER BY DESCR 


-60 


211-0007-00 






4 


SCRE«,MACHINE:4-40 X 0.188,PNH,STL 


TK0435 


ORDER BY OESCR 












(END ATTACHING PARTS) 






-61 


337-2857-00 






1 


SHI ELD , ELEC : CONVERTER , TOP 


80009 


337-2857-00 


-62 


_____ 






1 


CKT BOARD AS5Y;RMS(SEE 016 REPL) 






-63 


— — _____ 






3 


.TERM, TEST POINT:(SEE A16TP1201 ,TP1503 , 
















.TP1701 REPL) 






-64 


136-0241-00 






1 


.SKT,PL-IN ELEK:MICR0CIRCUIT,10 C0NT,PC8 MT 


71785 


133-99-12-064 




672-1015-00 






1 


CIRCUIT 80 OSSY:REUY 


60009 


672-1015-00 


-65 









1 


.CKT BOORO ASSY:AOC(SEE 017 REPL) 






-66 


337-2930-00 






1 


.. SHIELD, ELEC:GUORD, FRONT 


80009 


337-2930-00 












..(ATTACHING PORTS) 






-67 


211-0012-00 






1 


..SCREH,M0CHINE:4-40 X 0.375,PNH,STL 


TK0435 


ORDER BY OESCR 


-68 


210-0586-00 






1 


..NUT,PL,OSSEM «A;4-40 X 0.25,STL CO PL 


78189 


211-041800-00 












..(END ATTACHING PORTS) 






-69 


343-0944-00 






1 


.. RETAINER, CONT:SHITCH. FIBER SHEET 


80009 


343-0944-00 












..(ATTACHING PORTS) 






-70 


213-0088-00 






1 


..SCRE«,TPG,TF:4-24 X 0.25, TYPE B,PNH 


83385 


ORDER BY OESCR 












..(END ATTACHING PORTS) 






-71 


— 






1 


..SNITCH, PUSH: (SEE 017S1731 REPL) 






-72 


214-1157-00 






1 


.. SPRING, HLCPS:0. 137 00 X 0.36 L,MUN 


TK0502 


ORDER BY OESCR 


-73 


105-0875-00 


8010100 


8020979 


1 


..ACTR,PUSH 5N:PLASTIC 


80009 


105-0875-00 




105-0875-01 


8020980 




1 


..OCTR,PUSH SN:PLASTIC 


80009 


105-0875-01 


-74 


352-0620-00 






1 


.. HOLDER, CONT/SN;80NONO JOCK, PLASTIC 


80009 


352-0620-00 


-75 


136-0729-00 






1 


..SKT,PL-IN £L£K;M1CR0CKT,16 CONTACT 


09922 


0ILB16P-108T 


-78 


136-0727-00 






1 


..SKT,PL-IN ELEK:MICR0CKT,8 CONTACT 


09922 


DUB8P-108 


-77 


214-2496-00 






4 


..HEAT SINK,XSTR:TO-5,OL 


98978 


7-175-9A 


-78 


214-1291-00 






1 


..HEAT SINK,XSTR:T0-5,SIL BRZ PTD SLACK 


05820 


207SB 


-79 


342-0324-00 






5 


. . I NSULOTOR , 01 SK : TRANS I STOR , NY LON 


13103 


7717-5N-BLUE 


-80 


407-2783-00 


8010100 


8021903 


1 


.. BRACKET, CMPNT:RELAY 


80009 


407-2783-00 


-80.1 


407-3431-00 


8021904 




1 


.. BROCKET, REUY:PIAST1C 


80009 


407-3431-00 












..(ATTACHING PORTS) 






-81 


211-0008-00 


8010100 


8021903 


1 


..SCREN,MOCHINE:4-40 X 0.25,PNH,STL 


93907 


ORDER BY OESCR 


-82 


211-0698-00 


8010100 


8021903 


1 


..SCREN,M0CHINE:3-48 X 0.188,PNH,STL 


TK0435 


ORDER BY DESCR 


-82.1 


211-0008-00 


8021904 




2 


..SCREN.MACHINE:4-40 X 0.25,PNH,STL 


93907 


ORDER BY DESCR 












..(END ATTACHING PORTS) 






-83 


— 






1 


,CKT BOARD ASSY;RELAY(SEE 017A1 REPL) 






-84 









1 


..RELAY, ARMATURE: (PORT OF 017) 






-85 


407-2559-00 






1 


BROCKET, ANGLE: INTERFACE CKT 80, OL 


80009 


407-2559-00 












(ATTACHING PARTS) 






-86 


211-0105-00 






1 


SCREN,MOCHINE:4-40 X 0.188,FLH,100 DEG 


TK0435 


OROER BY OESCR 












(END ATTACHING PARTS) 






-87 


351-0653-00 






2 


GUIDE, CKT B00R0:PUSTIC,2.226 L 


80009 


351-0653-00 


-88 


214-3143-00 






1 


SPRING, HLEXT:0. 125 00 X 0.545 L.XLOOP 


80009 


214-3143-00 


-89 


105-0866-00 






1 


LATCH, HnOINING:SAFETY 


80009 


105-0866-00 


-90 


105-0865-00 






1 


BOR, LATCH RLSE: 


80009 


105-0865-00 


-91 


214-3089-00 






1 


LOCKOUT. PLUG-IN:PLAST!C 


80009 


214-3089-00 


-92 


426-1800-01 






1 


FR SECT,PLUG-IN:N/SPRING & EYELO 


80009 


426-1800-01 



n-4 



REV JUN 1986 






Replaceable Mechanical Parts - OM 5010 



Fig. « 

Index 

No. 

1 - 



Tektronix Serial/Assembly No. Mfr. 

Part No. Effective Dscont Qtv 12345 Name Description Code Mfr. Part No, 

STfiNOQRD QCCESS0RIE5 



003-0120-00 

070-2994-01 

070-3542-00 



1 LEfl0,TEST:0NE PAIR 

1 MANUAL, TECH: INSTR.0M5010 

1 MANUAL,TECH:REFERENCE.OM5010 



80009 003-0120-00 
80009 070-2994-01 
80009 070-3542-00 



REV JUN 1986 



1 1-5