Skip to main content

Full text of "DTIC ADA094668: Annual Tropical Cyclone Report 1980"

See other formats












































U. S. NAVAL OCEANOGRAPHY COMMAND CENTER 
JOINT TYPHOON WARNING CENTER 
COMNAVMARIANAS BOX 17 
FPO SAN FRANCISCO 96630 

JESUS B. TUPAZ 
*THOMAS R. MURRAY 
Captains, United States Navy 

COMMANDING 

JOHN W. DIERCKS 

Lieutenant Colonel, United States Air Force 
DIRECTOR, JOINT TYPHOON WARNING CENTER 
STAFF 


LCDR James H. Bell, USN 
CAPT Richard A. Todd, USAF 
CAPT Clifford R. Matsumoto, USAF 
*CAPT John D. Shewchuk, USAF 
*CAPT Gerald A. Guay, USAF 
LT George M. Dunnavan, USN 
LTJG Jack E. Huntley, USNR 
1 LT James A. Smith, USAF 
LTJG Raymond R. Fagen, USNR 
ENS Robert C. Weir, USN 
AG1 Donald L. McGowan, USN 
*SSGT Charles J. Lee, USAF 
*SSGT William H. Taylor, USAF 
*AG2 Kenneth A. Kellogg, USN 
AG2 Stephani A. Bubanich, USN 
SGT Konrad W. Crowder, USAF 
*AG3 Victoria J. Macke, USN 
*AG3 Winifred A. Few, USN 
*AG3 Carl A. Gantz, USN 
SGT John W. Archambeau, USAF 
*AG3 Sally E. Stege, USN 
AG3 Beverly A. McCreary, USN 
SRA Michael P. Blomquist, USAF 
AGAN Sarah J. McNelly, USN 
A1C Randolph G. Quinto, USAF 
A1C Kathlyn A. Mentz, USAF 
AGAN Paul E. Brewer, USN 



! 1 !' / 
1 r i - • 


t ***% % Vw; c&gtes 


STr* 


CONTRIBUTOR: Det 1, 1WW - USAF 

MAJ David C. Danielson 
CAPT Michael C. Risch 
*CAPT John E. Oleyar 
*CAPT James P. Millard 
CAPT Marsha A. Korose 
MSGT Tommy M. Pelley 




yy 


y<eyy 


‘Transferred during 1980 


81 2 0 


r a i 

\j A L 


iliU.lmiiiLiHiiinKliiii m iti.tiiili!iiiltiiliik4ilii!iJnlilliik.Vf1lili!liui!ihli.i.Liilj!il<niiilului.lU , iU.ilij|.iillil!llljiiiiii,iii'unililiiinhii l 'i>liihil.ii 





























FOREWORD 


The Annual Tropical Cyclone Report is 
prepared by the Staff of the Joint Typhoon 
Warning Center (JTWC). JTWC is a combined 
USAF/USN entity operating under the command 
of the 0. S. Naval Oceanography Command Cen¬ 
ter, Guam. The senior Air Force Officer as¬ 
signed is designated as Director, JTWC and is 
responsible to the Commanding Officer, U.S. 
Naval Oceanography Command Center, Guam for 
the operation of the JTWC. The senior Naval 
Officer of the JTWC is designated as the Dep¬ 
uty Director/Operations Officer. The JTWC 
was established by CINCPACFLT message 280208Z 
April 1959 when directed by CINCPAC message 
230233Z April 1959. Its operation is guided 
by the CINCPACINST 3140.1 (series). 

The Naval Oceanography Command Center/ 
Joint Typhoon Warning Center, Guam has the 
responsioility to: 

1. Provide continuous meteoro¬ 
logical watch of all tropical activity north 
and south of the equator, west of the Date 
line, and east of the African coast (JTWC 
area of responsibility) for potential tropi¬ 
cal cyclone development. 

2. Provide warnings for all sig¬ 
nificant tropical cyclones in the assigned 
area of responsibility. 

3. Determine tropical cyclone re¬ 
connaissance requiremen. and assign prior¬ 
ities. 

4. Conduct an annual post-analysis 
of all tropical cyclones occurring within the 
JTWC area of responsibility and prepare an An¬ 
nual Tropical Cyclone Report for issuance to 
interested agencies. Only summaries and sta¬ 
tistics for Northern Hemisphere tropical cy¬ 
clones are included in this report. 

5. Conduct tropical cyclone fore¬ 
casting and detection research as practicable. 


In the event of incapacitation of the 
JTWC, the Alternate JTWC (AJTWC) assumes res¬ 
ponsibility for issuing warnings. The 0. S. 
Naval Western Oceanography Center, Pearl Har¬ 
bor, Hawaii is designated as the AJTVC. As¬ 
sistance in determining tropical cyclone 
reconnaissance requirements and in obtaining 
reconnaissance data is provided by Detachment 
4, 1st Weather Wing, Hickam AFB, Hawaii. 

The meteorological services of the 
United States are planning to implement the 
metric system of measurement over the next 
few years. Some civilian and military agen¬ 
cies have started the education program by 
showing the metric equivalents to current 
units of measure. This Annual Tropical Cy¬ 
clone Report includes metric equivalents to 
most measures. 

Unless otherwise stated, all satellite 
data used in this report are Air Force Air 
Weather Service data acquired by Air Force 
Communications Command personnel and analy¬ 
zed by satellite analysts at Det 1, 1WW, co¬ 
located with the JTWC at Nimitz Hill, Guam; 
Det 5, 1WW, Clark Air Base, Philippines; Det 
8, 30WS, Kadena Air Base, Japan; Det 15, 

30WS, Osan Air Base, Korea; Det 4, 1KW, Hick¬ 
am Air Force Base, Hawaii; and Air Force 
Global Weather Central, Offutt Air Force 
Base, Nebraska. The Naval Oceanography Com¬ 
mand Detachment, Diego Garcia, also provided 
timely satellite position fixes for tropical 
disturbances in the Arabian Sea and Bay of 
Bengal. 

The Staff of JTWC is indebted to Captain 
Thomas R. Murray, USN and Captain Jesus B. 
Tupaz, USN, for the many valuable suggestions 
and comments provided during preparation of 
the 1980 Annual Tropical Cyclone Report. 

The staff of the Joint Typhoon Warning 
Center wishes to thank the men and women of 
the Fleet Air Photographic Laboratory, Naval 
Air Station, Agana for their services in the 
reproduction of the satellite data for this 
report. 


NOTE: 


Appendix 4 contains information 
on how to obtain past issues of 
the Annual Typhoon Report . 


IjAccession Fo; 

I DTXC t_' o 

/ Unannounced 































TABLE OF CONTENTS 


CHAPTER I 


CHAPTER II 


CHAPTER III 


TROPICAL 

CYCLONE 

TD 01 
TS CARMEN 
TY DOM 
TY ELLEN 
TS FORREST 
TS GEORGIA 
TS HERBERT 
TS IDA 
TY JOE 
TD 10 
TY KIM 
TY LEX 
TY MARGE 
TD 14 


TC 23-80 
CHAPTER IV 


CHAPTER V 


OPERATIONAL PROCEDURES pa< 

1. General- 

2. Data Sources- 

3. Communications--- 

4. Analyses- 

5. Forecast Aids- 

6. Forecasting Procedures- 

7. Warnings- 

8. Prognostic Reasoning Message- 

9. Significant Tropical Weather Advisory- 

10. Tropical Cyclone Formation Alert- 

RECONNAISSANCE AND FIXES 

1. General- 

2. Reconnaissance Availability- 

3. Aircraft Reconnaissance Summary- 

4. Satellite Reconnaissance Summary- 

5. Radar Reconnaissance Summary- 

6. Tropical Cyclone Fix Data- 

SUMMARY OF TROPICAL CYCLONES 

1. Western North Pacific Tropical Cyclones- 

INDIVIDUAL TROPICAL CYCLONES 


AUTHOR 


TROPICAL 

CYCLONE AUTHOR pai 


DUNNAVAN-16 

WEIR-20 

HUNTLEY-22 

GUAY-26 

SHEWCHUK-30 

DUNNAVAN-32 

MATSUMOTi.-36 

WEIR-38 

HUNTLEY-<0 

MATSUMOTO- 44 

FAGEX- 4 6 

SMITH-50 

TODD-52 

DUNNAVAN-58 


TY 

TD 

TY 

TY 

TY 

TY 

TS 

TY 

ST 

TS 

TY 

TS 

TY 

TS 


NORRIS 

MATSUMOTO- 

16 

WEIR- 

ORCHID 

WEIR- 

RUTH 

HUNTLEY- 

PERCY 

FAGEN- 

SPERRY 

SMITH- 

THELMA 

TODD- 

VERNON 

DUNNAVAN- 

WYNNE 

MATSUMOTO- 

ALEX 

HUNTLEY- 

BETTY 

WEIR- 

CARY 

SMITH- 

DINAH 

FAGEN- 

ED 

DUNNAVAN- 


60 

64 

65 
70 
72 
76 
30 
84 
88 
94 
96 

100 

102 

106 


2. North Indian Ocean Tropical Cyclones-109 

FAGEN-110 TC 27-80 HUNTLEY--112 

SUMMARY OF FORECAST VERIFICATION 

1. Annual Forecast Verification-113 

2. Comparison of Objective Techniques-US 


APPLIED TROPICAL CYCLONE RESEARCH SUMMARY 

1. JTWC Research--121 

Equivalent Potential Temperature/Minimum Sea- 
level Pressura Relationships for Forecast¬ 
ing Tropical Cyclone Intensification 
Tropical Cyclone Wind Radius Program 
Evaluation of Objective Techniques 
Evaluation of the Navy Nested Two-Way 
Interactive TCM (NTCM) 

A New Tropical Cyclone Forecast Aid Based on 
a Blending of Persistence and Climatology 
(BPAC) 


S’ 


























































































CHAPTER I - OPERATIONAL PROCEDURES 


1. GENERAL 

Routine services provided by the Joint 
Typhoon Warning Center (JTWC) include the 
following: (1) Significant Tropical Weather 

Advisories issued daily describing all tropi¬ 
cal disturbances and their potential for fur¬ 
ther development; (2) Tropical Cyclone Forma¬ 
tion Alerts issued whenever interpretation of 
satellite, synoptic and/or aircraft data in¬ 
dicates likely formation of a significant 
tropical cyclone; (3) Tropical Cyclone Warn¬ 
ings issued four times daily for significant 
tropical cyclones; and (4) Prognostic Rea¬ 
soning messages issued twice daily for tropi¬ 
cal storms and typhoons in the Pacific area. 

JTWC responds to changing requirements 
of activities serviced. Therefore, contents 
of routine services are subject co change 
from year to year usually as a result of de¬ 
liberations at the Tropical Cyclone Confer- 


2. DATA SOURCES 

a. COMPUTER PRODUCTS: 

The Naval Oceanography Command Cen¬ 
ter (NAVOCEANCOMCEN) Guam provides computer¬ 
ized meteorological/oceanographic products 
for JTWC. In addition, the standard array of 
synoptic-scale computer analyses and prognos¬ 
tic charts are available from the Fleet Nu¬ 
merical Oceanography Center (FLENUMOCEANCEN) 
at .Monterey, California. With the installa¬ 
tion of the Naval Environmental Display Sta¬ 
tions (NEDS) during 1978, JTWC now has very 
timely access to FLENUMOCEANCEN products and 
is able to more efficiently and effectively 
use these products. 

b. CONVENTION L DATA: 

Conventional meteorological data are 
defined as surface and upper-air observations 
from island, ship and land stations plus wea¬ 
ther observations from commercial and mili¬ 
tary aircraft (AIREPS). Conventional data 
charts are prepared daily at 0000Z and 1200Z 
for the surface/gradient, 700 mb, and 500 mb 
levels. A chart of upper-air data is pre¬ 
pared which utilizes 200 mb rawinsonde data, 
AIREPS above 29,000 ft within 6 hours of the 
0000Z and 1200Z synoptic times, and satellite 
blow-off winds. 

C. AIRCRAFT RECONNAISSANCE: 

Aircraft weather reconnaissance data 
are invaluable in the positioning of the cen¬ 
ter of developing systems and essential for 
the accurate determination of the eye/ocnter 
location, maximum intensity, minimum sea- 
level pressure and radius of significant 
winds exhibited by tropical cyclones. Winds 
and pressure-height data at the 500 and/or 
400 mb levei, provided by reconnaissance 
aircraft while enroute to, or returning from, 
fix missions, are also used to supplement the 
sparse data in the tropics and subtropics. 
These data are plotted on large-scale sec¬ 
tional charts for each mission flown. A com¬ 
prehensive discussion of aircraft weather 
reconnaissance is presented in Chapter II. 


d. SATELLITE RECONNAISSANCE: 

Meteorological satellite data from 
the Defense Meteorological Satellite Program 
(DMSP) and the National Oceanic and Atmo¬ 
spheric Administration played a major role 
in the early detection and tracking of trop¬ 
ical cyclones in 1980. A discussion of this 
role is presented in Chapter II. 

e. RADAR RECONNAISSANCE 

During 1980, as in recent years, 
land radar coverage was utilized extensively 
when available. Once a storm moved within 
the range cf a land radar site, reports were 
usually received hourly. Use of radar dur¬ 
ing 1980 is discussed in Chapter II. 

3. COMMUNICATIONS 

a. JTWC currently has access to three 
primary communications circuits. 

(1) The Automated Digital Network 
(AUTODIN) is used for dissemination cf warn¬ 
ings and other related bulletins to Depart¬ 
ment of Defense installations. These mes¬ 
sages are relayed for further transmission 
over U. S. Navy Fleet Broadcasts, U. S. Coast 
Guard CW (continuous wave morse code) and 
voice communications. Inbound message traf¬ 
fic for JTWC is received via AUTODIN ad¬ 
dressed to NAVOCEANCOMCEN GUAM. 

(2) The Air Force Automated Weather 
Network (AWN) provides weather data to JTWC 
through a dedicated circuit from the Auto¬ 
mated Digital Weather Switch (ADWS) at Hickam 
AFB, Hawaii. The ADWS selects and routes the 
large volume of meteorological reports nec¬ 
essary to satisfy JTWC requirements for the 
right data at the right time. Weather bul¬ 
letins prepared by JTWC are inserted into the 
AWN circuit via the NEDS and the Nimitz Kill 
Naval Telecommunication Center (KTCC) of the 
Naval Communications Area Master Station 
Western Pacific. 

(3) The Naval Environmental Data 
Network (NEDN) provides the communications 
link with the computers at FLENUMOCEANCEN. 
JTWC is able to both receive environmental 
data from FLENUMOCEANCEN and access the com¬ 
puters directly to run various programs. 


b. Besides providing forecasters with 
the ability to rapidly access computer pro¬ 
ducts, the NEDS has become the backbone of 
the JTWC communications system. The NEDS 
has a direct interface with the AWN. Manual 
insertion of paper tapes into the AWN by the 
NTCC provides a backup AWN interface. AUTO¬ 
DIN message tapes are prepared by JTWC per¬ 
sonnel on the NEDS for insertion into the 
AUTODIN circuit by NTCC. The NEDS is also 
used by the Typhoon Duty Officer (TDO) tc 
request forecast aids which are processed 
by the computers at FLENUMOCEANCEN Monterey 
and transmitted back to the TDO over the 
NEDN circuit. 


1 



























4. ANALYSES 


6. FORECASTING PROCEDURES 


t 

f> 


I 


{ 


1 

:i 
: ! 


i 

» 



■ i 



A composite surface/gradient level (3000 
ft) manual analysis is accomplished on the 
OOOOZ and 1200Z conventional data. Analysis 
of the wind field using streamlines is 
stressed for tropical and subtropical re¬ 
gions. Analysis of the pressure field is 
stressed for higher latitudes and in the 
vicinity of tropical cyclones. 

Manual aralysis of the 500 mb level is 
accomplished on the OOOOZ and 3 200Z data. Al¬ 
though the analysis of the 500 mb height 
field is important, knowledge of the wind 
field to more clearly delineate steering cur¬ 
rents is equally important. 

« composite upper-tropospheric manual 
analysis, utilizing ravinsonde data frcm 
300 mb through 100 mb, wind directions ex¬ 
tracted from satellite data by Dot i, IKK 
and AXREPS (plus or minus 6 hours) at or 
above 29,000 feet is accomplished on OOOOZ 
and 1200Z data daily. Wind and height data 
are used co arrive at a representative anal¬ 
ysis of tropical cyclone outflow patterns, 
of steering currents and of areas that may 
indicate tropical cyclone intensity change. 
All charts are hand plotted over areas of 
tropical cyclone activity to provide all 
available data as soon as possible to the 
TOO. These charts are augmented by the com¬ 
puter-plotted charts for the final analyses. 

Additional sectional charts at interme¬ 
diate synoptic tines and auxiliary chart 
such as station-time plot diagrams anr pres¬ 
sure-change charts are also analyzed during 
periods of significant tropical cyclone acti¬ 
vity. 

5. FORECAST AIDS 

a. CLIMATOLOGY: 

Climatological publications utili’*»d 
during the 1980 typhoon season include pre 
ous JTWC Annual Typhoon Reports and climatic 
publications from local sources. Naval Envi¬ 
ronmental Prediction P.esearch Facility, Naval 
Postgraduate School, Air Weather Service, 
First Weather Wing ana Chanute Technical 
Training Center. Publications from other Air 
Force and Navy activities, various universi¬ 
ties and foreign countries are also used by 
the JTWC. 

b. OBJECTIVE TECHNIQUES: 

The following objective techniques 
were employed ir. tropical cyclone forecasting 
during 1980. A description of these techni¬ 
ques is presented in Chapter IV. 

(1) 12 HR EXTRAPOLATION 

(2) CLIMATOLOGY 

(3) HPAC (Combined extrapolation 
and climatology) 

(4) TROPICAL CYCLONE MODEL (Dy¬ 
namic) 

(5) CYCLOPS (Steering) 

(6) TYAN78 (Analog) 


a. INITIALIZATION: 

In the preparation of each warning, 
the actual surface location (fix) of the 
tropical cyclone eye/center just prior to 
(within three hours of) warning time is of 
prime importance. JTWC uses the Selective 
Reconnaissance Program (SRP) to levy an op¬ 
timum mix of aircraft, satellite and radar 
resources to obtain fix information. When 
tropical cyclones are either poorly defined 
or the actual surface location cannot be de¬ 
termined, or when conflicting fix information 
is received, the "best estimate" of the sur¬ 
face location is subjectively determined from 
the analysis of all available data. If fix 
data are not available due to reconnaissance 
platform malfunctions or communication prob¬ 
lems, synoptic data or extrapolation from pre¬ 
vious fixes are used. The initial forecast 
(warning time) position is then obtained by 
extrapolation using the current fix and a 
"best track" of the cyclone movement to date. 

b. TRACK FORECASTING: 

An initial forecast track is devel¬ 
oped based on the .previous forecast and the 
objective techniques. This initial track is 
subjectively modified based on the following: 

(1) The prospects for recurvature 
are evaluated. This evaluation is based pri¬ 
marily on present and forecast positions and 
amplitude of middle tropospheric mid-lati¬ 
tude troughs from the latest 500 mb analysis 
and numerical prognoses. 

(2) Determination of steering level 
is partly influenced by maturity and vertical 
extent of the system. For mature cyclones 
located south of the 500 mb subtropical ridgev 
forecast changes in speed of movement are 
closely correlated with forecast changes in 
the intensity of the ridge. When steering 
currents are very weak, the tendency for cy¬ 
clones to move northward due to their inter¬ 
nal forces is an important consideration. 

(3) The proximity of the tropical 
cyclone to other tropical cyclones is eval¬ 
uated to determine if there is a possibility 
of Fujiwhara interaction. 

(4) Over the 12- to 72-hr forecast 
spectrum, speed of movement during the early 
timeframe is biased toward persistence (12- 
hr extrapolation), while that near the end of 
the timeframe is biased towards objective 
techniques and climatology. 

(5) A final check is made against 
climatology to determine the likelihood of 
the forecast track. If the forecast deviates 
greatly from climatology, the forecast ra¬ 
tionale is reappraised and the track adjusted 
as necessary. 

C. INTENSITY FORECASTING: 

In forecasting intensity, heavy re¬ 
liance is placed on aircraft reconnaissance 
reports, the Dvorak satellite interpretation 
model, wind and pressure data from ships and 
land stations in the vicinity of the cyclone, 
and the objective techniques. Additional 


2 













considerations are the position and intensity 
of the tropical upper-tropospheric trough 
(TUTT), extent and intensity of upper-level 
outflow, sea-surface temperature, terrain in¬ 
fluences, speed of movement and proximity to 
an extratropical environment. 

7. WARNINGS 

Tropical cyclone warnings are issued when 
a definite closed circulation is evident and 
maximum sustained wind speeds are forecast to 
increase to 34 or sore knots within 48 hours, 
or the cyclone is in such a position that 
life or property may be endangered within 72 
hours. Warnings are also issued in other 
situations if it is determined that there is 
a need to alert military and civil interests 
to conditions which may become hazardous in 
a short perioc of time. Each tropical cy¬ 
clone warning p .s numbered sequentially and 
includes th( initial warning time, eye/center 
position, intensity, the radial extent of 30, 
50 and 100 knot surface winds (when applica¬ 
ble) , the levied reconnaissance platform used, 
the instantaneous speed and direction of move¬ 
ment of the cyclone's surface center at warn¬ 
ing time and the forecast information. The 
forecast intervals for all tropical cyclones, 
regardless of intensity, are 12, 24, 48, and 
72 hr. Warnings within the JTWC North Paci¬ 
fic area arc issued within two hours of 00002 
06002, 12002 and 18002 with the constraint 
that -wo consecutive warnings may not be more 
than seven hours apart. Warnings in the JTWC 
North Indian Ocean area are issued within two 
hours of 02002, 08002, 14002, and 20002 with 
the constraint that two consecutive warnings 
may not be more than seven hours apart. These 
variable warning tii ;s allow for maximum use 
of all available reconnaissance platforms and 
core effectively dis ributes the workload in 
multiple cyclone situations. If warnings are 
discontinued and a cyclone reintensifies, 
warnings are numbered consecutively from the 
last warning issued. Warning forecast posi¬ 
tions are verified against the corresponding 
post-analysis "best track" positions. A sum¬ 
mary of the verification results from 1580 is 
presented in Chapter IV. 

Beginning on 1 January 1980, JTWC com¬ 
menced issuing tropical cyclone warnings in 
an ADP (Automatic Data Processing) format. 

The new format allows commands with ADP 
equipment to enter tropical cyclone warning 
data directly into ADP equipment data bases. 
The new format also possesses readability.for 
users without ADP equipment. 

8. PROGNOSTIC REASONING MESSAGE 

In the North Pacific area, prognostic 
reasoning messages are transmitted based on 
the 00002 and 12002 warnings or whenever the 
previous reasoning is no longer valid. This 
plain language message is intended to pro¬ 
vide users with the reasoning behind the 
latest JTWC forecast. Prognostic reasoning 
messages are not normally prepared for tropi¬ 
cal depressions nor for cyclones in the North 
Indian Ocean area. 

For the 1980 season, JTWC included con¬ 
fidence statements for the 24- and 48-hour 
forecasts. The confidence values were per¬ 
centage probabilities that the 24-hour fore¬ 
cast position error would be less than 100 nm 


and less than ISO nm, respectively, and that 
the 48-hour error would be less than 200 nm 
and less than 300 no, respectively. These 
probabilities were based on objective data 
from error analysis studies of past cyclones 
and were a function of latitude, longitude, 
storm intensity, organization and the number 
of western Pacific cyclones in existence. 

Prognostic reasoning information appli¬ 
cable to all customers is provided in the 
remarks section of warnings when significant 
forecast changes are made or when deemed 
appropriate by the TDO. 

9. SIGNIFICANT TROPICAL WEATHER ADVISORY 

This plain language message, summarizing 
significant weather in the JTWC area of re¬ 
sponsibility, north of the equator, is issued 
by 06002 daily. It contains a deta-' d, non¬ 
technical description of all significant 
tropical disturbances and the JTWC evaluation 
of potential for significant tropical cyclone 
development within the 24-hour forecast 
period. 

10. TROPICAL CYCLONE FORMATION ALERT 

Alerts are issued whenever interpreta¬ 
tion of satellite and other meteorological 
data indicates significant tropical cyclone 
formation is likely. These alerts will 
specify a valid period not to exceed 24 hours 
and must either be cancelled, reissued or 
superseded by a warning prior to expiration 
of the valid period. 


3 






















CHAPTER n - RECONNAISSANCE AND FIXES 


1. GENERAL 

The Joint Typhoon Warning Center depends 
on reconnaissance to provide necessary, ac¬ 
curate, and timely meteorological inforraa- 
tion in support of each warning. JTWC 
relies primarily on three sources of recon¬ 
naissance: aircraft, satellite, and radar. 
Optimum utilization of all available recon¬ 
naissance resources is obtained through use 
of the Selective Reconnaissance Program (SRP), 
whereby various factors are considered in 
selecting a specific reconnaissance platform 
for each warning. These factors include: 
cyclone location and intensity, reconnais¬ 
sance platform capabilities and limitations, 
and the cyclone's threat to life/property 
afloat and ashore. A summary of reconnais¬ 
sance fixes received during 1980 is included 
in Section 6. 


2. RECONNAISSANCE AVAILABILITY 

a. Aircraft: 

Aircraft weather reconnaissance is 
performed in the J7WC area of responsibility 
by the 54th Weather Reconnaissance Squadron 
(54 WRS). The squadron, presently equipped 
with six WC-130 aircraft, is located at 
Andersen Air Force Base, Guam. From July 
through October, augmentation by the 53rd 
WRS at Keesler Air Force Bass, Mississippi 
brings the total number of available aircraft 
to nine. The JTh'C reconnaissance require¬ 
ments are provided daily throughout the year 
to the Tropical Cyclone Aircraft Reconnais¬ 
sance Coordinator (TCARC). These require¬ 
ments include area(s) to be investigated, 
tropical cyclone(s) to be fixed, fix times, 
and forecast positions of fixes. The follow¬ 
ing priorities arc utilized in acquiring 
meteorological data from aircraft, satellite, 
and land-based radar in accordance with 
CINCPACINST 3140,IS: 

"(1) Investigative flights and vor¬ 
tex or center fixes for each scheduled warn¬ 
ing in the Pacific area of responsibility. 

One aircraft fix per day of each cyclone of 
tropical storm or typhoon intensity is 
desirable. 

(2) Supplementary fixes. 

(3) Synoptic data acquisition." 


As in previous years, aircraft recon¬ 
naissance provided direct measurements of 
height, temperature, flight-level winds, sea 
level pressure, estimated surface winds (when 
observable), and numerous additional para¬ 
meters. The meteorological data are gathered 
by the Aerial Reconnaissance weather Officers 
(ARKO) and dropsonde operators of Detachment 
4, Hq AW5 who fly with the 54th. These data 
provide the Typhoon Duty Officer (TOO) indi¬ 



cations of changing cyclone characteristics, 
radius of cyclone associated winds, and pre¬ 
sent cyclone position and intensity. Another 
important aspect of these data is their avail¬ 
ability for research in tropical cyclone 
analysis and forecasting. 


b. Satellite 

Satellite fixes from USAF ground 
sites and USH ships provide day and night 
coverage in tne JTWC area of responsibility, 
interpretation of this satellite imagery pro¬ 
vides cyclone positions and estimates of 
storm intensities through the Dvorak tech¬ 
nique (for daytime passes). 

Detachment 1, 1st Weather King, which 
receives and processes polar orbiting satel¬ 
lite data, is the primary fix site for the 
western North Pacific. Satellite fix posi¬ 
tions received at JTKC from the Air Force 
Global Weather Central (AFGKC), Offutt Air 
Force Base, Nebraska and the Naval Oceano¬ 
graphy Command Detachment at Deigo Garcia 
were the major sources of satellite data for 
the Indian Ocean. GOES fixes were also pro- 
vi ’ed by the National Environmental Satel¬ 
lite Service, Honolulu, Hawaii for tropical 
cyclones near the dateline. 

c. Radar 

Land radar provides positioning data 
on well developed cyclones when in proximity 
(usually within 175 nm (324 km) of the radar 
site) of the Republic of the Philippines, 
Taiwan, Hong Kong, Japan, the Republic of 
Korea, Kwajalein, and Guam. 

d. Synoptic 

In 1980, the JTWC also determined 
tropical cyclone positions based on the 
analysis of the surface/gradient level syn¬ 
optic data. These positions were helpful 
in situations where the vertical structure 
of the tropical cyclone was weak or accurate 
surface positions from aircraft were not 
available due to flight restrictions. 


3. AIRCRAFT RECONNAISSANCE SUMMARY 

During the 1980 tropical season, the 
JTKC levied 213 six-hourly vortex fixes and 
C5 investigative missions. In addition to 
the levied vortex fixes, 133 supplemental 
fixes were also obtained. The number of 
levied investigative missions has increased 
steadily over the past five years in re¬ 
sponse to JTWC's increased efforts to detect 
initial tropical cyclone development. The 
average vector error for all aircraft fixes 
received at the JTWC during 1980 was 17 na 
(31 ka). 

Aircrart reconnaissance effectiveness is 
summarized in Table 2-1 using the criteria 
as set forth in CInCRACIKST 3110.IS. 




4 













4. SATELLITE RECONNAISSANCE SUMMARY 

The Air Force provides satellite recon¬ 
naissance support to JTKC using imagery data 
from DKSP and SOAR polar-orbiting spacecraft. 
The NCAA imagery processing capability was 
new for DKSP tactical site operations during 
1990. Western North Pacific DKSP tactical 
sites received this additional capability in 
February 1980 in sufficient tine for the 
Northern Hemisphere tropical cyclone season. 

The DKSP cyclone surveillance network 
consists of both tactical and centralized 
facilities. Tactical ES4SP sites are located 
at Simitz Hill. Guam; Clark AB, Philippines: 
Kadena A3, Japan; Osan A3, Korea; and Hickam 
AFB, Hawaii. These sites provide a combined 
coverage that covers the JTVC area of res¬ 
ponsibility in the western North Pacific from 
near the dateline westward to the Malay Pen¬ 
insula. An important addition in 1930 was 
the Navy tactical site at Diego Garcia. Un¬ 
like the DKSP sites, Diego Garcia can process 
only NCAA polar-orbiting meteorological space¬ 
craft. However, the unique coverage of this 
site, located in the central South Indian 
Ocean, greatly expanded the satellite recon¬ 
naissance network’s coverage of this vital 
area. Prio* to I960, the JTVC had to depend 
entirely on the Air Force Global weather Cen¬ 
tral (AFGWC) for all Indian Ocean cyclone re¬ 
connaissance . 

AFGWC is the centralized member of the 
satellite cyclone surveillance network. Lo¬ 
cated at Offutt AFB, Nebraska, AFGWC has the 
capability to process the daily worldwide 
covlrage of two polar-orbiting spacecraft, 
whether DKSP or NOAA. This enables AFGWC to 
provide coverage four times daily over the 
entire JTWC area of responsibility. Imagery 


processed at AFGWC is recorded on-board the 
spa< '.craft as it passes over the earth. Later; 
these data are downlinked to AFGWC via a net¬ 
work of command/readout sites and communica¬ 
tions satellites. This enables AFGWC to 
obtain the coverage necessary to fix all 
cyclones of interest to JTVC- AFGWC has the 
primary responsibility to provide cyclone 
surveillance over the entire Indian Ocean, a 
small portion of the western North Pacific 
near the dateline, as well as the South Paci¬ 
fic from the dateline westward to the Indian 
Ocean. Additionally, AFGWC can be tasked to 
provide storm positions in the western North 
Pacific as backup to the tactical site cover¬ 
age routinely available in this region. 

The thread that tics the network together 
in Det 1, 1WW colocated with JTWC atop Himitz 
Hill, Guam. Based on available satellite 
coverage, Det 1 coordinates satellite recon¬ 
naissance requirements with JTWC and tasks 
the individual network sites for the neces¬ 
sary storm fixes. The tasking concept is to 
position every cyclone or disturbance once 
from each satellite pass that covers the cy¬ 
clone. Further, when a satellite position 
is required as the basis for a warning, called 
a levied fix, a dual-site tasking concept is 
applied. Under this concept, two sites are 
tasked to fix the cyclone off the same satel¬ 
lite pass. This provides the necessary re¬ 
dundancy to virtually guarantee JTWC a 
successful satellite fix of the cyclone. 

Using this dual-site concept, the satellite 
reconnaissance network was able to meet 
percent of JTKC's levied satellite fix re¬ 
quirements. This year, dual-site tasking was 
extended to most of the Indian Ocean with the 
addition of the Navy site at Diego Garcia to 
the tactical site network. Previously, dual¬ 
site tasking was available only in thevestern 
North Pacific. 

The network provides JTWC with several 
products and services. The main service is 
one of surveillance. Kith the exception of 
Osan, e;ch site reviews its daily coverage 
for any indications of development- If an 
area shows indications of development, JTWC 
is notified. Once JTWC issues either an 
alert or warning, the network is tasked to 
provide three products: cyclone positions, 
cyclone intensity estimates, and 24-hour cy¬ 
clone intensity forecasts. Satellite cy¬ 
clone positions are assigned position code 
numbers (PCS) depending on the availability 
of geography for precise gridding and the 
degree of organization of the cyclone's cir¬ 
culation center {Table 2-2). During 1980, 
the network provided JTWC with 1327 satellite 
fixes cf tropical cyclones. A comparison of 
those fixes made on numbered tropical cy¬ 
clones with their corresponding JTWC best 


TABLE 2-2. POSITION CODS SUX3EPS 

PCX HSTHOO OF CENTER DETERMINATION/GRIPPING 

1 EYE/GEOGRAPHY 

2 EYE/EPKEHERIS 

3 WELL DEFINED CC/GEOGRAPHY 

4 WEIL DEFINED CC/EPHEKERIS 

5 POORLY DEFINED CC/GEOGRAPHY 

6 POORLY DEFINED CC/EPHEKERIS 

CC=Circulation Center 

































TABLE 1-3. KEAS XVI AT I OKS (SM) 0? IKS?, NOAAS, AND TIROS s 
DERIVED TROPICAL CYCLONE POSITIONS FROM JTtiC BEST 
TRACE POSITIONS. SLX3ER OF CASES IS PARENTHESIS. 



WESTPAC 

KESTPAC 

I53IAS CCEAS 


H?4-29?9 AVERAGE 

1980 

1930 

PCS 

CALL SITES) 

(ALL SITES) 

CALL SITES) 

1 

13.5 (193) 

12.2 C 76) 


2 

13.4 t 47) 

16.2 ( 13) 

. 

3 

20.6 J282) 

20.4 (153) 

- 

4 

25.0 ( 96) 

12.9 ( 11) 

- 

5 

37.3 (407) 

39.2 (3131 

35.7 | S) 

6 

46.4 (197) 

33.3 ( 31! 

44.6 02) 

ii2 

14.S (260) 

12.8 ( 89) 

_ 

344 

21.4 (373) 

19.9 (164) 

- 

546 

40.3 (604) 

38.0 (399) 

41.S (20) 


track positions is shewn in Table 2-3. Es¬ 
timates of the cyclone's current intensity 
and a 24-hour intensity forecast are race 
once each day by applying the Dvorak tech¬ 
nique (XOAA Technical Memorandum NESS 45 as 
revised) to daylight visual data. Figure 2-1 
compares these current intensity and fore¬ 
cast intensities with the observed cyclone 
intensities for the 1980 storm season. Sat¬ 
ellite-derived cyclone positions, intensity 
estimates, and intensity forecasts constitute 
the satellite portion of the JT~C forecast 
data base. 

The availability of polar-orbiting mete¬ 
orological satellites declined during the 
year as spacecraft failures plagued the net¬ 
work. Two scheduled launches, one OHS? and 
one XOAA, encountered launch vehicle problems 
that resulted in the failure of the platforms 
to achieve orbit. Therefore, no new space¬ 


craft became available this year. At the 
first of the year, three spacecraft were 
fully operational: DM-SP FTV 13535 (F-2) in 
a aid-norning orbit, NOAA—5 in a sunrise or¬ 
bit, and T1POS-N in a mid—afternoon orbit. 
Further, the KtSP spacecraft FTV 15539 CF-4) 
was operational for late morning passes only. 
Subsequent failures rapidly decimated these” 
ranks. 7I50S-S first failed in late January, 
was recovered in February, but failed for 
good in early November. However. T130S-N 
was operational for most of the Northern 
Hemisphere tropical cyclone season. F-2 
failed in February and F-4 failed in August. 
F-3 (FTV 14537) failed initially in December 
1S79 but was partially recovered in April 
1980. Khile F-3*s coverage was limited to 
center SO percent of the visual imagery only, 
its ascending (daylight) coverage w„s fully 
incorporated into surveillance network oper¬ 
ations, particularly to support the JTVC 



FIR.T.J- M. tr.TZij: Cuv-.t.-.f Intz-Jitg (Cl) c.vj and Fctteasf Jefensifa j FT I r~t—5 
Ica I9JC (Ms cases i. Cesprtisce* are eudt cssins; fit &e« fteci urfattfa rdsm 
« xkich fit Cl’s av-.c used cfceg sUk citctcff teerarissase difa fe dtfesr-use fie 
eesf fcuci ir.UniiUa. [Siaxtfmi med tfe-ir. 1910) 



















OOOOZ warning. Therefore, by the end of the 
season, the only fully operational polar- 
orbiting spacecraft was NOAA-6. 


Depending upon the category, the remainder 
of the format varies as follows: 


Besides fix-s from the network, JTWC also 
received sati ' e-deriveu cyclone positions 
from several secondary sources during 1980. 
These included: the Naval Oceanography Com¬ 
mand Detachment (NOCD) Cubi Point, Philip¬ 
pines; U. S. Navy ships equipped for direct 
readout; the National Environmental Satel¬ 
lite Service (NESS) using NOAA and ’OES data; 
and the Naval Polar Oceanography Center, 
Suitland, Maryland using stored-DMSP and 
NOAA data. Fixes from these secondary 
sources are not included in the network 
statistics. 

5. RADAR RECONNAISSANCE SUMMARY 

Ten of the 28 significant tropical 
cyclones occurring over the western North 
Pacific during 1980 passed within range of 
land based radars with sufficient cloud 
pattern organization to be fixed. The 
hourly and oftentimes, half-hourly land 
radar fixes that were obtained and trans¬ 
mitted to JTWC totaled 413. 

The WMO radar code defines three cate¬ 
gories of accuracy: good (within 10 km 
(5.4 nm)) , fair within 10-30 km (5.4-16.2 
nm)), and poor (within 30-50 km (16.2-27 
nm)). This year, 413 radar fixes were 
coded in this manner; 147 were good, 153 
fair, and 113 poor. Compared’ to the JTWC 
best track, the mean vector deviation for 
land radar sites was 15 nm (28 km). Ex¬ 
cellent support through timely and accurate 
radar fix positioning allowed JTWC to track 
and forecast tropical ’’clone movement 
through even the most difficult and erratic 
tracks. 

The 54 WRS made 2 radar center fixes 
from their WC-130 aircraft when actual trop¬ 
ical cylone penetration was restricted. No 
radar fixes were received on Indian Ocean 
tropical cyclones. 

6. TROPICAL CYCLONE FIX DATA 

A total of 2134 fixes on 28 northwest 
Pacific tropical cyclones and 35 fixes on 
2 northern Indian Ocean tropical cyclones 
were received at JTWC. Table 2-4, Fix Plat¬ 
form Summary, delineates the number of fixes 
per platform for each individual tropical 
cyclone. Season totals and percentages are 
also indicated. 

Annex A includes individual fix data for 
each tropical cyclone. Fix data are divided 
into four categories: Satellite, Aircraft, 
Radar, and Synoptic. Those fixes labelled 
with an asterisk (*) were determined to be 
unrepresentative of the surface center and 
were not used in determining the best tracks. 
Within each category, the first three columns 
are as follows: 

FIX NO. - Sequential fix number 

TIME (Z) - GMT time in day, hours and 
minutes 

FIX POSITION - Latitude and longitude to 
the nearest tenth of a degree 


a. Satellite 

(1) ACCRY - Position Code Number 
(PCN) is used to indicate the accuracy of the 
fix position. A "1" indicates relatively 
high accuracy and a "6" relatively low ac¬ 
curacy. 


TA9LE 2-5 MAYlNUN SUSTAINED WIND SPIED (XT' AS A IWCTICN W DVORAK T NlWER 
AND MINIMUM SEA LEVEL rKESSUW. (KSLD 


THWlCAL CYCLONE 
INTENSITY 


WIND 

srrto 


MU’ 

<NW r>-I . 1C! 


T I 0 




T 2 0 

t 2.5 

T I O 

Hi 
T * 0 
T 4 5 
T i 0 

7(0 
T 6.5 
T ?.0 
T 7 5 
* e o 


JS 

45 

5? 

65 


102 

115 

127 

140 

155 

170 


I0OJ 

•m 

594 

998 

991 

97J 

964 

VI 

942 

929 

915 

900 

S«4 


(2) DVORAK CODE - Intensity evalua¬ 
tion and trend utilizing visual satellite 
data. (For specifics, refer to NOAA TM; 
NESS-45) (Table 2-5). 


5c 


«■ 


s* 


/ 


g 3/9 

o ox 

$ $8$ 


iU 

$ 




°o 

If 

pa 


£ 
8 ° 


* 


I# 

Oi* 


? PLUS 

T ( )/() MINUS/S ( )/( )hrs 
LEAVE W 


EXAMPLE: T5/6 MINUS/W1.5/24hr*. 


(3) SAT - Specific satellite used 
for fix position (DMSP 37 or 39, TIROS-N, 
N0AA6, other, or Geostationary Operational 
Environmental Satellite (GOES, 135W)). 

(4) COMMENTS - For explanation of 
abbreviations, see Appendix. 

(5) SITE - ICAO call sign of the 
specific satellite tracking station. 

b. Aircraft 

(1) FLT LVL - The constant pressure 
surface level, in mb, maintained during the 
penetration. Seven hundred mb is the normal 
level flown in developed cyclones due to tur¬ 
bulence factors. Low-level missions are 
flown at 1500 ft. 

(2) 700 MB HGT - Minimum height of 
the 700 mb pressure surface within the vertex 
recorded in mqters. 











TABLE 2-4 FIX SUMMARY FOR 1980 



AIRCRAFT 

OMSP 

N0AA6 

FIX 

TIROS-N 

SUMMARY 

GOES3 

OTHER 

SAT 

RADAR 

SYNOPTIC 

TOTAL 

WESTERN PACIFIC 

TD 01 

9 

16 

12 

_ 

_ 

14 

_ 

5 

56 

TS CARMEN 

- 

4 

10 

3 

15 

20 

_ 


52 

TV DOM 

24 

34 

27 

2 

_ 

33 

_ 

_ 

120 

TV ELLEN 

25 

26 

19 

2 

- 

25 

_ 

_ 

97 

TS FORREST 

19 

15 

14 

1 

- 

18 

7* 

_ 

74 

TS GEROGIA 

2 

5 

9 

3 

- 

11 

_ 

7 

37 

TS HERBERT 

4 

15 

12 

- 

. 

27 

_ 

5 

63 

TS IDA 

12 

20 

12 

5 

- 

13 

_ 


62 

TV JOE 

13 

13 

11 

2 

- 

21 

3 

2 

65 

TD 10 

- 

4 

6 

- 

_ 

9 

_ 

3 

22 

ST KIM 

23 

16 

16 

3 

- 

21 

_ 

_ 

79 

TY LEX 

21 

22 

21 

1 


29 

_ 

_ 

94 

TY MARGE 

9 

5 

15 

3 

- 

24 

_ 

_ 

56 

TD 14 

1 

1 

4 

3 

_ 

11 

_ 

_ 

20 

TV NORRIS 

12 

2 

14 

12 

- 

21 

41 


102 

TD 16 

3 

1 

8 

3 

. 

7 

_ 

_ 

22 

TV ORCHID 

13 

1 

12 

10 

- 

21 

51 

_ 

108 

TY RUTH 

- 

- 

7 

5 

- 

13 

1 

2 

28 

TV PERCY 

13 

3 

12 

13 

- 

17 

43 


101 

TY SPERRY 

10 

1 

16 

3 

- 

20 

10 


60 

TS THELMA 

8 

• 

8 

8 

- 

22 

_ 

_ 

46 

TY VERNON 

18 

4 

15 

2 

_ 

30 

_ 

_ 

69 

ST WYNNE 

51 

3 

26 

14 

- 

51 

195 


340 

TS ALEX 

6 

- 

10 

- 

- 

14 


_ 

30 

TY BETTY 

36 

3 

26 

4 

_ 

51 

46 


166 

TS CARY 

3 

- 

7 

7 

- 

17 

- 

_ 

34 

TY DINAH 

15 

- 

8 

- 

- 

30 

17 

_ 

70 

TS ED 

16 

- 

15 

- 

- 

27 

- 

3 

61 


TOTAL 366 

214 

372 

109 

15 

617 

414 

27 

2134 

% OF TOTAL 

NO. OF FIXES 17.1 

10.0 

17.4 

5.1 

.7 

29.0 

19.4 

1.3 

100 

* INCLUDES 2 AIRCRAFT RADAR FIXES 










NOAA6 



OTHER 


SYNOPTIC 

TOTAL 

INDIAN OCEAN 









TC 23-80 


12 







TO 27-80 


11 



22 


2 

35 

TOTAL 


23 



22 


2 

47 

% OF TOTAL 

NO. OF FIXES 


48.9 



46.8 


4.3 

100 















































CHAPTER HE - SUMMARY OF TROPICAL CYCLONES 


1. WESTERN NORTH PACIFIC TROPICAL CYCLONES 


During 1980, the western North Pacific 
experienced the second consecutive year of 
below normal tropical cyclone activity. 
Twenty-eight tropical cyclones occurred 
during both 1979 and 1980 as compared to 
the average annual total of about 33. Four 
significant tropical cyclones failed to de¬ 
velop beyond the tropical depression (TD) 
stage and nine tropical storms (TS) failed 
to reach typhoon intensity. Of the 15 trop¬ 


ical cyclones that developed to typhoon (XY) 
intensity, only 2 reached the 130 kt (67 m/ 
sec) intensity necessary to be classified 
as super typhoons (ST). Tropical cyclones 
reaching tropical storm intensity or greater 
are assigned names in alphabetical order 
from a list of alternating male/female names 
found in CINPACINST 3140.1 CH-2. Diffferent 
lists of alternating male/female names are 
used for eastern and central North Pacific 
and North Atlantic cyclones. Each tropical 
cyclone's maximum surface winds (MAX SFC 
WND), in knots, and minimum observed sea 


TABLE 3-1 


1930 SIGNIFICANT TROPICAL CYCLONES 


WESTERN NORTH PACIFIC 


1980 TOTALS 

* OVERLAPPING DAYS INCLUDED ONLY ONCE IN SUM. 


128* 


598 






CALENDAR 

MAX 

MIN 

NUMBER 





PERIOD 

DAYS OF 

SFC 

OSS 

OF 

DISTANCE 

(CLONE 

TYPE 

NAME 

OF WARNING 

WARNING 

WIND(KT) 

SLP 

WARNINGS 

TRAVELLEI 

01 

TD 

TD-01 

20 MAR-24 MAR 

5 

30 

1000 

17 

2439 

02 

TS 

CARMEN 

05 APR-08 APR 

4 

60 

980 

9 

1179 

03 

TY 

DOM 

09 MAY-19 MAY 

11 

9C 

956 

42 

1938 

04 

TY 

ELLEN 

13 MAY-21 MAY 

9 

110 

931 

34 

2423 

05 

TS 

FORREST 

20 MAY-26 MAY 

7 

55 

990 

26 

2451 

06 

TS 

GEORGIA 

21 MAY-24 MAY 

4 

55 

985 

12 

993 

07 

TS 

HERBERT 

24 JUN-28 JUN 

5 

50 

980 

15 

2521 

08 

TS 

IDA 

06 JUL-11 JUL 

6 

60 

980 

23 

1527 

09 

TY 

JOE 

17 JUL-23 JUL 

7 

105 

940 

25 

2541 

10 

TD 

TD-10 

17 JUL-19 JUL 

3 

30 

1000 

7 

1007 

11 

ST 

KIM 

20 JUL-27 JUL 

8 

130 

903 

29 

2661 

12 

TY 

LEX 

29 JUL-07 AUG 

10 

80 

962 

36 

1810 

13 

TY 

MARGE 

08 AUG-15 AUG 

8 

110 

944 

31 

1980 

14 

TD 

TD-14 

15 AUG-16 AUG 

2 

20 

1003 

7 

229 

15 

TY 

NORRIS 

24 AUG-28 AUG 

5 

90 

950 

20 

1710 

16 

TD 

TD-16 

04 SEP-06 SEP 

3 

25 

1002 

6 

776 

17 

TY 

ORCHID 

07 SEP-11 SEP 

5 

85 

958 

19 

2043 

18 

TY 

RUTH 

14 SEP-16 SEP 

3 

65 

975 

13 

60 

19 

TY 

PERCY 

14 SEP-19 SEP 

6 

125 

919 

20 

1260 

20 

TY 

SPERRY 

15 SEP-20 SEP 

6 

65 

987 

22 

2624 

21 

TS 

THELMA 

26 SEP-30 SEP 

5 

55 

982 

16 

1681 

22 

TY 

VERNON 

27 SEP-03 OCT 

7 

105 

935 

25 

2141 

23 

ST 

WYNNE 

04 OCT-14 OCT 

11 

150 

890 

44 

3728 

24 

TS 

ALEX 

12 OCT-14 OCT 

3 

35 

999 

8 

1844 

25 

TY 

BETTY 

29 OCT-07 NOV 

10 

120 

928 

39 

3228 

26 

TS 

CARY 

29 OCT-01 NOV 

4 

40 

998 

14 

1068 

27 

TY 

DINAH 

21 NOV-25 NOV 

5 

100 

941 

17 

3530 

28 

TS 

ED 

16 DEC-21DEC 

6 

50 

988 

20 

815 


10 























level pressure (MIN OBS SLP), in millibars, 
were obtained from best estimates based on 
all available data. The distance travelled, 
in nautical miles, was calculated from the 
JTWC official best track (see Annex A). 


Table 3-2 provides further information 
on the monthly distribution of tropical cy 
clones and statistics on Tropical Cyclone 
Formation Alerts and Warnings. The number 
of warning days decreased from 149 to 128 
from 1979 to 1980. 


TABLE 3-2. 


















1900 

SIGNIFICANT 

TROPICAL CYCLONE STATISTICS 





WESTERN 

NORTH PACIFIC 

JAN 

FEB 

MAR 

APR 

MAY 

JUN 

JUL 

AUG SEP 

OCT 

NOV 

DEC 

TOTAL 

(1959-79) 

AVERAGE 

TROPICAL 

DEPRESSIONS 

0 

0 

1 

0 

0 

0 

1 

1 1 

0 

0 

0 

4 

4.8 

TROPICAL STORMS 

0 

0 

0 

1 

2 

1 

1 

0 1 

2 

0 

1 

9 

10.0 

TYPHOONS 

0 

0 

0 

0 

2 

0 

3 

2 5 

2 

1 

0 

IS 

17.8 

ALL CYCLONES 

0 

0 

1 

1 

4 

1 

5 

3 7 

4 

1 

1 

28 

32.6 

(1959-79) AVERAGE 

.6 


.6 

.9 

1.4 

2.0 

5.2 

6.7 6.0 

4.7 

2.7 

1.4 

32.6 



FORMATION ALERTS 28 of 37 (76%) Formation Alert Events developed into tropical cyclones. Tropical Cyclone Formation Alerts 
were issued for all significant tropical cyclones which developed during 1980. 


Number of warning days: 128 

Number of warning days with 2 cyclones: 37 

Number of warm..*; ^vs with 3 or more cyclones: 3 


















































































































































































TROPICAL 
































TROPICAL DEPRESSION 01 



FIGURE $-01-1. TV Cl at 1 5-20 kt (S-70 n/acc) 
intensity about 500 art (9 26 Cn) scatn-scutjzoesi c . 
Guam, ls'Uaich WO, 01202. (W!SP imagery] 


TD 01 was first detected as an area of 
increased convective activity about 500 nm 
(926 km) south-southeast of Guam cn 16 March. 
During the early part of the year, intense 
convective activity is usually located south 
of the equator. March is the start of the 
transition period when the equatorial trough 
begins to migrate slowly northward. During 
this period, the equatorial trough can oc¬ 
casionally extend into the Northern Hemis¬ 
phere. This extension, however, is normal¬ 
ly short-lived because the southwest monsoon 
has yet to become fully established. Post¬ 
analysis indicates that TD 01 developed from 
a temporary extension of the equatorial 
trough into the Northern Hemisphere. 

The first aircraft reconnaissance mis¬ 
sion into TD 01 on the rooming of 18 March 
reported 15-20 kt (8-10 m/sec) surface winds, 
primarily in the northern semicircle, and a 
minimum sea-level pressure of 1005 mb. 

Based on this information and satellite im¬ 
agery which showed improved upper-level out¬ 
flow in the southeast quadrant (Fig. 3-01-1), 
a Tropical Cyclone Formation Alert (TCFA) 
was issued at 180390Z. 

The tropical disturbance was monitored 
closely for the next 48 hours. The first 
reconnaissance mission also reported a 60 nm 
(111 km) displacement between the surface 
center and the 1500 ft (457 m) center. Sub¬ 
sequent missions discovered a similar dis¬ 
placement between the surface and 700 mb 
centers. This was consistent with the syn¬ 
optic data which showed that strong mid- to 
upper-level southoasterlies were causing 
TD 01 to tilt with height toward the north¬ 
west. 


By the 20th, surface winds in the south 
ern semicircle had increased to 20 kt (10 
n/sec), while 30 kt (15 m/sec) winds were 
observed in the northern semicircle. The 
circulation was better defined on satellite 
imagery, and the MSLP had decreased to 1000. 
mb. Continued development was expected and 
the first warning on TD 01 was issued at 
200600Z. 

Taking into consideration the strong 
vertical wind shear and the fact that March 
is historically a month of minimum typhoon 
development, TD 01 was never forecast to 
reach more than minimal tropical storm 
strength of 40 kt (21 ro/sec). 

From 20 through 24 March, TD 01 follow¬ 
ed a climatological west-northwest track to¬ 
ward Luzon, occasionally showing speed 
changes as it responded to a series of mid¬ 
level short-wave troughs moving eastward 
across the Pacific from the Asian mainland. 

As TD 01 approached southeastern Luzon, 
it began to interact both with a shear line 
extending toward it from the northeast and a 
building high pressure ridge between Taiwan 
and Luzon (Fig. 3-01-2). The net result was 
a flare-up in the convective activity and an 
increase in surface wind speed north of the 
surface center. Although two land stations 
reported 40 kt (21 m/sec) winds during land¬ 
fall on Luzon, the sea-level pressures were 
not observed below 1007 mb. Considering 
the effects of topography, 30 kt (15 m/sec) 
appears to be the best estimate of TD 01's 
intensity at that time. Figure 3-01-2 shows 
that northeasterly winds of 2S-40 kt (13-21 
m/sec) were present north of TD 01 to the 
vicinity of Taiwan. These strong winds were 
being enhanced by TD 01, but were more the 
result of the building high pressure ridge 
off the Asian mainland. Therefore, an ex- 
tratropical wind warning was issued for the 
area by NAVOCEANCOHCEN Guam. 


After making landfall, TD 01 tracked 
slowly westward south of Manila into the 
South China Sea. A TCFA was issued for the 
remnants of TD 01 at 260615Z when improved 
organization of the cloud pattern (Fig. 3- 
01-3) suggested that regeneration might oc¬ 
cur. The disturbance was watched for three 
more days, but ship reports showed nothing 
more than a weak wave in the east-northeast¬ 
erly flow, and the system dissipated rapid¬ 
ly after moving ashore on the Vietnam coast 
near Ho Chi Minh City. 


























FIGURE 3-01-3. The numan:, oj TP 01 in the South 
China Sea shotting signs o{ oegeneoation, 26 Hooch 
I960, 02062. IPHSP inageoy) 














































TROPICAL STORM CASHES (02) 


Tropical Store Careen, the second signi- 
ficant tropical cyclone of the season, eight 
well have gone undetected if it had occurred 
prior to the advent of aetcorological satel¬ 
lite surveillance. Careen developed in and 
tracked through a very sparse synoptic data 
region near the dateline in early April 1980. 
Once organized. Careen's closest point of 
approach to a resorting station (Majuro 
Atoll, WHO 91376) was 450 nm (833 ire). 

During its entire life. Careen was closely 
monitored by the Joint Typhoon Warning Center 
(JTU'C) and the Central Pacific Hurricane 
Center (CPKC) using solar-orbiting and geo¬ 
stationary satellites to confire Careen’s 
existence. 

Available satellite imagery and synoptic 
data indicated that Careen developed in a 
relatively active near-equatorial trough 
(NET) during a period in which a parallel 
disturbance, 7C 20-80 (Wally), wa: developing 
in the Southern Hemisphere. (The tore paral¬ 
lel disturbances is also referred to as 
"double vortices".) Similar to cany previous 
cases, cost recently Typhoon Kin (1977) and 
Typhoon Lucy (1977) and their respective 
Southern Hemisphere cyclones. Careen and 
TC 20-30 took nearly mirror-image tracks over 
open water. In this case, each cyclone saved 
towards its respective pole in response to a 
weakness in each hemisphere's sub-tropical 
ridge. Once organized. Carmen moved north- 
northwest and then, at the ridge axis, began 
its rccurvature to' the northeast. Similarly, 
TC 20-30 coved south* nuthvest until it began 
recurvature to the southeast at the ridge 
axis. Although TC 20-30 accelerated in its 
extratropical transition near 26 degrees 
south latitude. Careen slowed as she moved 
eastward across the dateline. Several days 
later Careen dissipated in the northeast 
trade wind flew south of Make Island. 

The disturbance which became Tropical 
Storm Careen was first detected in satellite 
imagery at 0G00Z on 2 April. By 021SGSZ, the 
area of convection had moved from the equator 
to near 02S 178E. At 020600Z, the Signifi¬ 
cant Tropical Weather Advisory (ABED POTW) 
discussed a surface circulation near 03B 179E. 
The major convection associated with the cir¬ 
culation continued to cave northeast at 10 kt 
(19 ks/hr) east of the dateline. The Central 
Pacific Hurricane Center (CPKC) monitors 
developing tropical cyclones cast of the 
dateline and the responsibility for issuing 
tropical cyclone formation alerts (TCFS) in 
this region belongs to the Sava] Western 
Oceanography Center (KW0C) at Pearl Harbor, 
Hawaii. By 0200Z on 4 April, the organiza¬ 
tion of the disturbance had improved signifi¬ 
cantly and KWOC issued a TCFA for an area 
that straddled the dateline between 04S and 
C8K- At 050000Z, the developing cyclone 
moved west of the dateline, and based on the 
improved satellite signature, the first 
warning on TD02 was issued at that time. 
During the next 43 hours, Careen intensified, 
reaching a peak intensity of 60 kt (31 c/sec) 
at approximately 060000:- Figure 3-02-1 
shows satellite imagery of Carmen at peak 
intensity. Careen then gradually weakened as 
she approached the dateline for a third time 


(second approach from the west). The last 
JTWC warning was issued at 070000Z and the 
CPKC issued its first warning at 070600Z. 
While east of the dateline. Careen continued 
to weaken as her movement slewed to 5 kt 
(9 ks/hr). The final warning was issued by 
CPKC at 090000Z with TB02 near 21. SB 178W. 

Due to Careen's location (near the date¬ 
line) and month of occurrence (April), JTKC 
forecasters had few viable forecasting aids 
to develop their warnings. Climatology and 
analog programs were non-existent for the 
area and season, and the steering model is 
unreliable south of 19B. without the input 
of these valuable aids, the initial warning 
was based on sparse aid-level synoptic data 
and described a north-northwest track with 
recurvature near 17H- This basic track was 
saintained in subsequent JTWC warnings. 
Maintenance of this basic track through re¬ 
curvature provided JTWC with 72-hour fore¬ 
cast errors (210 na (389 ka)) which were sig¬ 
nificantly lower than the 10-year average of 
348 ns (644 km). 

Intensity estimates and forecasts were 
based entirely on the Dvorak method for 
estimating tropical cyclone intensity (1975) 
The first series of Dvorak intensity esti¬ 
mates at 041954Z. 0500002 and 0502332 sup¬ 
ported 35 kt (18 c/sec) maximum winds. How¬ 
ever, upgrading to tropical store status did 
not occur until the 051i"!02 warning. This 
delay is not unusual. Initial warnings tend 
to be conservative because satellite imagery 
of a developing tropical cyclone often 
appears more intense for a brief period be¬ 
fore returning to a more "normal" signature 
for the early development stage. Indeed, 
the Dvorak method has a built in constraint 
which limits initial estimates to T1.5 (25 kt 
(13 m/sec',) or less. The initial Dvorak 
intensities received at JTWC were T2.5 (35 kt 
(18 m/sec)). In post-analysis, the higher 
estimates were supported with the trend 
shewing that TE02 (Carmen) actually reached 
tropical store strength at 041800Z, 6 hours 
prior to the first warning. 



t!S££ 5-CJ-1. TS feme, rest mum te Ztrxltt 
Ci ts tt (31 m/acel, 85 ApUi l?M, 113)2. 

(aSP imtgtty) 


















































TYPHOON DOM (03) 


Dom was the first tropical cyclone that 
developed to typhoon intensity in the west¬ 
ern North Pacific in 1980. Dom had several 
features of interest: a pronounced tilt in 
the vertical axis during the developing 
stages and the execution of a rare anticy- 
clonic loop in the later stages of his 
existence. 

Satellite imagery showed a weak disturb¬ 
ance which first appeared along the near 
equatorial trough on 5 May. The disturbance 
showed no significant development as it 
tracked across the Caroline Islands during 
the following three days. The first investi¬ 
gation by reconnaissance aircraft was sched¬ 
uled on 8 May when a "significant increase in 
convective activity was noted. The weak cir- 


Little change in intensity occurred 
during the next two days, during which time 
the 700 mb circulation was displaced as much 
as 77 nm (143 km) west-southwest of the sur¬ 
face center. This displacement was indica¬ 
tive of marked vertical shear caused by 
strong mid- to upper-level easterly flow. 

Vertical shear remained strong during 
Dorn's early stages of development as he 
moved westward steered by strong mid- to 
upper-level easterlies along the southern 
periphery of the mid-level subtropical ridge 
axis. On 10 May, a mid-tropospheric low 
pressure center developed over the Asia Main¬ 
land, causing the ridge to recede eastward. 
This created a weakness in the ridge near the 



FIGURE 3-03-7. Typhoon Vom at 40 kt 121 m/iec) 
■intimity tracking uiut-norUluomtunad at 4 kt i 77 km/ 
77 May 19SO, 02 13Z. (DMSP viiual imagMtj) 


culation located by the aircraft prompted 
JTWC to issue a Tropical Cyclone Formation 
Alert for an area south of Guam. By the 9th, 
satellite imagery indicated strong outflow 
on the west side of the circulation and 
increased organization of convective cloud 
elements became evident as the disturbance 
continued to develop. As the circulation 
became more organized, reconnaissance air¬ 
craft observed an increase in the surrounding 
surface winds. The first warning on TD03 was 
issued at 090000Z. 


Philippines, allowing Dom to track west- 
northwestward away from the strong mid- to 
upper-level easterlies. With the decrease in 
vertical wind shear, Dorn's axis became more 
vertical and development proceeded. Dom 
reached tropical storm intensity at 101800Z 
as an anticyclone with outflow in all quad¬ 
rants developed at upper-levels. 

A large area of low-level convergence 
formed to the northeast of Dom as evidenced 
by convective activity shown by satellite 


23 





























imagery on the 11th (Fig. 3-03-1). This are 
of convection dissipated as an induced ridge 
formed between Dom and a circulation to the 
southeast of Guam which would later develop 
into Typhoon Ellen. Dom attained typhoon 
intensity at 120600Z. When Dom intensified 
to 90 kt (46 m/sec), he had a large eye 30 nm 
(56 nm) in diameter and his speed of movement 
decreased markedly as he moved away from the 
strong mid- to upper-level easterly steering 
flow. Dom became virtually stationary as 
he drifted slowly toward Luzon with weakening 
commencing due to the decreased moisture con¬ 
tent of the air being drawn into Dom's circu¬ 
lation across the mountainous terrain of 
Luzon. By 141200Z, Dom had weakened to 
tropical storm intensity and was tracking 
northward at 2 kts (1 m/sec) showing indica¬ 
tions of impending recurvature. 

Dom unexpectedly regained typhoon 
strength 24 hours after recurvature. Rein¬ 
tensification was made possible by a lessen¬ 
ing of the land effect and energy provided by 
a tongue of warm water extending north of 


Luzon (Fig. 3-03-2). Dom then tracked north¬ 
eastward south of the area of maximum sea 
surface temperature (SST). A later SST 
analysis (Fig. 3-03-3) showed the decrease in 
SST which is normally observed after the pas¬ 
sage of a tropical cyclone. This decrease in 
SFT is caused primarily by evaporative cool¬ 
ing and the mixing of surface water with 
cooler sub-surface water and, to a lesser 
extent, by the addition of rain water and 
the decrease in solar radiation reaching the 
surface (Brand, 1970). Dom's final decrease 
to tropical storm intensity was due to the 
shearing effect of strong upper-tropospheric 
westerlies and strong low-level easterlies. 
The upper-level center continued to track 
eastward, whereas the surface circulation 
began a rare anticyclonic loop as it tracked 
westward under the influence of the low-level 
easterly flow. At 190000Z, JTWC issued the 
final warning on Dom, although post-analysis 
indicated he ceased to exist as a significant 
tropical cyclone on the 18th. 



FIGURE 3-03-2. Composite, sea surface temperature 
analysis o$ data loom 10-16 Mag 1920, produced by the 
Oceanographic Services Division o$ Naval Oceanography 
Command Center, Guam. 


FIGURE 3-03-3. Composite sea surface temperatwte 
analysis oi data £iom 17-23 Mag 19S0, produced by the 
Oceanographic Services Division o( Naval Oceanography 
Command Center, Guam. 








































Triggered by a mid-tropospheric trough 
which entered the South China Sea, an extra- 
tropical surface low pressure system formed 
south of Japan at 2000002 with the associ¬ 
ated frontal boundary extending to the south¬ 
west of Okinawa. At this time, Typhoon Ellen 
was 600 nm (1113 km) east-northeast of the 
remnants of Dom. On the 20th, both the rem¬ 
nants of Dom and Typhoon Ellen accelerated 
toward the extratropical low along the east 
side of the frontal boundary. By 2112002, 
the three systems had merged to form an 
intensifying mid-latitude storm over the east 
coast of central Honshu, Japan. This deepen¬ 
ing mid-latitude storm tracked northeastward 
along the northern periphery of the mid- 
Pacific ridge. 



























LEGEND 

U_ H 06 HOUR BEST TRACK POSIT 
A SPEED OF MOVEMENT 
B INTENSITY 

C POSITION AT XX/0000Z 
>•• TROPICAL DISTURBANCE 
... TROPICAL DEPRESSION 

- - TROPICAL STORM 

— TYPHOON 

♦ SUPER TYPHOON START 
O SUPER TYPHOON END 
■** EXTRATROPICAL 

••• DISSIPATING STAGE 

★ FIRST WARNING ISSUED 
ft LAST WARNING ISSUED 

























TYPHOON ELLEN (04) 


Typhoon Ellen developed in an active, 
near-equatorial trough west of the Truk Is¬ 
lands on 11 May 1980. Strong upper-level 
divergence over the Caroline Islands and 
a weak 500 mb steering currents, produced by 
a northward adjustment of the 500 mb ridge 
axis to 25N, provided an excellent environ¬ 
ment for tropical cyclone development. Ellen 
was an interesting tropical cyclone from 
several viewpoints. During her existence, 
Ellen underwent rapid initial development, 
abruptly changed track at a low latitude, 
and followed a slow oscillatory motion for 
an 18 hour period. 

Ellen's initial tropical disturbance 
became evident on satellite imagery between 
1112002 and 120000Z. However, a Tropical 
Cyclone Formation Alert (TCFA) was not is¬ 
sued at that time because 1200002 synoptic 
data did not indicate a well-defined surface 
circulation with lowering surface pressures. 

A weakening of the satellite signature during 
the next 12 hours supported this decision. 
Between 121200Z and 1216002, Ellen's satel¬ 


lite signature improved markedly and a TCFA 
was issued. Aircraft reconnaissance at 
130422Z confirmed Ellen's rapid development 
and estimated 45-50 kt (23-26 m/sec) maximum 
surface winds. The first warning was issued 
at 1306002. Post-analysis indicates that 
Ellen reached tropical storm strength at 
1218C0Z. 

Ellen appeared to be following TY Dorn's 
track across the Philippine Sea as she 
tracked initially west over Woleai Atoll and 
then west-northwestward toward Ulithi Atoll. 
On 15 May, Ellen abruptly turned to the north 
and was headed for Japan. By 1500002, she 
was tracking north-northwestward at approxi¬ 
mately 8 kt (15 km/hr) and had intensified to 
65 kt (33 m/sec). At 170000Z, Ellen passed 
220 nm (407 km) west of Guam with maximum 
sustained surface winds of 110 kt (57 m/sec). 
Figure 3-04-1 is satellite imagery during 
this period of Ellen's track. 

After her abrupt turn, Typhoon Ellen's 
surface circulation followed a pronounced 



FIGURE 3-04-1. Typhoon EU.cn shortly a£tcri 
teaching typhoon intensity, 15 Pay 19 SO, 
00542. [VPSP imagety) 

















FIGURE 3-04-2. Typhoon Ulen’i but tfiack 
be.tween 1416002 and 1606002 Hay I960. Solace 
and 700 mb poittboni obienved by aincna^t necon- 
naiuanae, and vectoru between iuccU&ive avi- 
cna&t iixu, one ihown. 


oscillatory motion about a basic north-north¬ 
west track. Surface positions observed by 
aircraft reconnaissance and vectors between 
successive aircraft fixes during this period 
are illustrated in Figure 3-04-2. These 
short term oscillations were difficult to 
interpret and thus made forecasting Ellen's 
movement very difficult. 

As Ellen was undergoing this oscillatory 
motion, aircraft reconnaissance also observed 
that the location of minimum sea level pres¬ 
sure appeared to rotate close to the wall 
cloud in a highly elliptical eye. During the 
same period, Ellen deepened to her lowest 
minimum sea level pressure of 931 mb and 
intensified an additional 45 kt (23 m/sec), 
reaching her maximum intensity of 110 kt 
(57 m/sec). 


This oscillatory motion and uncertainty 
in the position and strength of the 500 mb 
subtropical ridge axis created a significant 
forecast problem. Forecasts of early re¬ 
curvature to the northeast did not material¬ 
ize as Ellen continued on a north-northwest 
track toward Japan. Once north of the ridge 
axis, Ellen recurved between 25N and 30N and 
accelerated northeastward at forward speeds 
in excess of 30 kt (56 km/hr). Following 
recurvature, Ellen weakened rapidly and merg 
ed with an extratropical low pressure system 
south of Honshu. 

Ellen's actual track passed closer to 
Japan than originally forecast due to rapid 
deepening of a mid-latitude trough over 
Japan and rapid intensification of the sub¬ 
tropical ridge east of Japan. In response. 





















29 




















































TROPICAL STORM FORREST (05) 


Tropical Storm Forrest was influenced 
by an unusually large and strong mid-tropos¬ 
pheric ridge which built westward across the 
Philippine Sea following the recurvature of 
Typhoon Ellen. This ridge dominated the 
entire northwestern Pacific and affected For¬ 
rest's direction of movement, forward speed, 
and intensity. 

The majority of TS Forrest's track was 
spent skirting the southern periphery of the 
large subtropical ridge. During the month of 
May, cyclones typically track northwestward 
over the Philippine Sea. However, Figure 
3-05-1 shows that nearly zonal 500 mb flow 
prevailed during this period and forced 
Forrest to track nearly due west. This 
steady zonal flow also pushed Forrest for¬ 
ward at speeds reaching 16 kt (33 km/hr), 
which is 3 times the climatological mean 
speed. 

The strength of the subtropical ridge 
also affected Forrest's intensity. The sub¬ 
tropical ridge raised environmental pressures 
throughout the northwestern Pacific north of 
Forrest. Aircraft reconnaissance consistent¬ 
ly observed winds in Forrest that were 10 to 
15 kt (5 to 8 m/sec) stronger than would be 
expected from Forrest's minimum sea-level 
pressure of 990 mb and the Atkinson and Hol¬ 
liday (1977) pressure/wind relationship (Fig. 
3-05-2). The Atkinson and Holliday relation¬ 
ship indicates that the 55 kt (28 m/sec) max¬ 
im™ sustained winds observed in Forrest 
(Fig. 3-05-3) are typically associated with 
tropical cyclones having a 983 mb minimum 
sea-level pressure. Aircraft reconnaissance 
also observed that Forrest tilted south- 
southwest from the surface to 700 mb. The 
surface and 700 mb centers were displaced as 
much as 35 nm (65 km) at times, apparently 
in response to upper-level northeast flow 
which existed over Forrest. 

Following landfall on Luzon, Forrest 
weakened rapidly while passing approximate¬ 
ly 40 nm (74 km) northeast of Clark AB. 
Highest observed wind speeds at this location 
associated with the passage of TS Forrest 
were in the 10 to 15 kt (5 to 8 m/sec) range. 



FIGURE 3-05-2. Ktkimon and Holliday (1977) 
maximum Auhtained Mtn&ace wind-minimum iea-level 
ptetiune nelationihip. 



FIGURE 3-05-3. Ttopieal Storm F oMUt at maximum 
intensity, 23 Uay 19S0, 23441. T topical Storm 
Geotgia li noting landfall oven ioatheaitetn China. 
(«0M 6 imagery) 



FIGURE 3-05-1. The 2200002 Uay 1930 tlteamline 

analytic o£ 500 mb tasaimonde (-^1 and aia- 

c ia£t neconnaiiiance ( data. The SCO mb 

heights ate plotted in decaaetens and wind ipcedi 
ate in knoti. 


31 























































s3f 




9 


“GEORGIA 


FIGURE 3-06-1. Tapkcci: ECicn, Che icsiar.ti 0 $ T yphocr. Pea, and the initial itage Oj 
T-cpicai Stem Gee 13 in ir. the South China Sea, 19 lily I960, 23322. [ttUW i~agei:jl 


Tropical Stora Georgia is a classic 
example of a tropical cyclone which devel¬ 
oped in the South China Sea during the 
transition period between the northeast and 
southwest monsoon. "Monsoon depressions" 
are often short-lived, difficult to locate 
with precision, and usually have broad, but 
relativilv weak, surface circulation patterns. 
Georgia nay well have reached typhoon stren¬ 
gth if she had been able to remain over open 
water. 


During the latter part of May, an active 
surface trough extended froa near Iwo Jiraa 
southwestward into the South China Sea. Em¬ 
bedded in this trough were Typhoon Ellen, 
near Iwo Jima, the remnants of Typhoon Don 
(an exposed low-level circulation), and the 
weak tropical disturbance which would become 
Tropical Storm Georgia (Fig. 3-06-1). 

Synoptic data first indicated possible 
tropical cyclone development in the South 


33 




















China Sea on the 19th of Hay. Although the 
satellite signature was poor, the synoptic 
data showed a surface circulation with a 
significant pressure drop near the center. 
Based on this data, a Tropical Cyclone For¬ 
mation Alert (TCFA) was issued at 191341Z. 
Figure 3-06-2 is a surface stream? '...3 an¬ 
alysis at 200000Z and illustrates the well- 
defined surface circulation. The correspondr 
ing satellite imagery at about the same time 
still showed a lack of convective organiza¬ 
tion (Fig. 3-06-1). The depression finally 
began to show significant development, and 
the first warning on TD 06 was issued at 
210600Z. 


JTWC forecasters relied heavily on the 
forecast aids which were consistent m in¬ 
dicating northward movement with recurvature 
between the coast of China and the east coas 
of Taiwan. Southerly 500 mb steering winds 
also supported northward movement. 

Figures 3-06-3 and 03-06-4 show the in¬ 
crease in surface inflow and the resulting 
increase in organized convective activity 
that occurred shortly after Georgia reached 
tropical storm strength. 

Only two aircraft reconnaissance mis¬ 
sions were flown on TS Georgia. The first 


njsa 




•nr / 


L»fr : : * 




•PH- 


HI>H CITY 






FIGURE 3-06-2. The 2000002 May 1 9t0 iat&ice 

j-oj/ g-uaKeist K-c) Uvtl 4Cseas- 

tifie in the vicinity T topical 

Stctn Geotgia. Hinds me in knots. 





































mission observed a minima sea-level pres¬ 
sure of 986 mb and surface winds of S3 kt 
(26 B/sec). The second mission could not 
provide a center fix because of restricted 
air space due to Georgia's proximity to both 
China and Hai-nan Island. Two ships, the 
“Clara Maersk* and the “Chevalier Paul*, 
reported winds of SO kt (26 m/sec) and 54 kt 
(28 m/sec), respectively. These observations 
support the best track estimated maximum 
intensity of 55 kt (28 m/sec). 


After making landfall near Shan-tcu, 
Georgia traveled north-northeastward, about 
20 nm (37 km) inland from the coast, event¬ 
ually passing north of Chin-men-tao, which 
reported winds of 44 kt (23 m/sec) with gusts 
to 60 kt (31 m/sec). Rapid weakening occur¬ 
red thereafter as Georgia was absorbed into 
an extratropical low pressure system that was 
moving over the East China Sea from the Asian 
mainland. 



nasE 3-C6-3. He tiesen n*y mo surface 

{--^1/ jaiient (■ ** O te-ti Jtvm- 

lixt is tkt viciriXy o{ Ttcpicsl 

Ste* m Gtstaie. Uiout in bit*. 



FIGUS 3-Ci-t. Ttepiesl Stars Geotgir sX 45 kt 
(23 a/atei UttxuXy, fl K*y 1119. 91 512. (CTCP 
omgety) 

















































TROPICAL STORM HERBERT (07) 


A broad equatorial trough existed on 
18 June stretching from the Philippine Is¬ 
lands to the eastern Caroline Islands along 
5N. Although synoptic data suggested sev¬ 
eral circulations along the trough axis, 
satellite imagery during the following 48 
hours indicated increased convective acti¬ 
vity around the eastern periphery of the 
trough as a result of convergent easterly 
flow. 


At 201200Z, increased convection was 
noted near the primary surface circulation 
east of the Palau Islands. By 211200Z, 
satellite imagery indicated improved organ¬ 
ization with synoptic data revealing incre¬ 
ased southwest gradient level inflow and 
20-25 kt (11-13 ro/sec) wind reports from 
ships northeast of the depression. As a 
result, a tropical cyclone formation alert 
(TCFA) was issued at 211800Z. 

The depression moved west-northwest¬ 
ward toward Leyte in the Philippine Islands 
on 22 June. The mountainous island chain 
was expected to prevent further development 
and the TCFA was cancelled at 221800Z. How¬ 
ever, the potential for significant tropi¬ 
cal cyclone development was expected to 
improve once again as the depression entered 
the South China Sea. 

Thus, with the depression located south 
of Mindoro and moving west-northwestward, 
a formation alert was reissued at 240000Z. 
Aircraft reconnaissance at 240717Z locate . 
a circulation center just west of Busuanga 
Island with surface winds estimated at 40 
kt (21 m/sec) and a minimum sea level pres¬ 
sure of 996 mb. Based on the aircraft data 
and evidence of increased convective acti¬ 
vity on satellite imagery, the first warning 
on Tropical Storm Herbert was issued at 
241200Z. 

In the South China Sea, Herbert track¬ 
ed northwestward toward Hai-nan Island while 
intensifying slowly. Maximum intensity of 
50 kt (26 m/sec) was attained at 250600Z and 
was sustained for the next 24 hours as Her¬ 
bert passed 15 nm (28 km) southwest of the 
Paracel Islands. Peak winds of 46 kt (24 
ra/sec) were reported by the islands at 
260000Z. Landfall on Hai-nan occurred near 
261800Z with maximu.' sustained winds of 45 
kt (23 m/sec). Over ..ai-nan, Herbert track¬ 
ed around the western face of Wu Chih Sham 
Mountain and exited due north into the Gulf 
of Tonkin. A north-northwest track over the 
Gulf of Tonkin ended with landfall south of 
Chin-hsien, China at 280300Z with 45 kt (23 
m/sec) intensity, as verified by land sta¬ 
tion reports. Once over southern China, 
Herbert weakened quickly and dissipated as 
a significant tropical cyclone by 290000Z 
(Fig. 3-07-1). 



FIGURE 3-07-1. Ttiopicnl Stonm HenbeJit at 45 kt (23 
m/aec) intimity making tand^att ov&n. iouthenn China, 
2S June 19SO, 05161. IPMSP imagery ) 


A strong mid-level ridge extending from 
southern China eastward across the Pacific 
along 24N provided the steering flow as Her¬ 
bert tracked steadily along the southern 
periphery of the ridge. The 500 mb analyses 
on 25 and 26 June showed that the ridge ex¬ 
tended westward to near 108E just west of 
Hai-nan Island. Thus, a turn toward the 
northeast was expected following landfall 
over southern China. However, the 270000Z 
500 mb analysis revealed that the ridge act¬ 
ually built westward across southern China, 
resulting in Herbert's westward track during 
his dissipation stage following landfall. 

The definitive mid-level synoptic pat¬ 
tern and steering flow provided JTWC with 
good warning continuity and resulted in 
excellent forecast vector errors of 77 nm 
(143 km), 128 nm (237 kip), and 57 nm (106 
km) for 24, 48, and 72 hours, respectively. 



























TROPICAL STORM IDA (08) 



FIGURE 3-08-1. Tropical Stonm lda intensiiying in 
the Philippine Sea. The discontinuous outea lain- 
band Iclocheise (aom the noathwest to the east) wu 
evident i-rom the cyclone's initial development until 
wakening neoA the Bashi Channel, 6 July 1980, 2Z36Z. 
(WOAA visual image Ay) 


During the first three weeks of July, 
the monsoon trough extended eastward from 
the South China Sea to near 160E. Areas of 
active convection were common during lat 
period with several disturbances eventually 
developing into significant tropical cyclones 
(Ida, Joe and Kim). 

TD 08, the first of these disturbances 
which became organized, formed in the vicin¬ 
ity of two areas of active convection which 
JTWC had been tracking within the trough for 
several days. At 051800Z, satellite imagery 
indicated improved convective organization 
about a surface circulation near 12N 142E. 
Aerial reconnaissance at 060145Z located a 
surface center and observed maximum winds of 
25 kt (13 m/sec). At 060300Z, a Tropical 
Cyclone Formation Alert (TCFA) was issued 
and the initial warning followed at 060600Z 
based on continued organization as indicated 
by satellite imagery. 


Ida’s track never posed a dilemma for 
JTWC forecasters. She initially tracked 
northwest before interacting with a persis¬ 
tent ridge, whose axis was along 28N. 
Maintenance of the ridge throughout Ida's 
lifespan was responsible for the cyclone's 
overall west-northwest track and the ability 
of JTWC to predict landfall within 35 nm 
(65 km) of the actual point as early as 77 
hours prior to the occurrence. As Ida 
approached the western Philippine Sea, her 
forward movement slowed from a maximum of 
18 kt (33 km/hr) to less than 10 kt (18 km/ 
hr) in the Bashi Channel. During this period, 
Ida reached her maximum intensity of 60 kt 
(31 m/sec) and lowest sea level pressure of 
980 mb. As Ida moved through the Bashi 
Channel, she weakened to 45 kt (23 m/sec) and 
then maintained this intensity until making 
landfall on the southeastern coast of main¬ 
land China, just south of Shan-t'ou (WMO 
59316) at 1300Z on 11 July. 

A predominate feature during all but the 
later stages of Ida's track was a strong and 
persistent rain or feeder band. Figure 3-08- 
1 shows this feature on NOAA satellite 
imagery. On 6 July, while Ida was organizing 
southwest of Guam, the Naval Air Station at 
Agana, Guam recorded 1.15 inches (29 mm) of 
rain in 3 hours and a peak gust of 31 kt 
(16 m/sec) as the band passed over the 
island. Subsequent aircraft reconnaissance 
m support of the 072130Z and 090735Z posi¬ 
tion fixes noted increases in the flight 
level winds and temperatures while transiting 
this outer band. These higher flight-level 
temperatures and winds were an apparent 
response to the release of latent heat of 
condensation from extensive convection within 
the band. The mission ARWO 1 on the 090735Z 
fix stated, "The 700 mb center was very weak 
with no strong wind band in any quadrant 
close to the center. It .took us quite a 
while to locate a fairly broad area of light 
and variable winds...The northern end of this 
area was open, and to the northeast we 
observed a broad band of surface winds 
peaking at 85 kt (44 m/sec) situated about 
25 nm (46 km) out." This was not an uncommon 
feature from aircraft reconnaissance data on 
Ida. Generally these maximum winds were 
located in the northeast quadrant, close to 
the rainband. However, the 85 kt (44 m/sec) 
wind was considered to be a transistory 
feature because all other indicators showed 
no reason for a sudden and short-lived 
intensification of the cyclone. 


^CHARLES B. STANFIELD, Capt, USAF: Mission 
Aerial Reconnaissance Weather Officer 
(ARWO). 














































TYPHOON JOE (09) 


Typhoon Joe, the ninth tropical cyclone 
in the Western Pacific region, proved to be 
very predictable. A near static synoptic 
pattern prevailed in the mid- to upper- 
troposphere within the subtropics throughout 
most of Joe's existence. Figures 3-09-1 and 
3-09-2 show the distinguishable traits in 
the structure of the mid- and upper- 
troposphere. As a result of this pattern, 

Joe followed a nearly straight track from 
genesis to dissipation with few exceptions. 

Joe's gen.sis from a tropical disturbance 
into a mature tropical cyclor.e was slow. 
Satellite imagery first indicated a disturb¬ 
ance along the equatorial trough on 14 July 
over the Caroline Islands. Later satellite 
data revealed a gradual increase of convec¬ 
tive activity with an apparent increase in 
organization. As a result of the information 
received from this series of satellite imag¬ 
ery, a tropical cyclone formation alert 
(TCFA) was issued at 2153Z on the 15th. 

The first aircraft reconnaissance of the 
disturbance on the 16th found a weak surface 
circulation which did not extend up to the 
700 mb level. At that time the minimum sea 


level pressure was 1006 mb and the distur¬ 
bance was tracking northwestward at 14 kt 
(26 km/hr). Defense Meteorological Satellite 
Program (DMSP) imager • at 0021Z on the 17th 
suggested that the disturbance was develop¬ 
ing a circulation center that extended at 
least to mid-tropospheric levels (Fig. 3-09- 
3) with strong convective activity located 
west of the exposed surface circulation. As 
discussed by Huntley and Diercks (1980), 
weak developing tropical cyclones often have 
the 700 mb center displaced from the surface 
circulation in the direction of strongest 
convective activity. As the tropical cyclone 
develops and intensifies, the surface circu¬ 
lation moves under the 700 mb center and 
becomes vertically aligned. Later satellite 
data did show that the surface center had 
moved closer to the area of strong convection. 
This sequence of events prompted JTWC to is¬ 
sue the first warning at 0000Z on 17 July for 
Tropical Depression 09. Aircraft reconnais¬ 
sance on the 17th substantiated that the 
disturbance had indeed developed significant¬ 
ly since the 16th and that TD 09's circula¬ 
tion center had extended up to the 700 mb 
level with no significant displacement of the 
surface and 700 mb center noted at that time. 




FIGURE 3-09-3. Typhoon Joe durung hii eanly itagc of, 
development, 17 July 79 SO, 00Z1Z. Amow ihouli loca¬ 
tion of expand Icui-tevcZ ciACtilation center. IDMSP 
imaging 1 


FIGURES 3-09-1 and 3-09-t a/ic on the foltoioing page. 


........ . . . .. . . . 









F-igwie 3-09-2. 300 nb stneamline analysis oX 17 00001 July 19S0. The analysis depicts the synoptic 

pattern icfucfi pievailed dating mch oj Typhoon Joe's existence, mind speeds axe in knots. 










































TD 09 developed rapidly from that point and 
was upgraded to Tropical Storm Joe on the 
18th. ”vphoon strength was attained on the 
19th. 

As mentioned earlier, Joe tracked along 
a nearly straight tuur;c through much of his 
existence. His forward speed of movement 
was rapid and nearly constant, even while 
passing over Luzon. This unusually persis¬ 
tent track and high speed of movement was 
correlated with an abnormally strong mid- 
and upper-tropospheric subtropical ridge. 

The subtiopioai ridge at both levels deviated 
significantly from the climatological norm. 
The 200 mb anticyclone, normally located over 
the China mainland, extended further east to 
the north of Joe's track and south of Japan 
(Fig. 3-09-1). Similarly, the mid-trcpo- 
spheric ridge was to the north of Joe's 
track and was much stronger than normal 
(Fig. 3-09-2). 

This pattern did not significantly 
change during Joe's lifetime, except briefly 
while he was first developing into a tropi¬ 
cal depression. Joe's track took a slight 
northwestward jog in response to a short 
wave trough which weakened the mid- to upper- 
tropospheric ridge. This short wave trough 
quickly passed eastward and the ridge built 
back north of Joe. 

Six hours prior to landfall over Luzon, 
Joe attained an intensity of 105 kts (54 ra/ 
sec) with a minimum sea level pressure of 
940 mb at 12002 on 20 July. Joe weakened 
rapidly to tropical storm strength while 
crossing Luzon, but still remained very 
destructive. As he tracked across the moun¬ 
tainous terrain of Luzon, where peaks 
approach 10,000 ft, the track deviated 
slightly, becoming more westward. It took 
just over 6 hours for Joe to cross Luzon, 
but in that short time, the Philippine 
Islands were inundated by heavy rains which 
produced massive flooding and resulted in 
extensive crop and property damage. 


Approximately 177,000 people were loft home¬ 
less and 19 deaths were reported. Exact 
figures could not be compiled in time duo to 
Typhoon Kim which hit the Philippines within 
a week of Joe, compounding destruction that 
the Philippines had already suffered. No 
significant damage was reported to U. S. 
military installations in the Philippines. 

Upon entry into the South China Sea, 

Joe reintensified to typhoon strength. 

Before this time, JTKC expected Joe to track 
northwest onto the Asian mainland about 
100 nra (185 km) west of Hong Kong and 
dissipate. The mid- and upper-tropospheric 
ridge, however, extended westward, causing 
Joe to continue on a west-northwest track 
toward Vietnam. Also, from the time Joe 
entered the South China Sea through dissipa¬ 
tion, he maintained a rapid speed of move¬ 
ment due to the strong ridge to the north. 
Typhoon Joe attained a second maximum inten¬ 
sity of 90 kt (46 m/sec) as determined by 
Dvorak analysis of satellite data (Fig. 3- 
09-4). At the time of maximum intensity, 
the radius of winds greater than 30 kt (15 
m/sec) extended 450 nm to the east of Joe's 
center, covering most of the South China Sea 
north of 10N. While transiting across the 
South China Sea, Joe devastated the coastal 
regions which paralleled his track. Much 
damage to crops and property occurred in 
southern China due to flooding caused by 
torrential rains. Joe also loft many home¬ 
less and claimed more lives while tracking 
toward Vietnam. 

Satellite imagery showed that Joe had 
an eye as he made landfall near Haiphong, 
Vietnam. During this period, winds were 
reported in excess of 70 kt (36 m/sec) by the 
Vietnam News Agency. After landfall, Joe 
dissipated rapidly due to land and vertical 
wind shear effects. The final warning was 
issued by JTKC at 0000Z on 23 July as the 
remnants of Joe began to dissipate over the 
mountains of Laos. 



FIGURE 3-59-4. Typhoon Joe a$te.x neinteji&i$ying to 
90 kt (45 »/lcc! in the South China Sea, V July 
mo, 23472. (IWSP vrayeAy) 



















































































TROPICAL DEPRESSION 10 



FIGURE 3-10-1. Tropical Depression 10 110 ran 1407 km) 
wj t-ncrthwcs t ej Manila 13 hours prior to is suance 
0 $ iirst warning. Heavy convection is located two de¬ 
grees west O; Vie suriace circulation, 17 duty 17 to, 
01032. (PMSP imagery) 



FIGURE 3-10-1. Tropical Depression 10 115 na (393 fax) 
south o{ Hong Kong with low-level circulation partial¬ 
ly exposed due to strong vertical wind shear, 17 July 
1910, 7334Z (S0AA3 imagery). Hind barbs represent 
aircraft and radiosonde reports near the 100 mb 
level at 1711602. 


45 


4»*w% 

































SUPER TYPHOON KIK (11) 


Super Typhoon Kira, one of the raost in¬ 
tense typhoons of the 1980 season, slammed 
onto the eastern coast of Luzon four days 
after Typhoon Joe had practically iraaobil- 
ized the area. Accounts of the aftermath 
of Typhoon Kim indicated that an estimated 
15 people were killed and 167,000 residents 
of the Philippines were displaced. Torren¬ 
tial rains caused nassive flooding over 
Luzon as far south as Manila 

Kira, the first super typhoon of the 1980 
season, was first detected on satellite imag¬ 
ery on 19 July. The disturbance appeared 
as an area of enhanced convection embedded 
in the near-equatorial trough. Further in¬ 
tensification appeared likely as the tropi¬ 
cal upper-tropospheric trough (TUTT) was 
positioned to the northwest of the convec¬ 
tive area. Because the disturbance was in 
a favorable position for continued develop¬ 


ment, a Tropical Cyclone Formation Alert 
(TCFAJ was issued at 192040Z. Aircraft re¬ 
connaissance data at 2008002 indicated a 
well-defined closed surface circulation with 
wind speeds of 25 to 30 kt (12 to 15 n/sec) 
and a central pressure of 1001 mb approxi¬ 
mately 360 nra (667 kn) southeast of Guam. 
Based on this data, the first warning on 
TD 11 was issued at 2012002. 

TD 11 initially coved west-northwestward 
passing approximately 240 nn (444 kra) south 
of Guam before heading directly towards the 
island of Ulithi. At 2112002, TD 11 passed 
directly over Ulithi, which reported a wind 
maximum o' 35 kt (18 ra/sec). This informa¬ 
tion, plus a subsequent aircraft report of 
a central surface pressure of 997 rab, promp¬ 
ted JTKC to upgrade TD 11 to Tropical Storm 
Kim at 2118002. Aircraft data at that time, 
however, indicated that Kira was poorly alig- 


MSLP/THETA E TRACE 


FIGURE 5-JI-J. Tine OWiS-SCcUcn c j Kir. i ainuxan 
ica-tcveZ pitiiiwe vc-Witi 700 rb equivalent peten- 
tiat terpmatuat (THETA E ((?_.)) at derived jten all 
cxaSZ rccrnuaiiiancc data. 









































HP 


v. 


9 '» 


■f 




tlGUKt 5-11-2- Typhoon Kim at appAoximatety 110 
fcf (57 ra/aec) intensity be£ote iht leached supeA 
tuphocn stienytk, 24 July I9S0, 012 52. IDW imagery) 


ned in the vertical, with the 700 mb center 
well to the southeast of the surface center 
and the 700 tab wind flow largely disorgani¬ 
zed. Therefore, further intensification was 
slow during the 22nd and 23rd. During this 
period. Kin followed a path sinilar to Ty¬ 
phoon Joe across the Philippine Sea, track¬ 
ing west-northwestward along the southern 
periphery of the subtropical raid-troposphe¬ 
ric ridge. 

At 2306002, aircraft reconnaissance 
observed a fairly substantial drop in 
surface pressure to 979 mb and indications 
that an eyewall was partially forming. Upon 
receipt of the data, which signalled the 
beginnings of a period of more rapid 
intensification, Kira was upgraded to a 
typhoon. 


During this period of falling pressures 
and corresponding intensification, an 
eopirically derived forecasting aid (Fig. 
3-11-1) proved very valuable to JTKC. This 
forecasting aid relates surface pressure and 
700 mb equivalent potential temperature (6 e ) 
to future intensification. The hypothesis 
is that rapid intensification is likely to 
take place in a tropical cyclone within the 
next 12 to 36 hours after these two traces 
intersect. Typhoon Kira's intensification 
trend verified this study. 

At 241603Z, a minisura sea level pressure 
of 908 sb was measured by dropsonde. This 
pressure was sufficiently low to qualify 
Kira as a super typhoon (Fig. 3-11-2). By 
the next aircraft penetration, however, Kira's 
central pressure had risen to 918 sb. A 




























possible reason for this rise in pressure 
was that Kin was now only eight hours frof 
landfall on the coast of Luzon and the 
nountaineus terrain had begun to disturb 
Kin's low-level inflow. Shortly afterwards, 
at about 250000Z, Typhoon Kin soved onto 
the coast of Luzon (Fig. 3-11-3) with accon- 
panying naxusun sustained winds of 100 kt 
(52 n/sec) and reported wind gusts as hiqh 
as 125 kt (64 r/sec). 

Terrain further weakened Kin as she aoved 
slowly across Luzon before eaerging in the 
South China Sea as an ill-defined tropical 
storn. JTKC forecasters expected Kis to 
reintensify as a typhoon over the South China 
Sea sinilar to Joe only several days earlier. 


Aircraft reconnaissance, however, continued 
to report that Kin lacked significant organi¬ 
zation and that her associated convective 
tops were significantly iower than previously 
observed. 

A weakness in the aid-tropospheric ridge, 
thought to have been induced by Typhoon Joe's 
passage several days earlier, allowed Kiss to 
track sore northwest towards Hong Kong, 
Changing little in direction or intensity 
as she tracked across the South China Sea, 

Kin finally made landfall on the coast of 
China 90 na (167 kn) northeast of Hong Kong 
at about 2T0600Z. Kaxicun sustained winds 
of 45 kt (23 a/sec) and wind gusts to 60 kt 
(31 n/sec) were reparted as Kin soved inland. 



FIRSt 3-11-5. Tspecce Kia eves tkt Ciif ces it cl 
Iuzck, Fhilipp-ir.ti sM tkt tosasfa c£ Tapkccr. Jst 
in tkt vitiaiXa cl nettk tan tans, *5 Joia HIS, ttttZ. 
(UTM 6 ixjcxa 3 


49 






















































TYPHOON LEX (12) 


Typhoon Lex was the mjst difficult 
tropical cyclone to forecast during the 
entire 1980 season. This typhoon de¬ 
veloped from a Tropical Upper Tropospheric 
Trough (TUTT) near 22N 152E and initially 
moved westward. From this point. Lex made 
five right ar.g’e or greater turns and exe¬ 
cuted one tight cyclonic loop before finally 
heading northeastward into the western 
Pacific east of Japan. The only saving 
grace was that Lex remained well away from 
major landmasses and did not affect any 
military installations ashore or afloat. 

Lex was first observed as a small dis¬ 
turbed area of convection on 24 July. The 
first satellite position fix at 260600Z 
placed the disturbance approximately 125 nm 
(230 km) south-southwest of Marcus Island. 
The disturbance moved almost due west 
(Fig. 3-12-1), and a Tropical Cyclone Forma¬ 
tion Alert (TCFA) was issued at 281500Z 
when the satellite signature improved. The 
first warning was issued for Tropical De¬ 
pression (TD) 12 at 290600Z after aircraft 
reconnaissance located a surface circulation 
center with a central pressure of 1002 mb 
and estimated maximum surface winds of 35 kt 
(18 m/sec). Twelve hours later, as the 
satellite signature continued to improve, 
the cyclone was upgraded to Tropical Storm 
Lex. 

During the early development stage, a 
deep steering current was not evident above 
Lex. However, a broad 200 mb trough to the 


north-northeast seemed to have the strongest 
influence and turned Lex from a westward to 
a northeastward track. As the upper trough 
moved eastward, a middle-and upper-level 
ridge built northwest of Lex. The steering 
currents veered from southwesterly to north¬ 
easterly in response to the intensifying 
subtropical ridge, and Lex turned to a south- 
westward track. 

Lex continued to intensify slowly dur¬ 
ing his southwestward movement, reaching ty¬ 
phoon strength of 65 kt (33 m/sec) at 
310600Z. Shortly after 020000Z, Lex again 
changed direction and headed on a northward 
track through a break in the subtropical 
ridoe. The break developed as a trough 
deepened to the north over the Sea of Japan. 
At the same time, anticyclonic cells inten¬ 
sified at all levels to the southeast and 
west-southwest of Lex. 

Lex executed a cyclonic loop while ac¬ 
celerating northward and, before completing 
the loop, reached his maximum intensity of 
80 kt (41 m/sec). The satellite signature 
for Lex at maximum intensity is illustrated 
in Figure 3-12-2. Upon exiting the loop. Lex 
continued tracking north until a deep surface 
low and associated cold front began moving 
eastward across Japan. As the frontal system 
approached from the west. Lex commenced re¬ 
curvature to the northeast and accelerated 
slightly. The slow entrainment of cold air 
caused Lex to weaken and transition into an 
extratropical system. The last warning was 
issued for Lex at 070000Z August 1980. 



FIGURE 3-12-1. lex m a txopicaC di&tu/ibance. paio/i 
to iauance. o& a TCFA, 27 J aty 19 SO, 00261. (PMSP 
imagery) 


FIGURE 3-12-2. Typhoon Lex at maximum intensity o( 
SO kt (41 m/iec), 2 Augiut 19SO, 22422. Iux> Jim ii 
about 155 nm (2S5 km) wut o& Lex. (H0AA6 image*y) 




































140* 145* 150" 155" 160*_I6ff 


170' 


175" ISO* 


i 

TYPHOON MARGE 

BEST TRACK TC-13 

08 AUG-15 AUG 1980 

MAX SFC WIND 110 KTS , , 

MINIMUM SLP 944 MBS 


1 i l i 



■ ; 


—i—i—i—i— 

a a, 

s—3 


—i—wd—i— 

> 5 f Y ■ 
i.\“\ ,5 \ 

¥ • 

i 29 
" 2i 1 

> 

■ Q‘ 

■ \ 

_1_1_1-l- 

— i—j—i—i— 

I5C 

1 'X -* 9 



-95 

" -TOO 

. 



"110 . 





40 


lGS 1 17CP 17b' 


1—I—I—t- 




1— I- 


1 I I I- 


35' 


30* 


-I- l-t- 


25* 


20 ° 


-i—I—I—1~ 


-I- I - I—<- 


H—1—i—1- 


1—I—H 


LEGEND 

H-i-M 06 HOUR BEST TRACK POSIT 
A SPEED OF MOVEMENT 
B INTENSITY 

C POSITION AT XX/OOOOZ 
... TROPICAL DISTURBANCE 
... TROPICAL DEPRESSION 

-TROPICAL STORM 

- TYPHOON 

SUPER TYPHOON START 
O SUPER TYPHOON END 
0*0 EXTRATROPICAl 
... DISSIPATING STAGE 
4r FIRST WARNING ISSUED 
■Jit LAST WARNING ISSUED 


15" 


10 ° 


0° 


52 
























TYPHOON MARGE (13) 


Marge was the sixth tropical cyclone • 
reach typhoon strength during 1980. She 
developed west of the Marshall Islands in 
an area that had shown considerable insta¬ 
bility since Typhoon Lex passed through 
the area in late July. 

The convection that signaled Marge's 
formation first appeared on satellite imag¬ 
ery at 051200Z August 1980. Because of 
continual intensity variations in the con¬ 
vection, the tropical disturbance was not 
considered suspect until 060600Z when it 
was first mentioned in the Significant Trop¬ 
ical Weather Advisory Bulletin (ABEH PGTW). 
Through most of this period, the convection 
was embedded in a broad easterly flow. Ty¬ 
phoon Lex still displayed considerable 
influence over the region, causing the 
usual easterly current to be diverted 
northward over the Mariana Islands (Fig. 3- 
13-1). By 060000Z, Lex had moved far enough 
to the north that his influence over the 
easterly flow had weakened and the surface 
flow had split. One current was still 
drawn northward toward Lex, while the other 
current curved southward between the Mar¬ 
shall Islands and the Northern Mariana 


Islands. The southern current was drawn 
back into a broad low-level circulation 
between the eastern Caroline Islands and 
the Marshall Islands (Fig. 3-13-2). Satel¬ 
lite imagery showed an increase in convec¬ 
tion corresponding to this change in the 
flow pattern. 

Convective activity appeared to con¬ 
solidate near 15N 159E by 061600Z. The 
convective area continued to expand and by 
070000Z covered an area nearly 5-degrees 
square, with the most intense activity re¬ 
maining near 15N 159E. Fost-analysis shows 
that Marge formed during the period bet #een 
070000Z and 071200Z. An evaliation of the 
satellite imagery for this time period in¬ 
dicates that tropical depression stage was 
attained at 070600Z. By 071200Z, a north- 
south trough oriented along 160E was ana¬ 
lyzed at the surface/gradient level. The 
circulation associated with Marge appeared 
to be part of this trough (Fig. 3-13-3). 

The first reconnaissance into Marge, at 
080533Z, observed surface winds of 35 kt 
(18 m/sec) and a central pressure of 998 mb. 
Based on these data, the initial warning on 



FIGURE 3-13-1. Tfce 0312001 A uguit MO aua^oce 

I- /gruuiient-lzvet [ddd< -c£(j icind data 

and AVitamtu te anatyiii. Wind tpezd/i am in knott. 






































FIGURE 3-13-3. T/ic 071200Z Auguit 19SO au^oce 

f-vj /gradient-tzvcl lddd< -c^J wind data 

and AtAcajntinc. anaXytit. Hind ipeedt a-li in knoti. 


Tropical Storm Marge was issued at 080800Z. 


Marge initially followed a generally 
west-southwestward track. Objective fore¬ 
cast aids showed considerable scatter at 
this stage, a common occurrence during the 
formative stages of a tropical cyclone. A 
mid-tropospheric ridge was analyzad to the 
north of Marge. The key questions at that 
time concerned the status of this ridge, 
i.e., was it strong enough to keep Marge on 
a west-southwestward track, or was there a 
weakness which could allow her to recurve to 


the north-northwest. The 080000Z 500 mb 
streamline analysis (Fig. 3-13-4) indicated 
that Marge was located in a col, thus provi¬ 
ding a channel for a more northerly track 
than predicted by climatology. The 500 mb 
reconnaissance data provided by the 54th 
Weather Reconnaissance Squadron north of 
Marge proved very valuable in locating this 
col. A sequence of satellite fixes between 
081600Z and 082330Z was the first indication 
that Marge was reacting to the weakness in 
the ridge and had started a northward turn. 

A 090300Z satellite position fix, combined 
with aircraft fixes at 090615Z and 090839Z, 
confirmed the northward track. 






















































Marge continued northward for 17 degrees 
of latitude on a track between two centers 
in the subtropical ridge. During the north¬ 
ward trek, Marge intensified to typhoon 
strength which she maintained for nearly 5 
days. A minimum sea-level pressure of 941 
mb supported a maximum intensity of 110 kt 
(56 m/sec) (Atkinson and Holliday, 1977) for 
18 hours (Fig. 3-13-5). 


By 131200Z, Marge began to encounter 
strong upper-level westerlies. A second 
course change accompanied by gradual acceler 
ation and weakening began at that time. 

Marge tracked east-northeastward and contin¬ 
ued to accelerate under the influence of the 
strong mid-latitude westerlies. The final 
warning on Marge was issued at 151800Z as 
she transitioned into an extratropical cy¬ 
clone and merged with a mid-latitude lew 
pressure system. 



FIGURE 3-73-5. Viiual laXeltLU imagvuj Typhoon 
Uaigz just aiWi leaching maximum intensity and 
minimum sea-tivei plCMuit, 7 0 Auguit 79 $0, 21241. 
IH0AA6 imageAy) 


57 
























































































































TYPHOON NORRIS (15) 


The near equatorial trough was reestab¬ 
lished between Guam and Ponape as Typhoon 
Marge moved northward toward Marcus Island 
on 10 August. A weak surface circulation 
developed along the trough axis south of 
Guam and slowly drifted toward the Philippine 
Islands over the next two weeks. Although 
this disturbance never developed into a sig¬ 
nificant tropical cyclone, it played a major 
role in delaying the intensification of a 
disturbance that tracked westward from Wake 
Island and eventually became Typhoon Norris. 

A deep Tropical Upper-Tropospheric 
Trough (TUTT) was first analyzed on the 
151200Z 200 mb analysis over the Marshall 
Islands from Wake Island southvestward to 
Truk. Sparse surface data gave no indica¬ 
tions of a perturbation in the low-level 
tradewind flow at that time. 

For the next seven days, the TUTT and 
associated convective activity to the south¬ 
east migrated slowly westward. Figure 3-15-1 
depicts the position of the TUTT in relation 
to the area of enhanced convection that even¬ 
tually developed into Typhoon Norris. It was 
not until 211200Z that the upper-level dis¬ 
turbance was reflected at the surface as a 
weak circulation. 

The increased convection and resultant 
heating of the upper troposphere, as the 


disturbance approached a position north of 
Guam, is graphically illustrated in Figure 
3-15-2. The streamline analysis reveals the 
development of a sharp ridge which built 
northeastward toward Marcus Island and even¬ 
tually split the TUTT into two cells. By 
230000Z, an upper-level anticyclone had 
formed over the surface disturbance, and, as 
the disturbance continued to organize, a 
Tropical Cyclone Formation Alert was issued 
at 230900Z. The preceding discussion illus¬ 
trates the initiation of a tropical cyclone 
induced by upper-level divergence and 
enhanced convection southeast of the TUTT 
cell (Sadler, 1978). Norris tracked virtual¬ 
ly straight west-northwestward at an average 
speed of 12 kt (22 km/hr) from the time of 
first warning as a tropical depression at 
240200Z until landfall on northern Taiwan at 
271600Z. This straight track was due to the 
strong mid-level subtropical ridge which 
extended along 27N from southern China east¬ 
ward to the International Dateline during the 
latter part of August. 

The circulation mentioned earlier near 
the Philippine Islands prevented Norris from 
developing and intensifying more rapidly. 

The surface flow pattern was split between 
the two circulations until 260000Z when the 
other circulation finally went ashore over 
Luzon and dissipated, with all t’e low- 
level inflow now available, Norris intensi- 



FIGUSE 3-15-1. 210000Z August 19SO 200 c* streamline 

analysis superimposed on satellite imagery at 2022001. 
This $igwrc depicts convective activity aiiociatcd 
:cith upper-level cyclonic cixcutations and the 
enhanced convection southeast the TUTT that even¬ 
tually developed into Typhoon Norris. W0AA6 imagery) 


61 

























MARCUS 





A 

v/ hjtite 



rj* | 







k. I 1 / / / ‘ 

[a % / 



ir \ L\ / / / 


• 2*. . 



-g L-w- Mi * 

'•» **>T 



FIGURE S‘ls-2. 2200001 August 19SQ 200 nb St', coniine 

analysis SupCXinpOSCd on satellite inagcxu at 2121001. 
This (iguxe iltustxates convective heating schich 
built a slump xidge to the east c£ the TUTT celt. 

This '.edge pushed the TUTT nextlattixd and eventually 
split it into two celts. l-WAAS inagexgl 


fied quickly froa SO kt (26 a/sec) and 985 cb 
at 260000Z to a peak of 90 kt (46 ia/sec) and 
950 isb about 36 hours later. 


Norris' equivalent potential tesperature 
(9 e ) and minimum sea-level pressure (ML5P) 
curves intersected at 2600002. Using JTKC's 
6 e /KSLP study (see discussion on Super 
Typhoon Kim), Norris' sea level pressure was 
expected to fall 44 nb and maximum surface 
winds to increase 55 kt (28 n/soc) beyond 
that point. It seems very likely that this 
intensification would have occurred if land¬ 
fall on Taiwan had not taken place within 42 
hours. 

The well-established aid-level ridge 
north of Norris, with a strong high pressure 
cell located between Taiwan and Okinawa, was 
responsible for the cliaatological west- 
northwestward track with Norris skirting the 
northern tip of Taiwan. However, with Norris 
500 na (926 ka) southeast of Taiwan, the 
260000Z 500 ab analysis indicated that the 
ridge was beginning to weaken between Taiwan 
and Okinawa with the high pressure cell 
retreating northeastward to a position east 
of Okinawa. By 261200Z, a definite break in 
the ridge was evident with the high cell now 
over the Bonin Islands and a secondary cell 
located near 25N 112E over southern China. 

The numerical forecast series during this 
period also supported the persistence of this 
break. Thus, JTKC's warnings after 260000Z 
were consistent in forecasting recurvature 




FI (SEE 5-15-5. Typhoon he‘.'.is 20 nr. (57 cs] south¬ 
east o£ yonagunejira i -VC station 4 7012} and 95 nr 
(!75 fas) southeast c£ Taipei r.ea\ peak intensity ci 
90 tt 146 m/secl. 27 August 19i0. 10612 IKCAAi ’ 
inagexg}. Ycnagunijisx xepexted sustained scinds cl 
SO kt (41 r/jccJ one hoax latex. 


62 


■mturnihj. 





















































































































■®«pr 



i i 


' 1 


; f 


TROPICAL DEPRESSION 16 
AND TYPHOON ORCHID (17) 



•r?. i. ‘ 


FIGURE 3-17-1, Satellite imagery ihowing extemive 
uno.igaiu.ztd conviction in the vicinity of Guam, 05 
Septembe A 19S0, 21502 IN0AA6 imagery). Thii imagery 
along with iynoptie and aincaaft data Aupponted the 
decision to iiiue the final wanning on TP 16. The 
ineAeaicd convection eait and noath of, Guam alio a- 
tented TTWC to the poaible development of another 
diitunbancc between Guam and Saipan. 


The discussion for Typhoon Orchid would 
be incomplete without reviewing the brief 
life of Tropical Depression 16. Both systems 
developed near the eastern extension of the 
monsoon trough. The dissipation of Tropical 
Depression 16 was followed by the subsequent 
development of the disturbance which became 
Typhoon Orchid. The influence of the monsoon 
trough was investigated to explain the struc¬ 
ture of these cyclones and, ultimately, to 
offer an explanation for Orchid's most unusu¬ 
al behavior south of Japan. 

During the first few days of September, 
the monsoon trough was evident as far east as 
160E along 05N. Satellite imagery on 2 Sep¬ 
tember indicated increased convection near a 
weak circulation at the eastern end of the 
trough. The first of two formation alerts 
was issued at 0214002. Further development 
was not observed on satellite imagery during 
the next 36 hours. A reconnaissance aircraft 
at 0401552 located a closed surface circula¬ 
tion with 25 kt (13 m/sec) maximum winds and 
a minimum sea-level pressure of 1002 mb. The 
first warning on TD 16 followed at 0406002, 


and during the next 42 hours, JTWC tracked 
the depression as it moved west-northwestward. 
Aircraft investigations during this period 
showed a largely unorganized system. Unlike 
the investigation at 040155Z, these investi¬ 
gations repeatedly suggested that multiple 
centers existed in the area. Post-analysis 
indicated that sometime during the 42-hour 
period, the surface center associated with TD 
16 weakened within the trough while JTV'C con¬ 
tinued to follow a persistent convective cen¬ 
ter to the west. 

Although TD 16 continued to weaken, warn¬ 
ings were still issued because the potential 
for significant tropical cyclone development 
remained high in the region. Another distur¬ 
bance eventually developed northeast of TD 16 
as TD 16 weakened. Satellite imagery re¬ 
ceived at 0521502 (Fig. 3-17-1) shewed that 
the entire area near Guam was under extensive, 
but apparently unorganized convection. The 
final warning was issued for TD 16 when air¬ 
craft reconnaissance at 060050Z failed to lo¬ 
cate a significant surface circulation. 


66 


r 


1 yMfti ij i, 








By 060000Z, satellite imagery indicated 
that a tropical cyclone formation alert was 
required for a rapidly developing disturbance 
just north of Guam. A reconnaissance aircraft 
investigated the disturbance at 060120Z but 
was unable to close a surface circulation. 

The aircraft and synoptic data showed an ex¬ 
tensive light and variable wind area extend¬ 
ing more than 100 nm (185 km) west of the 
disturbance. Synoptic data, nevertheless, 
indicated that gale force winds (greater 
than 33 kt (17 m/sec)) existed in the east¬ 
ern semicircle of the disturbance. After 
coordination with forecasters at Naval Ocean¬ 
ography Command Center, Guam)-, a gale warn¬ 
ing was issued for the area. The first warn¬ 
ing for Tropical Storm Orchid was issued at 
070200Z. This warning was based on aircraft 
reconnaissance at 070005Z which observed 45 
kt (23 m/sec) surface winds in the northeast 
quadrant of the storm. The same aircraft ob¬ 
served only 10-15 kt (5-8 m/sec) northwest 
winds in the western quadrant, indicating 
that a closed surface circulation existed 
only for 6-12 hours before the first warning 


on Tropical Storm Orchid. 

During the five-day period from 02 to 
08 September, the axis of the monsoon trough 
moved from 05N to 18N. A near equatorial or 
buffer ridge developed at low latitudes and 
extended from the Philippines to the east of 
Orchid. The pre-existing subtropical ridge 
north of Orchid and the presence of the near 
equatorial ridge provided a broad wind band, 
which extended counter-clockwise from the 
south-southwest of Orchid to the northwest 
at distances as far as 800 nm (1482 km) from 
Orchid's center. A composite surface stream¬ 
line analysis from 07000Z to 091200Z indi¬ 
cates that this pattern maintained itself, 
virtually unchanged, during a 60-hour period 
during which Orchid moved west-northwest at 
12 kt (22 km/hr). Figure 3-17-2 shows this 
pattern with the 081200Z surface wind field 
around Orchid superimposed. After 091200Z, 
the northwest wind component strengthened 
around Orchid as the monsoon trough began in¬ 
teracting with a mid-latitude trough in the 
east China Sea. 



FIGURE 3-j7-2. A compolite luniace itneamtine anal- 
yiii oi the mcnioon trough baled on data coltected 
(nom 0100001 to 0912001. The 0812002 lineamUnei 
(daihed tiaell ane lupenimpoied ion. Onchid. 


1 The Joint Typhoon Warning Center functions 
operationally under the command of the Naval 
Oceanography Command Center, Guam (NOCC). 
Destructive wind warnings for the western 
North Pacific are included in the services 
provided by NOCC. 


67 




































Although TD 16 and Typhoon Orchid de¬ 
veloped in the same location with respect to 
the monsoon trough, it now appears that TD 
16 failed to intensify because it could not 
sustain its own circulation pattern indepen¬ 
dent of the enhanced flow around the trough. 
Orchid sustained an independent circulation 
beginning on 7 September. 

By 090000Z, Orchid had moved north into 
the subtropical latitudes near 23N. The mon¬ 
soon trough was showing signs of weakening, 
and by 091800Z, the eastern portion of the 
wind band collapsed into Orchids's circula¬ 
tion pattern. Interaction with the mid-lat¬ 
itude trough moving east from Asia signalled 
the beginning of a change in Orchid's trajec¬ 
tory towards recurvature. The numerical prog¬ 
nostic series indicated a further eastward 
progression of the mid-latitude trough, but 
the series did not reflect the presence of 
Orchid at the middle and upper levels of the 
troposphere. Initial recurvature tracks anti¬ 
cipated a deepening of the trough and eventu¬ 
al recurvature southeast of Japan. The trough 
stalled near 130E, however, and the opportu¬ 
nity for recurvature was delayed until Orchid 
approached the Ryukyu Islands about 12 to 18 
hours later. 

In post-analysis, JTWC often finds some 
phenomenon that is not evident to the fore¬ 
caster in real-time but which explains the 
motion or character of a tropical cyclone. In 
Orchid's case, JTWC was well aware of her cir¬ 
culation pattern; what wasn't known war the 
effect of this circulation pattern on Orchid's 
tragectory. Once formed. Orchid moved to the 
west-northwest at a nearly constant speed. 
During this portion of her track, Orchid was 
well behaved and there was no known "rule of 
thumb" which would have provided JTWC with a 
prior warning of the motion that the cyclone 
would undergo in the 36-hour period beginning 
at 090600Z. Beginning at 090600Z, Orchid exe¬ 
cuted three high speed cyclonic loops while 
maintaining an overall forward speed of 14 kt 
(26 km/hr) toward the north. Satellite, air¬ 
craft, and radar surveillance provided dense 
reconnaissance coverage of Orchid during these 
loops (Fig. 3-17-3) . Orchid finally stabi¬ 
lized on her northward track just prior to 
landfall on Kyushu, Japan. Figure 3-17-4 il¬ 
lustrates an expanded surface best track, a 
partial 700 mb track based on aircraft data, 
and the overall smoothed track, which may have 
been followed by Orchid at some level above 
700 mb. An analogy which may offer some in¬ 
sight into Orchid's unexplained motion is 
given next. 

Before offering the analogy, some con¬ 
jecture is required based on the assumption 
that Orchid's circulation pattern relative 
to the broad-scale circulation was "condition¬ 
ally" unstable, i.e., all the forces acting on 
Orchid were only in balance as long as she 
maintained a constant heading. As Orchid ap¬ 
proached the mid-latitude trough, this balance 
was interrupted and the potential unstable 
character of the cyclone, embedded in this 
particular synoptic pattern, was realized. One 
analogy that can he used to explain the tra¬ 
jectory involves a child's toy top. The top, 
inherently unstable because of its small base 
and wide body, will spin uniformly about its 
axis as long as it maintains equilibrium. A 


loss of rotational speed or a tap along the 
side will cause the top to stumble and the 
base will appear to accelerate alo - ■ a pre¬ 
dictable looping pattern until the cop's sta¬ 
bility is either restored or it comes to rest. 

It is suggested here that the effect was vir¬ 
tually the same when Orchid began interacting 
with the mid-latitude trough. The best track 
shows that Orchid regained her equilibrium 
within the mid-latitude trough prior to mak¬ 
ing landfall in southern Japan. Orchid did 
not loop again and she returned to a slower 
speed of 18 kt (33 km/hr) prior to acceler¬ 
ating during the extratropical transition 
period. 

Orchid caused considerable damage and 
loss of life in Japan and Korea. High winds 
and torrential rains associated with Orchid 
were blamed for six deaths, numerous inju¬ 
ries, and considerable damage to crops in 
southern Japan. At least three deaths were 
reported in South Korea as Orchid moved east 
of Korea into the Sea of Japan. Another 112 
fishermen were reported missing in the Korea 
Straits following Orchid's passage. 



FIGURE $-17-3 . Typhoon Onchid, neon. maximum infen- 
nxtj, completing the. iecond o& thnee eijcXonie toopi, 
10 September 19SO, 0625Z. (TIR0SN image/ur) 


68 


















FIGURE 5-17-1. An expanded bat ttack i-ten 0906002 
to 1100002. The itsale ihaa the dtiVUbution oi iix 
patxtoni, a palttat 7 00 mb Clack, and an oveaatt 
imoethed tiaefc. 

































TYPHOON RUTH 





















TYPHOON RUTH (18) 


Typhoon Ruth was the second of five 
typhoons occurring m September. Unlike the 
other typhoons, Ruth began as a monsoon de¬ 
pression in the South China Sea on 11 Septem¬ 
ber. For two days, the depression remained 
quasi-stationary with the weak surface cir¬ 
culation embedded in the monsoonal trough. 
Synoptic data on the 13th, however, indica¬ 
ted that the circulation was intensifying; 
also, satellite imagery showed that it was 
forming its own outflow center. As a result, 
JTWC issued a form '.ion alert at 130047Z. 
Later satellite data showed that further de¬ 
velopment had occurred which prompted the 
first warning to be issued on TD 18 at 
130600Z. 

During the early phase of development, 

TD 18 tracked slowly southward, steered by 
the near surface wind flow. By 131800Z, TD 
18 had intensified to Tropical Storm Ruth 
and had started to track northwestward at an 
accelerated forward speed of movement. For 
the rest of her existence, Ruth tracked 
along the southern periphery of the 500 mb 
ridge which was centered over southern Main¬ 
land China. She reached her first maximum 
intensity of 45 kt (23 m/sec) prior to land¬ 
fall over Hai-Nan Tao, but quickly weakened 
to minimal tropical storm strength while 
over the island. Ruth entered the Gulf of 
Tonkin on the 15th and, during her transit, 
rapidly intensified to typhoon strength with 
a maximum surface wind of 65 kt (33 m/sec) 
and a minimum sea-level pressure of 975 mb. 

Brand (1970) summarized the finding of 
Perlroth (1969) who showed that vortical 
temperature differences between the ocean 
surface and the 200 ft (6) m) water depth 
have an important effect on development of 
tropical cyclones. Perlroth reported that 
approximately 904 of the tropical cyclones 
that reached hurricane intensity in the equa¬ 
torial Atlantic from 1901-1965 occurred where 
the climatological difference between the 
ocean surface temperature and the 200 ft (61 
m) temperature was 3.9C degrees or less. 
Climatology for September shows that the Gulf 
of Tonkin has warm sea surface temperatures 
(290 and a vertical temperature gradient 
along Ruth's track which is within the con¬ 
straints reported by Periroth for intensifi¬ 
cation to typhoon strength. Thus, the north¬ 
ern portion of the Gulf of Tonkin can serve 
as a sufficient heat source for tropical cy¬ 
clones, such as Ruth, to intensify when con¬ 
ditions are favorable. This apparently is 
true despite the fact that the Gulf is sur¬ 
rounded on three sides by land. 


Ruth made landfall at 160000Z south of 
Thanh Hou, Vietnam. Nearly half a million 
people were loft homeless with 106 persons 
known dead or missing in Vietnam. Ruth also 
caused massive crop damages and interrupted 
communications in the area. 

After landfall, Ruth again weakened and 
dissipated as a significant tropical cyclone. 
The remnants of Ruth tracked west—southwest- 
ward for the next two days and oissipated 
over the Bilauk-taung Range along the border 
of Burma and Thailand. 


71 































TYPHOON PERCY (19J 



FIGURE 3-J9-J. Ticpical Stctn Pcac u at 4S kt 123 
m/scc! intensity, 14 Sepfcstfcc-t !9S0, 2333;. Pace's 
tcic-level certeti at that tint was paxtiatlij exposed 
on the ncitheastvm edge c& a taxge convective aaea. 
IU04A6 iragctiy} 


The disturbance which eventually devel¬ 
oped into the tenth typhoon of 1980 became 
evident on satellite imagery at 130600Z Sep¬ 
tember 1980 as a focal point of cumulus 
banding. This development occurred at the 
base of a mid-tropospheric, mid-latitude 
trough that extended south of Japan along 
133E. Kith further intensification likely, 
a Tropical Cyclone Formation Alert (TCFA) 
was issued by JTKC at 1321572. An aircraft 
reconnaissance investigation soon afterwards 
found a well-developed closed circulation 
with 1500 ft (457m) flight level winds of 
35 kt {16 m/sec) and a minimum sea-leve 
pressure of 992 mb. Upon receipt of tl.-.-=- 
data, the first warning on Tropical Ston.i 
Percy was issued at 1406002. 


By that time, the raid-tropospheric, mid¬ 
latitude trough had moved eastward, and 
Percy's track, in response, shifted from a 
northward to a more climatological west- 
northwestward track as the ridge extended 
eastward north of Percy. Percy's development 
was slew at this time as scatter between 
satellite and aircraft fixes indicated that 
he was poorly aligned in the vertical. Con¬ 
vection on satellite imagery was displaced 
southwest of Percy's surface center. The 
mid-tropospheric ridge that extended from 
eastern China along 28N to a position north 
of Okinawa also restricted upper-level out¬ 
flow in Percy's northern semicircle. Between 
15 and 17 July, however, reconnaissance air¬ 
craft consistently reported decreasing 
heights and increasing temperatures near the 
700 mb center {Fig. 3-19-1). 


73 

























During this time, Percy decelerated and 
began moving erratically. He eventually com¬ 
pleted two tight cyclonic loops while inten¬ 
sifying to typhoon strength by itOOOOZ. 
Shortly afterward, at 160248Z, aircraft 
reconnaissance reported that the eyewall had 
become fully enclosed. JTWC forecast signi¬ 
ficant intensification for the next 36 hours 
as the Theta E (9 ) forecast intcnsity aid 
(see summary for Super Typhoon Kim) indicated 
an approaching intersection of the 700 mb 
equivalent potential temperature trace and 
the minimum sea-level pressure trace. 

During Percy's period of erratic move¬ 
ment, there was speculation that a Fujiwhara 
interaction might develop between Percy and 
then Tropical Storm Sperry, which was locat¬ 
ed 800 nm (1575 km) to the east. A compari¬ 
son of the post-analysis best tracks for 
Percy and Sperry shows that the two vorticics 
were never close enough for an interaction to 
occur (Brand, 1968). 


Interestingly, Percy did dominate much 
of the low-level circulation pattern between 
the two systems. A reconnaissance aircraft 
mission flown between Percy and Sperry 
indicated that the wind shift from southerly 
to northerly flow did not occur until about 
100 nm (185 km) west of Sperry's surface 
center (Fig. 3-19-2). 

Significant intensification did take 
place as Percy's eye gradually grew tighter 
and sea-level pressure continued to fall 
(Fig 3-19-3). An aircraft fix at 171306Z 
indicated a 700 mb height of 2387 m, which 
extrapolates to a sea-level pressure of 919 
mb and supports maximum sustained surface 
winds of 125 kt (64 m/sec). Due to his prox¬ 
imity to Taiwan, however, -ercy then began 
to slowly weaken. A subsequent reconnais¬ 
sance aircraft at 171616Z reported a rise 
in the 700 mb level to 2407 m. Approximately 
9 hours later, Typhoon Percy made landfall 
on the extreme southern tip of Taiwan. 



FIGURE 3-19*2. Ptney juit pt,M to teaching ty¬ 
phoon ittengfn dating the pc.% id oj catatic fwvc- 
r.int even the Philippine Sea, 15 September 1950, 
i 31IZ. l.WAAS instated iraacity I 


74 
















FIGURE 3-19-3. Typhoon Peaca with HO fct 157 «/aecl 
rowraun iutjace loitidi tokiic. inteniiiying rapidly to 
mat 4upc,t typhoon iticngth, 17 September 1910, 
05452. (T-itci V iroac-liy) 


The island of Taiwan so disrupted Per¬ 
cy's low-level inflow that he was never able 
to significantly re-intensify. Despite 
emerging over the Formosa Strait, Percy 
continued to weaken almost as quickly as he 
had intensified only a day earlier. By 
18210QZ he had made landfall on the coast 
of China about 240 nm (444 km) east of Can¬ 
ton, with estimated maximum sustained sur¬ 
face winds of 45 kt (23 ra/sec). Percy 
continued to track inland and dissipated 
several hours later over the mountains of 
Mainland China. 


Newspaper accounts of Typhoon Percy’s 
landfall over southern Taiwan indicated 7 
dead and 16 injured. Heavy rain accompany¬ 
ing Percy damaged 140 homes, flooded rice 
fields, and destroyed banana crops. 


ggar 11111 PT ..“ M ? “ "P™ •5““ j* | m 






























TYPHOON' SPEKHY (20) 


Typhoon Sperry developed in the nonsoon tropical storm strength of 35 kt (18 a/sec) 

trough east-southeast of Guam. The distur- by that tise. The 141200Z 500 mb analysis 

banco was first reported in the Significant (Fig. 3-20-1) and the 72-hour numerical fore- 

Tropical Weather Advisory (A3EH PCTW) on 12 cast series (see Fig. 3-20-2) suggested that 

September as an area of showers and thunder- a straight forecast track toward Kyushu, Japan 

showers. Sparse synoptic data did not indi- was cost likely because the forecast series 

cate that a surface circulation existed at built the subtropical ridge northwestward 

that tine. However, the upper-air pattern toward Japan. Thus, on the initial warning, 

was favorable for continued development. Sperry was forecast to track along the south- 

Sperry developed slowly and was described in ern periphery of the 500 mb subtropical ridge, 

the A3 EH PGTW on 14 September as a large sur- An early recurvature track was not considered 

face circulation with little organized convec- likely due to the forecast intensification of 

tion. A well-defined upper-level anticyclone^ the subtropical ridge, 

which provided a good outflow mechanism for 

continued development, existed over Sperry. By 160000Z, it was evident that the sub¬ 

tropical ridge was not building as forecast. 

The initial warning for Tropical Depres- Southerly steering flow was evident south and 

sion 20 was issued at 150000Z. Post-analysis east of japan. Sperry was being steered by 

indicates that Sperry had actually attained the mid-level southeasterly flow and was ex- 



77 
























V X s vX S 




K 


VC* ^ ^ 


V \ v > 


O ~1 


FIGURE 3-20-2. The 48 HouA 5 00 mb mmeeucal iofiz- 
c ait chant baud on the. J4J2O0Z September mo com¬ 
pute* anatyiii. JTWC'i 1 S 00001 Septembe* ionecait 
tnack ion Spctoy it, alio Indicated, &aom initial 
poiition to the 72 horn (onecait poiition. 


pected to continue to follow a north-north¬ 
westward track until he moved north of the 
ridge axis. Then strong mid-level westerlies 
were expected to dominate. Therefore* a re¬ 
curvature track and a weakening tendency over 
Japan was forecast. This change to a recur¬ 
vature track was supported by the 161200Z 
500 mb analysis (Fig. 3-20-3) and the 72-hour 
numerical forecast series (see Fig. 3-20-4). 
Sperry did, in fact, recurve, but significant¬ 
ly south of Japan as the subtropical ridge 
retreated to the southeast. This discussion 
of the forecast tracks for Sperry illustrates 
the difficulties that JTWC encounters both in 
analyzing the axis of the subtropical ridge 
in data sparse regions and interpreting the 
guidance from numerical forecasts for the 
same region. 

As-Sperry began to recurve on the 17th, 
the estimated maximum surface wind speeds 
were consistently higher than supported by 
the maximum wind/minimum sea-level pressure 
(MSLP) relationship of Atkinson and holliday 
(1977). Maximum winds of 65 kt (33 m/sec) 
and MSLPs of 992 mb were observed by aircraft 
reconnaissance. A MSLP of 992 mb corres¬ 
ponds to a maximum wind of 45 kt (see Fig. 
3-05-2). These stronger winds were probably 
due to an increased pressure gradient re¬ 
sulting from the higher environmental pres¬ 
sures at subtropical latitudes. 














FIGURE 3-20-4 . The 4S houn SOO mb numen. :al ionecait 
chant bated on the 1612002 September compi ten. analy- 
iii. JTtiX'i 1700002 September ioneaut tnnck ion. 
Spenny it alio indicated, (,nom initial petition to 
the 72 houn. ioneeatt poiition. 


Sperry did not begin to weaken signifi¬ 
cantly until the 19th because his eastward 
movement kept him over warmer water for a 
longer period of time and also kept him south 
of the strong mid- to upper-Jevel westerlies 
which would have weakened him due to strong 
vertical wind shear. 























































til' 




m 


' A ” 


/ 

/ ^-30 


I 50— 



45~— 1 


... 


+ .£ T* | + 

35* «5 MC f 1 M5° 

P 5 - xi x 28 1 


2S" 

r2VI82t—25 


f\/ 26 




-' *ST ~T g> ' X T' - 

I k V 


-± . # 


LEGEND 


TROPICAL 
STORM THELMA 
BEST TRACK TC-21 
26 SEP-30 SEP 1980 
MAX SFC WIND 55 KTS 

MINIMUM SLP 982 MBS 


-+ H-'-M 06 HOUR BEST TRACK POSIT 

A SPEED OF MOVEMENT 

B INTENSITY 

C POSITION AT XX/OOOOZ 

• •• TROPICAL DISTURBANCE 

... TROPICAL DEPRESSION 

-TROPICAL STORM 

-I - TYPHOON 

SUPER TYPHOON START 
O SUPER TYPHOON END 
. *<■<• EXTRATROPKAl 

I DISSIPATING STAGE 

I -A FIRST WACNiUr ISSUED 

I § LAST WARNING ISSUED 



‘^S : 

■ ’ • M 




■ 
















TROPICAL STORM THELMA (21) 


Thelma began as a disturbance in the 
monsoon trough approximately 100 nm (185 km) 
north-northeast of Saipan. Although Thelma's 
forecast track posed few problems, analysis 
of the cyclone was not straight-forward due 
to Thelma's very abnormal structure. 

Satellite imagery began showing intensi¬ 
fication of convective activity in the maxi¬ 
mum cloud zone within the latitude belt 10-2CN 
from southeast Asia to the Marshall Islands 
on 23 September. A significant area of con¬ 
vection developed m the monsoon trough near 
Saipan early on 23 September. This convec¬ 
tion gradually increased and began suggesting 
the presence of a surface circulation later 
on the sane day. Data at 500 mb, howeier, 
indicated that the curvature in the cloud 
signature was associated with a mid-tropo- 
spheric circulation as no circulation was 
apparent from surface/gradient wind data. A 
circulation at the surface/gradient level was 
finally analyzed gust south or Guam at 
241200Z. By 250000Z, the low-level circu¬ 
lation that produced Thelma was analyzed 
over the Northern Mariana Islands (Fig. 3-22- 
1) . This circulation continued to develop 
and drift westward while becoming the domi¬ 
nant circulation in that portion of the mon¬ 
soon trough. 

From her onset, Thelma did not display 
classical tropical storm characteristics. 
Height gradients observed by reconnaissance 
aircraft at 700 mb were very flat; thus maxi¬ 
mum winds near the center were significantly 
lower than suggested by the central sea-level 


pressure (Atkinson and Holliday, 1977). Also, 
the maximum wind band was some distance away 
from the center, and the 700 mb temperature 
field showed higher temperatures outside the 
cyclone center for most of the early aircraft 
penetrations. Table 3-3 presents a summation 
of aircraft data and highlights the points 
presented above. Figure 3-22-2 shows the re¬ 
connaissance data plot for the last daylight 
penetration of Thelma. The wind field and 
other data presented on the plot are fairly 
representative of Thelma's entire life. 

As previously stated, Thelma's track pre¬ 
sented no real problems. Streamline analyses 
at 500 mb showed that Thelma developed just 
south of a break in the subtropical ridge. 
After following a northwesterly course, Thel¬ 
ma first turned northward and almost immedi¬ 
ately thereafter began to track northeastward. 
Cyclogenesis/frontogenesis occurred simulta¬ 
neously in a baroclinic zone that persisted 
throughout Thelma's life in the area from 
Okinawa northeastward to a point off the 
coast of Japan. The continual presence of 
this surface trough appears to be one of the 
factors that directed Thelma's northeastward 
movement (Fig. 3-22-3). Upper-level steering 
was provided by relatively strong westerlies 
which reached south to the Bonin and Volcano 
Islands. During her northeast trek, Thelma 
reached maximum intensity of 55 kt (28 m/sec). 
Further intensification was probably sup¬ 
pressed by restrictions on her upper-level 
outflow. Thelma continued to accelerate 
toward the northeast and transitioned into 
an extratropical low pressure system by 
0400Z on 30 September. 


TABLE 3-3 



Maximum Temperature 

Central Pressure 

MB 

Intensity (KT) 

Bearing/Range 

Of MAX FLT LVL 

Wind (DEG/NM) 

Date/Tirae 

Inside Center 

°c 

Outside Center 

°c 

Observed 

Surface 

Atkinson/ 

Holliday 

27/1S30Z 

12 

13 

993 

N/O 

42 

100/136 

28/0308Z 

14 

15 

989* 

30 

48 

320/110 

28/1418Z 

12 

15 

987 

N/O 

50 

240/40 

29/0258Z 

14 

10 

982 

55 

57 

350/110 

29/15002 

13 

13 

981* 

N/O 

59 

120/150 


Aircraft data extracted from detailed vortex messages and peripheral data observations, ftstensks indicate 
central pressure extrapolated from 700 mb data.) 


FIGURES 3-22-1, 3-22-2 and 3-22-3 ant on the fottauing pagti. 


81 



















































..... .....fa...in;. 



FIGURE 3-22-t. The 2500002 September 19SO tuti&ace 

- \\) /gradient-lev el ( ddd <— <^) icind data and 

6tAeamline anatyiii. Wind ipeedi aAt in knoti. 










































































TYPHOON VERNON (22) 


During the latter part of summer, tropi¬ 
cal cyclone activity in the northwestern 
Pacific reaches its peak. Multiple circula¬ 
tions develop within the Near Equatorial 
Trough and two (or more) cyclones of tropi¬ 
cal storm or typhoon strength often exist at 
the same time. 

If one tropical cyclone is located to 
the northwest of another developing circula¬ 
tion, it usually dominates and prevents the 
system to the southeast from intensifying as 
rapidly as it normally would. This is due 
primarily to the upper-level outflow from 
the system to the northwest which enhances 
the climatological northwesterlies ar.d re¬ 
stricts the outflow channels of the cyclone 
located to the southeast. The cyclone to 
the northwest is also, generally, the older 
of the two and has the opportunity to estab¬ 
lish control of the low-level inflow. The 
development of the system to the southeast 
is, therefore, delayed until the other cy¬ 
clone either weakens or moves far enough 
away from the tropics that its influence be¬ 
comes insignificant (see Roger and Tip, 1979 
end Lex and Marge, 1980). Typhoon Vernon 


and Tropical Storm Thelma engaged in just 
such an interaction during the end of Sep¬ 
tember and beginning of October. 

Vernon was first observed, as an area of 
increased thunderstorm activity, about 200 nm 
(370 km) northeast of Eniwetok Atoll on 26 
September. Initial movement was westward at 
about 7 kt (13 km/hr). As the convection 
continued to organize, a Tropical Cyclone 
Formation Alert (TCFA) was issued at 270600Z, 
and the first warning followed 12 hours later 

During that period. Tropical Storm 
Thelma was developing north of Guam. Thelma, 
although never more than tropical storm 
strength, nonetheless had a huge associated 
cyclonic circulation pattern which extended 
to at least the 500 mb level and covered most 
of the area between the Philippine Islands 
and Guam, and as far north as southern Japan. 
Because Thelma covered such a large area and 
was located to the northwest of Vernon, she 
robbed him of strong low-level inflow and 
restricted the upper-level outflow in his 
northwest semicircle in the manner described 
above. 


FI CURE 3-22-1. UppeA-level iVieaaUne analym 
(neat the 200 mb level) at 2900601 Septeabet I9M- 
Data ate Ktuciniondt erd aitotajt tcindi ( —i»land 
iateHi-te-denived wind vectom ( - ► ]. Hindi ate 
in hr.oii. 























FIGURE 3-12-2. Uppji-tevel stae/aline analysis 
Ir.eax the ZOO mb level) at 0112001 Octobex 19(0. 
Data a»e xaminsonde and aiAe/ualt Minds { —f 9) 
and satellite-denived Mind vtctoxs [ —). Hindi 
one in knots. 


After the 28th, Vernon began tracking 
more northwestward as he reeved into the mid- 
level trough which was associated with Thelma. 
Thelma helped to maintain this trough through¬ 
out her lifetime as indicated by reconnais¬ 
sance aircraft and the few island reporting 
stations in the vicinity. Vernon was steered 
by the southeasterly winds on the east side 
of this trough until 021200Z October. At 
that time, he came in contact with the 
southern extension of the mid-latitude jet- 
stream which accelerated him to the north¬ 
east, eventually to 53 kt (98 km/hr). 

Figures 3-22-1 ar.d 3-22-2 show a 
dramatic change which took place in the 
upper-level flow pattern; the outflow from 
Thelma initially restricted Vernon's out¬ 


flow in his northwest semicircle (Fig. 
3-22-1), but by 011200Z, Thelma had moved 
off to the northeast. This opened up an 
outflow channel to the north and northwest 
(Fig. 3-22-2) which enabled Vernon to reach 
his maximum intensity of 105 kt (54 m/sec) 
(Fig. 3-22-3). Without the influence of 
TS Thelma, Vernon most probably would have 
reached maximum intensity earlier and main¬ 
tained it longer. 

Vernon made the transition to an extra- 
tropical system quite rapidly. Satellite 
imagery showed that he lost almost all of 
his heavy convection between 031200Z and 
031800Z. Ship reports off the coast of 
Japan indicated that the remnants of Vernon 
continued to maintain gale force winds until 
5 October. 

















































































SUPER TYPHOON WYNNE (23) 


The disturbance that eventually developed 
into Super Typhoon Wynne was evident on sat¬ 
ellite imagery as early as 1800Z on 30 Sep¬ 
tember, although at that time, it appeared 
to be simply enhanced convection embedded in 
the convergent inflow into Typhoon Vernon lo¬ 
cated 1000 nm (1852 km) to the northwest. By 
020000Z October, however, the disturbance had 
separated from the inflow into Vernon, and 
by 021200Z, the convective activity had in¬ 
creased in organization with good curvature 
and upper-level outflow evident from satel¬ 
lite data. 

The small scale of the disturbance and 
the tightness of the circulation that charac¬ 
terized Wynne during most of her life pre¬ 
vented the circulation iron appearing on 
synoptic analyses and led to an underestima¬ 
tion of severity during her formative stage. 
These facts heavily influenced the decision 
to delay the issuance of a Tropical Cyclone 
Formation Alert for 21 hours, although post¬ 
analysis indicates that tropical storm 
strength was achieved as early as 030600Z. 


154E 



1S0€ 


FIGUSE 3-25-U Piet C; cU.tC.tait •xccr.rjxiiiir.cc date 
jet the C40122Z end Cf3522 Cctebv. 19SO j.iics cj 
Ttcpical Stc-V; Zur.r.c. 


Because of her proximity to Guam, numer¬ 
ous aircraft reconnaissance missions were 
flown into the developing tropical cyclone. 
This extensive coverage confirmed Wynne’s 
small circulation (Fig. 3-23-1 and 3-23-2) 
and permitted JTWC to monitor her develop¬ 
ment very c’cselv. 


Although Typhoon Lex may have been the 
most interesting cyclone of the year in tents 
of movement. Super Typhoon Wynne proved to be 
the most unusual in terms of intensity oscil¬ 
lations. As shown in Figure 3-23-3, Wynne’s 
early stage of development was characterized 
by short periods of rapid intensification and 
weakening, rather than by a typical smooth, 
gradual intensification. From 3 October ‘j 
7 October, Wynne's intensity and convective 
activity fluctuated significantly, as she at¬ 
tained typhoon or near typhoon strength only 
to weaken to near tropical depression inten¬ 
sity three times following a diurnal cycle. 
Although not as marked as the oscillations in 
the observed maximum winds, the minimum sea 
level pressure also exhibited a cyclical os¬ 
cillation that closely approximated the peri¬ 
odicity of the maximum winds. 

There have been documented cases of 
tropical cyclones exhibiting intensity vari¬ 
ations (Holliday, 1976). However, these 
occurrences were limited to well-developed 
typhoons with minimum sea level pressures 
below 970 mb and with a single weakening- 
reintensifying cycle. 

An examination of the satellite imagery 
during this period of large short-term 
changes in intensity (Figure 3-23-4) reveals 
that maximum activity in deep convection oc¬ 
curred in the early morning hours (0700 to 
0800 local time) with a minimum in the even¬ 
ing hours (1900 to 2000 local time). An in¬ 
crease in cirrus toward the late afternoon 
(1600 local time) was also evident. These 
observations agree with the findings of 
Arnold (1977). Although Arnold found no 
evidence of intensity change accompanying 
the change in cirrus or deep convection, 
significant intensity change was observed 
in the case of Wynne wit 51 a l a 9 of £ to 8 
hours between maximum convective activity 
and maximum observed winds. 

Wynne's third and final period of weak¬ 
ening occurred as she tracked 45 ns (83 km) 
northeast of Guam. This weakening, combined 
with her small circulation, resulted in 
Wynne having virtually no effect on Guam. 
Wynne continued to intensify rapidly fol¬ 
lowing her third reintensification cycle at 
071800Z, attaining super typhoon strength 
just 30 hours later and a peak intensity of 
150 kt (77 m/sec) in another 6 hours. Fig¬ 
ure 3-23-5 depicts Wynne near maximum inten¬ 
sity about 490 nm (908 km) southeast of 
Okinawa. Minimum sea level pressure (MSLP) 
during this 35-hour period dropped from 982 
mb to 890 mb - a 31 mb/12 hr fall. 

JTKC's Theta E (0 )/HSLP study once 
again accurately predicted this explosive 
deepening as the 8 and MSLP trace inter¬ 
sected at 081400Z. Wynne’s intensity peaked 
16 hours after the time of intersection with 
the surface winds increasing by 85 kt (44 m/ 
sec) and tne MSLP falling another 52 mb. 

As Wynne tracked north-northwestward 
past Guam, she was expected to move through 






flGUXE 3-23-2. Plot ci sixcx&it xeccnKzi&sanct data 
(c\ the 0125232 end 0902332 Otiebtx 1910 tines ct 
Tupkccr. Sunni. 


an apparent weakness in the subtropical 
ridge north of Guaa. However, the weakness 
between 25X and 30S was evidently too far 
north to perait her to break through the 
ridge, and she eventually case under the in¬ 
fluence of the strong anticyclone located 
between Okinawa and the Bonin Islands. Post¬ 
analysis of available 500-cb data indicates 
that a change to a core westward forecast 
track around the southern periphery of the 
anticyclone could have been cade 24 hr ear¬ 
lier. Once the forecast track was changed to 
reflect the shift in the synoptic flow pat¬ 
tern to a sore definitive easterly steering 
current, JTWC was consistent in accurately 
predicting recurvature just west of Okinawa. 
Wynne actually recurved 100 na (185 kc) west 
of Okinawa, and her slow 7 kt (4 ra/sec) bend 
around the island brought over two days of 
torrential rain and winds gusting to core 
than 65 kt {33 a/ sec). Very few injuries 
were reported with fare crops receiving the 
najor wind dacage. A seal! island 30 iss (56 


fcc) northwest of xinawa and closer to Wynne’s 
path, however, reported winds of 100 kt (51 
c/sec) and severe dacage. 

Once north or the ridge axis, Wynne 
tracked virtually straight east-northeastward 
on a heading of 070 degrees. This course kept 
her approxinately 80 nn (148 kc) froc the 
coast of Japan. Thirty (15 =/sec) to forty- 
five kt (23 a/sec) winds were reported by- 
Japanese coastal stations as Wynne acceler¬ 
ated northeastward. Heavy rains claiced sev¬ 
eral lives and flooded over a thousand hoaes. 

As Wynne accelerated past Japan at speeds 
exceeding 40 kt (74 ka/hr), the vertical wind 
shear and the influx of cooler, drier air re¬ 
sulted in rapid extratropical transition. A 
reconnaissance aircraft at 141500Z was unable 
to find a circulation at 700 cb and satellite 
icagery at 1418002 revealed no active convec¬ 
tion. The reanants of Wynne eventually were 
absorbed by a developing low pressure systea 
east of Japan. 


PISSES 3-23-3 and 3-23-4 ate e« fke jetfeseir.g pages 













































FIGURE 3-23-4. Sexiei of infnaxed imagexiei of Wynne 
duxing the pexiod of intensity oicitlatiom. The &e- 
quence ihouii definite weakening of the deep convection 
duxing the late evening (paxticulaxly the 042011 local 
and 061916 local imagexiu), followed by a notice¬ 
able incxeaae in the convection on the moaning iatel- 
tite imageny. Ml tinea local. {H0AA6 and TIROS N 





















54 

" OKINAWA 


/# 

> . ii vl* 


^v 



:? / 

r~^sr ■ 


&&* ' 
' V !“& 


FIGURE J-I3-5. Supfi typhoon Wynne, ntan maximum in¬ 
tensity 490 ran (907 bn) southeast o( Okinam and 730 
ran (I35Z bn) no/ltboeit Gua», 9 October 19S0, ZZ40Z, 
(N0AA6 imagery) 


93 













































TROPICAL STORM ALEX (24) 


Tropical Storm Alex, the 24th tropical 
cyclone of 1980, was induced by a Tropical 
Upper Tropospheric Trough (TUTT) in a manner 
similar to that described by Sadler (1976). 

A small disturbed area of convection drift¬ 
ing westward from near 170E was observed on 
satellite imagery on 7 October. By the 8th, 
this area had come under the influence of a 
relatively strong upper-level divergent area 
generated by a dissipating TUTT cell. The 
convection increased noticeably with outflow 
to the north, but little outflow was evident 
in the southern and western quadrants. 

The restricted outflow pattern was char¬ 
acteristic t-hroughout Alex's existence and is 
attributed to the proximity of Super Typhoon 
Wynne, which was located west of Alex. Alex's 
coexistence with Wynne was significant in 
light of Wynne's overall dominance of the 
western Pacific region. Wynne absorbed much 
of the energy that otherwise would have been 
available to Alex (Fig. 3-24-1). 

Satellite imagery showed that the con¬ 
vective area continued to persist until late 
on the 9th when JTWC issued a Tropical Cy¬ 
clone Formation Alert (TCFA). Aircraft re¬ 
connaissance on the 10th found a weak surface 
circulation with the associated convection lo¬ 
cated north and east of the surface center. 


Nearly the entire western half of the circu¬ 
lation was exposed at that time. 

For the following 48 hours, the distur¬ 
bance intensified gradually and tracked north¬ 
westward at 12 kt (22 km/hr). At 120600Z, 
the first warning was issued for TD 24. With¬ 
in 24 hours, TD 24 intensified to Tropical 
Storn Alex with maximum surface winds of 35 
kt (18 m/sec). At that time, Alex's low- 
level circulation center was not exposed to 
the west, but aircraft reconnaissance encoun¬ 
tered only weak convective activity around 
rhe circulation's center. During the next 6 
hours, Alex recurved to the northeast and 
weakened to 30 kt (15 m/sec) intensity. 

After Alex had recurved, Alex and Wynne 
were within 800 nm (1482 km) of each other 
such that a Fujiwhara effect was possible. 
This was not observed, however, because Alex 
and Wynne were both beginning to interact 
with the jet stream which became the dominant 
steering mechanism over both cyclones. Due 
to this jet stream, Alex rapidly accelerated 
northeastward. At 140000Z, JTWC issued the 
final warning on Alex as he was beginning to 
transition into an extratropical system. 
Satellite imagery received after the final 
warning showed that the transition was very 
rapid. 



FI CURE 3-24-; . Viiual imo.oi. 1 i) o& Tiopicot Stcnm 
Ate.x at 30 tt (15 m/aecl intemiXy, 12 October 19t0, 
23U1. I HO AM imayvry) 


95 







































































TYPHOON BETTY (25) 


Betty, the 25th significant tropical cy¬ 
clone of 1980, developed east of Truk Atoll 
from a weak disturbance which had been moni¬ 
tored for almost a week in the eastern Caro¬ 
line Islands. Just prior to passing south 
of Guam, Betty attained typhoon strength and 
then continued to intensify as she tracked 
into the Philippine Sea. About 12 hours 
prior to landfall on Luzon, Betty reached 
her peak intensity of 125 kt (64 m/sec). 
During the 18 hours that Betty tracked over 
north central Luzon, she weakened consider¬ 
ably, but in the process caused extensive 
damage and loss of life. Downgraded to trop¬ 
ical storm strength, Betty moved northeast¬ 
ward through the Bashi Channel and eventually 
dissipated as a weak extratropical low 
southeast of Japan. 

Betty had her origin in a weak distur¬ 
bance south of Truk which showed increased 
potential for development on the 27th and 
28ch of October. The 280000Z gradient level 
winds from Truk and Ponape, as well as low- 
level winds from a weather reconnaissance 
flight west of the disturbance, indicated a 
closed circulation with 20 to 25 kt (10 to 
13 m/sec) winds. At 280800Z, a Tropical 
Cyclone Formation Alert (TCFA) was issued 
and, during the alert period, the distur¬ 
bance veered sharply to the east as it ap- 
aproached Truk on an erratic course from the 
south. After veering, hourly reports from 
Truk and satellite imagery indicated in¬ 
creased organization, and the first warning 
for TD 25 was issued at 290000Z with maximum 
surface winds of 30 kt (15 m/sec). 

Despite the erratic movement shown during 
its formative stages and the apparent north¬ 
eastward trajectory TD 25 had assumed by the 
first warning, the initial and subsequent 
warnings correctly identified a west-north¬ 
west track which indicated passage just 
south of Guam. However, due to limited mid¬ 
level (700 mb or 500 mb) steering data 
north of Betty, the first six warnings 
failed to adequately forecast her accelera¬ 
tion which resulted in a speed of movement 
of 21 kt (39 km/hr) as she passed Guam. As 
a result, although the 72 hour forecast posi¬ 
tion of the second warning predicted Betty's 
exact position as she passed south of Guam, 
the average vector error during this period 
was very high. The 72 hour forecast posi¬ 
tion mentioned above, had a total error of 
585 nm (1083 km) due to the acceleration 
which caused Betty to reach the 72 hour 
point in just 34 hours! Such errors result¬ 
ing from under forecasting speed of movement 
highlight the importance of adequate mid¬ 
level data in the steering current. When 


available, especially from reconnaissance 
aircraft, such data usually increase the 
ability of forecasters to evaluate toe po¬ 
tential for changes in the short-term, as 
well as long-term motion of tropical cyclones. 

After passing south of Guam, Typhoon 
Betty turned west and conti.:ued to intensify, 
reaching 100 kt (61 m/sec) 48 hours later. 
During this period, tne 500 mb analyses be¬ 
gan to show a short wave trough moving east 
through mainland China. JTWC forecasts keyed 
on this feature and, based on computer-deri¬ 
ved prognostic charts, recurvature was ex¬ 
pected to begin near 125E by 030000Z. The 
probability of this forecast verifying in¬ 
creased when, at 020000Z, the short wave 
trough deepened as it moved off Asia. How¬ 
ever, by 021200Z, Betty unexpectedly turned 
southwestward. By 030000Z, the trough had 
moved quickly eastward north of Betty and 
the opportunity for recurvature had passed. 
Shortly afterwards, attention focused on 
another short wave moving through China and 
recurvature was again forecast to occur, this 
time just east of Luzon. By 040000Z, how¬ 
ever, available 500 mb data did not show any 
significant amplitude to this trough and the 
recurvature track was abandoned ir. favor of 
a northwestward track over Luzon into south¬ 
ern China. 

Although Betty continued to intensify 
after passing Guam, the data normally used 
to evaluate a tropical cyclone's intensity 
showed considerable scatter. Figure 3-25-1 
graphically depicts these data as well as 
the final best track intensities. In search¬ 
ing for an explanation of the scatter, the 
comments from mission ARWOs on 01 November 
and 04 November may offer some insight con¬ 
cerning the character of Betty during this 
period. On the 011594Z mission: "Although 
this storm (Betty) was strong, it had no eye- 
wall. The most fascinating feature was the 
rotating feeder band of convection that j*as 
spiralling inward at an enormous rate." A On 
this single fix mission, a maximum 700 mb 
flight level wind of 95 kt (49 m/sec) was 
observed. However, daylight missions before 
and after this mission estimated surface 
winds in excess of 100 kt (51 ra/sec) (Fig. 
3-25-2). On the 032200Z, 040150Z and 
040340Z fix missions, it was observed that 

"Typhoon Betty.was a textbook typhoon. 

Everything was aligned perfectly." 2 At 
040600Z, Betty reached her peak intensity of 
125 kt (64 m/sec). The development of a 
textbook typhoon correlated closely with 
the reduction in scatter between maximum 
surface wind estimates shown in Figure 
3-25-1. 


Candis L. Weatherford, 1 LT, USAF, Mission 
ARWO. 


Jameu B. Near, 1 LT, 08»F, Mission ARWO. 


97 


















31/OOZ OI/OOZ 

50 kts ii, i i i | 


601,1 \%% 


<WOOZ OZOOZ 04/OOZ 

i«. «•*,«* 


osooz . 

, '. i 50 kts 


70 kts V 1 \ 


acg: 60 kts 

Pif. 


"ri n 


i X \ 

Vx/ w 


\ \ 


: 70 kts 


9okt* 


too kts 


120 kH 


130 kts rttSSUttl D.riw.1 lit- th* At*lli*oti/tiollli5*y Wlfwi v» trruuit Fvlitlonibip 
S*S7 taaCXi Derived by JDe trea po*t-*r.*lr*it mnq *11 *V*1tibl, Ait* 

DVCAAKt Derived l roe eetellite ideyery Vi:-) tb* EVCAAK Intensity Cttinnticn Tedsnliyee 

AfKnurr too Nil Mind speed* *t 700 *b oDt*ined frcei *lrtr*lt reconneistAtoc 

aiactajt ydriai Surfece winds estineted by tbe Aeriel Kelteneiiutte wretber officer* lAmn 


AlltCtAFT 

SUtFACE 


.1 130 kts 


FIGURE 3-25*1. Time ie-vies o[ vatuem intensity 
paxaiseXeu evaluated by JTfc'C white Sc.tty uns at ty¬ 
phoon it,\tr.gih. Note the taxge scatter in the traces 
untit 0106001. 


The decision to abandon a forecast re¬ 
curve track east of Luzon put the central 
and northern provinces of Luzon on alert. 

At 0416002, Typhon Betty, packing 120 kt 
(62 m/sec) winds, slammed into central Lu¬ 
zon south of Cape San Ildefonso. Host wea¬ 
ther observing stations stopped reporting 
prior to Betty's approach, so her actual in¬ 
tensity as she crossed Luzon can only be 
inferred from a JTKC study of prior tropi¬ 
cal cyclones crossing the Philippines 
(Sikora, 1976), satellite imagery (Dvorak 
intensity estimates), and aircraft recon¬ 
naissance reports just prior to and after 


Betty crossed Luzon. However intense Betty 
may have been, there is little doubt that 
she was one of the most destructive typhoons 
of recent history. Initial reports re¬ 
ceived several days after Betty crossed Lu¬ 
zon indicated at least 81 people dead, 
thousands homeless, and extensive crop 
damage from flooding and mudslides. The 
Cagayan Valley in northern Luzon, hard hit 
by Betty, lost most of its rice crop from 
floodwaters which rose to roof-top level in 
some areas. Philippine Defense Minister, 
■’uan Ponce Enrile, described the Cagayan 
Valley from a helicopter survey, stating, 

"It looks like a sea from the air." 



















































































FIGURE 3-25-2. Vuxing this stage of Typhoon Betty's 
development, intense banding w xts xepoxted by ain- 
ctajt aeccnnaissance along tcitn aneas of suifacc 
ic >nds in excess of 100 kt (51 a/sec), 31 October 
1910, 2252Z. IsOMi irageny) 


99 



































































TROPICAL STORM CARY (26) 


Tropical Storm Cary was first observed 
as a area of increased convective activity 
east of the Palau Islands on the 25th of 
October. A Tropical Cyclone Formation Alert 
(TCFA) was issued a day later when the dis¬ 
turbance had moved to a position about half¬ 
way between Yap and the Palau Islands. 

All convection associated with this cir¬ 
culation dissipated shortly afterward, how¬ 
ever, leaving only in exposed low-level 
circulation center. Over the next 24 hours, 
the system moved west-northwestward toward 
the Philippines. Just east of the Philip¬ 
pines, the convection again developed and 30 
kt (15 m/sec) winds were reported from 


coastal stations. Based on this information, 
a second TCFA was issued at 282200Z. 

The circulation maintained its indenti- 
ty as it passed over the Philippines just 
south of Clark AB and Sub^c Bay Naval Sta¬ 
tion. The first warning on TD 26 was issued 
at 291200Z as the disturbance was moving into 
the South China Sea. Tropical storm strength 
was reached 6 hours later. 

Tropical Storm Cary moved west-north¬ 
westward and then west-southwestward in 
response to a low-level northeast monsoonal 
surge (Fig. 3-26-1) and eventually dissi¬ 
pated over Vietnam on 02 November. 


-h\ 

ft** 


<■ HO CHI MINH CIT1 


/V 






/ $ 


FIGURE 3-26-1. Txopicat Sto-js Cam,' neat atursos in¬ 
tensity in the. South China Sea. The suxiace Centex 
ii p&xtiatty exposed as indicated by the e.’ ss i l us 
banking southeast c£ the main convection, 01 Ucvenbex 
ms, O033Z. IHCAAS inegexy) 


101 



















































TiPHOOS DIKAH (27) 


Dinah, the final typhoon of the 1980 
season and the third tropical cyclone this 
season to threaten Guam, began to develop in 
aid-Sovesber as a focal point of cusulus 
banding embedded in the monsoon trough ori¬ 
ented east-west near Kwajalein. Initial 
development of this system was slow and 
erratic, as four successive Tropical Cyclone 
Formation Alerts (TCFAs) were issued for this 
area between 18 and 20 Kovenber- On the 21st 
however, this system finally established a 
well-developed outflow pattern, and its 
heaviest associated convection, which was 
initially more evident along the periphery 
of the circulation, began to consolidate 
about the system's center. The first 
warning on Tropical Storm Dinah was issued 
at 210600Z. At that time, having estab¬ 
lished a well-developed outflow to all 
quadrants. Dinah intensified rapidly and 
subsequently reached typhoon strength at 
2118G0Z, just 12 hours after the initial 
warning. 


A post-analysis of Dinah's development 
reveals some unique properties. First, she 
exhibited a very compact circulation, which 
she maintained throughout her lifespan as a 
tropical cyclone. The 30 Jet (15 a/sec) wind 
radius was significantly less than normal. 
Second, a persistent easterly flow occurred 
near the surface during Dinah's initial de¬ 
velopment and nay have been a primary factor 
for her slow and erratic development. For 
example, the surface analysis at 200000Z 
(Fig. 3-27-1) indicated an associated surface 
circulation near (8 168E and a brisk easter¬ 
ly gradient-level flow north of the surface 
circulation. This flow pattern resulted in 
both the abnormally rapid movement of the 
develoming system and an unusually pronounced 
aspaetr? in her wind field which displaced 
the sarimn wind band to the north of the 
circulation center- A subsequent surface 
analysis, at 2112001 (Fig. 3-27-2), however, 
did not indicate a surface circulation, but 
rather weak easterly flow south of where the 































7 T 

4—♦——f- 


mi * 




FIGURE 3-27-2. The 2OI2C01 November J980 sun(ace 

{-n )/gnadient-tev&l [did*— —<Si) wind data and 

itaearaccne analysis. Wind ipeedi an c -in fenoti. ® 
indicates satellite petition c& Dinah at about the. 
tattt tine. 


circulation's position was indicated in sat¬ 
ellite imagery. At the same time, cyclonic 
flow was present over the area at 500 mb anu 
a closed cyclonic center existed just north¬ 
west of the disturbance at 200 mb. In view 
of the above data, it is probable that Dinah 
developed from a mid- or upper-level cyclone 
that subsequently generated its own surface 
circulation. The Aerial Reconnaissance Wea¬ 
ther Officer (ARWO)l aboard the initial 
flight into what ultimately became Typhoon 
Dinah, stated "the storm was compact, with a 
■.y sharp pressure gradient and good band¬ 
ing....We had difficulty closing off the 
circulation to the north and northwest 
because it may just have actually closed 
CitselO off". 

By the time Dinah intensified to a ty¬ 
phoon, she posed a definite threat to Guam 
within 48 hr; thus, the decision was made to 
evacuate military aircraft from the island. 

A comparison of the 500 mb analysis (which 
is generally considered the primary steer¬ 
ing level for tropical cyr nes) just prior 
to and subsequent to the a .craft evacuation, 
demonstrates the great importance of enroute 
aircraft reports of flight-level winds 
(AIREPS) and the significance they can make 
to a tropical cyclone forecast. The 500 mb 
streamline analysis at 211200Z (Fig. 3-28-3) 
shows a strong anticyclone near Marcus Is¬ 
land and strong ridging west-southwestward 
toward the Philippine Islands. In response, 
JTWC forecast Typhoon Dinah to pass just off 
tne northeastern tip of Guam. The next 500 


aMBSi 


HI 


FIGURE 3-27-3. The 2II200Z November 19 tO 5 00 mb taind 
data and stneanline analytic. blind speeds ana in 
biots. 


^Richard F. Ferris, 1 Lt, USAF: Mission ARWO 


104 




















--i 


irb streamline analysis at 220000Z (Fig. 

? 28-4), which was augmented by a series of 
•PS taken by an evacuation flight en- 
ate from Guam to Okinawa, enabled JTWC to 
jnalyze a eakness in the ridge just north 
of Guam. In view of this new information, 
JTWC amended Dinah's forecast track to pre¬ 
dict that Dinah would track near Saipan vice 
Guam. Because Dinah was so compact, this 
small change in track was enough that Guam 
received very little wind as Dinah passed to 
the northeast, but Saipan and nearby Tinian 
received typhoon-force winds and sustained 
extensive damage. 

Dinah continued to intensify rapidly as 
she began to move into the weakness north of 
Guam toward the Northern Marianas Islands. 
Dinah subsequently crossed the northeastern 
portion of Saipan at 221845Z and reached 
maximum intensity at 222100Z, with maximum 
sustained winds of 100 kt (52 m/sec) and 


gusts to 130 kt (67 m/sec). After crossing 
Saipan, Dinah continued to move through the 
weakness in the ridge near 140E and began to 
Recurve to the north on 23 November. She 
then weakened and accelerated to the north¬ 
east in response to a mid-tropospheric long¬ 
wave trough which was moving eastward past 
Marcus Island on the 24th. Dinah transi¬ 
tioned to an extratropical cyclone by 251200Z. 

Damage to the islands of Saipan and 
Tinian was massive, with 60 homes destroyed 
and another 214 homes suffering damages. 
Saipan, in the aftermath of Typhoon Dinah, 
was completely without power for several 
days and 85 percent of the water system was 
not functioning. Carlos S. Camacho, Governor 
of Saipan, estimated damages totalling 7 mil¬ 
lion dollars. Shortly after damages were 
assessed, President Carter declared the area 
a major disaster area, enabling the area to 
qualify for federal disaster fund relief. 





FIGURE 3-27-4. T hi 1100002 November. 19SO 5 00 mb w.,id 
data and itneamtine analyiii. blind ipzcdi aaz in 
knoti. Note the AIREPS noathiozit o( Guam which weae 
provided to JTWC by a Hasty aincAait evacuating (acm 
Guam to Okinawa. 


105 





































2V 
















TROPICAL STORM ED 


Tropical Storm Ed was the '.ast signifi¬ 
cant tropical cyclone to devfiop in the west¬ 
ern North Pacific in 1980. Ed was never 
forecast to reach typhoon strength due to the 
strong vertical wind shear which developed in 
the vicinity of the Philippine Islands during 
the last half of December. 

Tropical Storm Ed was first observed as a 
disturbance near Yap on the 14th of December. 
The disturbance moved westward at between 12 
and 15 kt (22 to 28 km/hr) as its convective 
activity and overall organization continued 
to improve. A Tropical Cyclone Formation 
Alert (TCFA) was issued when a reconnaissance 


aircraft observed a well-defined low-level 
circulation with a minimum sea-level pressure 
of 1004 mb. The first warning on Tropical 
Storm Ed was issued at 1600002 when 50 kt 
(25 m/sec) surface winds and a 991 mb pres¬ 
sure were reported. Maximum surface winds 
were consistently observed northeast of Ed 
in a region of enhanced pressure gradient 
between the cyclone’s center and a strong 
surface ridge. 

It became evident from synoptic analyses 
that Ed was moving into an area which was un¬ 
favorable for continued development. Figures 
3-28-1 and 3-28-2 are representative of the 



FIGURE 3 -2S-I. The 2000001 December 19 SO surface 
( -\]/gradietit level {* -() mini data, and stream¬ 

line analysis in the vicinity o( Tropical Storm Ed. 
Hind speeds are in knots. 


107 






































basic flow patterns which existed at the sur¬ 
face and 200 mb levels during most of Ed’s 
existence. The strong surface ridge men¬ 
tioned above e>tended from the Asian mainland 
into the Pacific Ocean north of Ed and main¬ 
tained a st-ong northeasterly low-level flow 
in the vicinity of the Philippine Islands 
(Fig. 3-28-1). At the same time, strong 
southwesterly flow at the 200 mb level was 
present off the east coast of the Philip¬ 
pines (Fig. 3-28-2). The resultant strong 
vertical wind shear not only caused Ed to 


weaken as his convection moved off to the 
northeast, but it also helped to maintain a 
confused steering flow which induced Ed to 
follow an erratic course while he was north¬ 
east of Simar. 

Eventually, after most of his convection 
had been sheared off, Ed’s surface center be¬ 
gan to track to the southwest under the in¬ 
fluence of the strong surface ridge to the 
north. Dissipation as a significant tropi¬ 
cal cyclone was completed or. the 24th as the 
remnants of Ed moved into northern Mindanao. 






yirti 


FIGURE 3-2S-Z. The Z00000Z December 19SO 200 mb 
iticamCine anatyiii. blind speeds aie in knots. 











2. NORTH INDIAN OCEAN TROPICAL CYCLONES 


! 

.1 

•I 

i 


s 

i 

I 


i 


! 


i 

l 

j 

i 

.v 


i 





\ * 

i 

: L 

' i 





During 1980, there was a notable lack o£ 
significant tropical cyclone activity in the 
North Indian Ocean area (Table 3-3). Two 
tropical cyclones developed near the end of 
the year: one in the Arabian Sea (TC 23-80) 


and one that began in the Bay of Bengal (TC 
27-80) and tracked south of India into the 
Arabian Sea. This was a dramatic decrease 
from the 1979 total of seven which was the 
greatest number observed in the two areas 
since JTWC expanded its area cf responsibi¬ 
lity westward to include the Arabian Sea in 
1975. 


TABLE 3-3 NORTH INDIAN OCEAN 


1980 SIGNIFICANT TROPICAL CYCLONES 




CALENDAR 

MAX 

EST 

NUMBER 




DAYS OF 

sre 

MIN 

OF 

Distance 

CYCLONE 

PERIOD OF WARNING 

WARNING 

WIND(KT) 

SLP 

WARNINGS 

travelled(NM) 

TC 23-80 

17 NOV-19 NOV 

3 

35 

995 

8 

940 

TC 27-80 

16 DEC-17 DEC 

2 

35 

996 

6 

2122 


1980 TOTALS 

5 



14 



TABLE 3-4 





1980 

i SIGNIFICANT TROPICAL 

CYCLONE 

STATISTICS 




NORTH 

INDIAN OCEAN 

JAN 

FEB 

MAR 

APR 

MAY 

JUN 

JUL 

AUG 

SEP 

OCT 

NOV 

DEC 

TOTAL 

ALL CYCLONES 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

2 

(1971-1979) AVERAGE* 

0.1 

0 

0 

0.3 

0.5 

0.4 

0 

0 

0.5 

0.8 

1.5 

0.3 

4.4 


FORMATION ALERTS 

2 of the 7 (28t) Formation Alert Events developed into numbered cyclones. 

WARNINGS 

Number of warning days: 5 

Number of warning days with 2 cyclones: 0 

Number of warning days with 3 or xrore cyclones: 0 


i From 1971 through 1979, only Bay of Bengal cyclones were considered: the JTWC area of responsibility was 
extended ir. 1975 to include Arabian Sea cyclones. 














































































1 


TC 23-80 


| 


, ! 





TC 23-80 was the first of only two sig¬ 
nificant tropical cyclones in 1980 to occur 
over the North Indian Ocean. It developed 
during the autumn transition season just 
prior to the northeast monsoon period. Orig¬ 
inating as an area of enhanced convection in 
the monsoon trough off the southwest coast of 
India, TC 23-80 tracked steadily northwest¬ 
ward over the Arabian Sea between 12 and 17 
November. 

On 17 November, a mid-tropospherle 
trough tracking eastward toward India began 
to induce TC 23-80 to recurve to the north¬ 



FI GUKE 3-29-1. TC 23-10 just prior to recurvature 
over the Arabian Sea. The low-level secondary cir¬ 
culation [ 9 ) is j'ust beginning to develop on 

the extreme southwest edge o$ the main mass o& con¬ 
vection, 17 November I960, 15392. (N0AA6 imagery 
(rom AFGWC, 0((utt AFB, Nebraska,! 


east. The main area of convection and the 
associated low-level center did indeed begin 
to recurve. However, satellite imageries, 
which were evaluated during post-analysis 
(Fig. 3-29-1), indicate that a second low- 
level circulation formed southwest of TC 23- 
80 on 17 November. The first circulation 
continued northeastward and dissipated near 
the Indian coast, while the secondary circu¬ 
lation continuted moving westward as a well- 
defined, exposed low-level circulation (Fig. 
3-29-2). This secondary circulation eventu¬ 
ally weakened and dissipated on the coast of 
Saudi Arabia, five days after cyclogenesis. 



F7 GUXE 3-29-2. The secondary Icto-level center as a 
well-developed circulation tracking westward towards 
Saudi Arabia, 19 November 19S0, 03512. IN0AA6 imagery 
i-rcm AFSi'C, O^utt AF8, Nebraska! 


I 


111 

































CHAPTER TZ - SUMMARY OF FORECAST VERIFICATION 


1. ANNUAL FORECAST VERIFICATION 

a. Western North Pacific Area 

Forecast positions at warning times 
and 24-, 48-, and 72-hour valid times were 
verified against corresponding best tracks. 
Vector errors and right angle errors for in¬ 


dividual tropical cyclones were calculated 
and are displayed in Table 4-1. Annual 
mean errors for all tropical cyclones are 
listed in Table 4-2 for comparison. Fre¬ 
quency distributions of the vector errors 
for 24-, 48-, and 72-hour forecasts on all 
1980 tropical cyclones are shown in Figure 
4-1. Annual mean vector errors are graphed 
in Figure 4-2. 



TAflU: 4-1 

. FORECAST ERROR S'JHXARY FOR THE 1960 HESTER}* 
CYCLCNES (ERRORS IN NAUTICAL NILES5 

WORTH 

FACT FI C SXCXirXCAtfT TfcCOICAL 






HASKINS 



24 HCtfR 



48 HCCR 



72 hoc* 




res it 

ERPOR 

KT ANCLE 
ERROR 

M ENGS 

F0S1T 

ERROR 

RT ANCLE 
EJUWR 

• 

KK3CS 

FOS2T 

EURO} 

KT ANCLE 
ERROR 

• 

HftNCS 

KSIT 
* ERROR 

RT AJCLt 
FSOtoR 

« 

HlCiSS 

X. 

Tt>-01 

26 

J; 

17 

102 

20 

34 

94 

53 

11 

157 

65 

7 


TS '"AKJtEX 

32 

12 

9 

154 

90 

9 

266 

179 

7 

250 

218 

S 

». 

tv new 

29 

15 

42 

117 

106 

39 

192 

133 

27 

324 

237 

23 

4. 

—s run 

14 

10 

34 

130 

76 

31 

300 

2c; 

27 

464 

414 

23 

5. 

Ts< FOftRLST 

37 

S7 

26 

106 

56 

22 

227 

123 

18 

386 

227 

14 

6 

TS 

44 

29 

32 

112 

52 

10 

199 

146 

6 

299 

293 

2 


HXKPEXr 

29 

19 

IS 

73 

19 

11 

130 

102 

7 

64 

S3 

2 / 

a. 

~s ;sa 

21 

31 

22 

98 

37 

19 

182 

73 

24 

253 

126 

7 

9. 

TY JCT 

It 

13 

25 

99 

61 

20 

197 

*»6 

17 

301 

184 

13 

xo. 

70-10 

42 

33 

7 

115 

92 

2 







XX. 

AIK 

23 

If 

29 

95 

63 

25 

159 

109 

22 

211 

123 

18 

12. 

TY LEA 

id 

11 

36 

117 

*7 

32 

324 

251 

24 

499 

421 

20 

XJ. 

TY WARCE 

20 

11 

31 

114 

56 

26 

276 

ISO 

20 

506 

371 

12 

14. 

T5-U 

126 

67 

2 










15. 

rr noks:s 

26 

19 

20 

103 

76 

17 

283 

134 

1) 

212 

144 

9 

16. 

73-16 

70 

20 

5 

2*3 

29 

1 







17. 

7T CRCHSO 

36 

22 

19 

95 

62 

16 

175 

96 

12 

284 

179 

8 

1*. 

TY KLTV 

20 

11 

13 

11) 

60 

9 

::: 

130 

S 

314 

131 

1 

19. 

TY FERCY 

26 

16 

20 

164 

113 

17 

245 

172 

14 

309 

291 

9 

20. 

TY 3FERRY 

23 

17 

22 

176 

13) 

19 

324 

236 

10 

571 

413 

8 

:i. 

TS 7HELKA 

61 

43 

16 

145 

8) 

11 

353 

218 

7 

978 

577 

4 

22. 

TY VtlWCW 

30 

16 

25 

145 

77 

21 

226 

iss 

17 

248 

203 

13 

\ i). 

ST WYNNE 

16 

12 

44 

119 

66 

41 

248 

137 

36 

370 

273 

30 

24. 

TS 

26 

17 

8 

118 

46 

4 







25. 

TT 8ETTY 

23 

14 

39 

131 

81 

36 

306 

225 

29 

524 

405 

28 

26. 

TS CARY 

38 

27 

14 

160 

158 

11 

421 

356 

7 

630 

540 

3 

27. 

TT SJKAM 

25 

14 

17 

145 

93 

13 

304 

175 

9 

473 

336 

$ 

26. 

TS K> 

40 

21 

20 

146 

120 

16 

292 

262 

11 

402 

378 

4 

ALL 

forecasts 

26 

16 

590 

126 

79 

492 

24) 

164 

370 

389 

287 

268 



113 























































FIGURE 4-2. Annual vector. WWW (rot) jot all cycler.a in the xatcAn Soith Pacific. 

















































Jfl # 


Intensity verification statistics 
for all significant tropical cyclones in the 
western North Pacific area are depicted in 
Figures 4-3 and 4-4. The average absolute 
magnitude of the intensity error as well as 
the intensity bias (algebraic average) are 
graphically depicted.' This year's data show 
that the absolute magnitude of JTKC's fore¬ 
cast intensity errors (Fig. 4-3) has not 
changed significantly from 1979 throughout 72 


hours. The mean algebraic errors (Fig. 4-4), 
however, show that JTKC had a definite nega¬ 
tive bias through 72 hours. This negative 
bias means that JTWC consistently under fore¬ 
cast tropical cyclone intensity during 1980. 
Verification of intensity forecasts by ob- 
jective'aids is also depicted in Figures 4-3 
and 4-4. (An explanation of the objective 
forecasting aids is found in this chapter. 
Section 2-Conparison of Objective TechniquesJ 




FIGURE 4-3. CcejMtOCTi c$ average ir.tcrst-tv C-V.CVS 
(magnitude) jet a£E cyctcr.cs ir. £kz 
i cz&tctn Slottfi Pacijic. 


FIGURE 4-4. CcapariscB cj average ir.tcrMC? tttew 
i&iaseJ i jet att ewefenes in the 
western !fetch Paciiic. 


























b. North Indian Ocean Area 














































2. COMPARISON OF OBJECTIVE TECHNIQUES 

a. General 

Objective techniques used by JTWC 
are divided into four main categories: 

(1) climatological and analog technique::; 

(2) extrapolation; (3) steering techniques; 
and (4) a dynamic model. The analog tech¬ 
nique provides three movement forecasts: one 
for straight moving cyclones, one for recur¬ 
ving cyclones, and one which combines the 
tracks of straight,'recurving, and all other 
cyclones that do not meet the criteria of 
straight or recurving analogs. All objective 
techniques, except the Tropical Cyclone Mo¬ 
del (TCM), were executed using operational 
data available at warning time. The TCM used 
analysis fields for initialization that were 
not available at warning time. The TCM fore¬ 
casts were received at JTWC 9 to 12 hours 
after warning time. 

b. Description of Objective Techniques 

(1) EXTRAPOLATION — A track from 
the 12-hour old preliminary best track posi¬ 
tion through the current warning position 
which is linearly extrapolated to 24 and 48 
hours. 

(2) CLIM — A climatological aid 
which provides 24-, 48-, and 72-hour tropi¬ 
cal cyclone forecast positions and intensity 
changes for initial latitude/longitude posi¬ 
tions. The data are arranged by months and 
are based on historical data from 1945 to 
1973. 

(3) HPAC — The 24- and 48-hour 
forecast positions are derived from the mid¬ 
points of straight lines connecting the 24 - 
and 48-hour positions on the EXTRAPOLATION 
track at the CLIM track. 

(4) TCM — The dynamic Tropical Cy¬ 
clone Model (TCM) is a coarse mesh (220 km) 
primitive equation model. The digitized 
tropical cyclone warning position is bogused 
in the 850 mb wind and temperature fields of 


the FLENUMOCEANCEN Global Band Analysis. 
Hemispheric forecast data are used on the 
boundaries. 

(5) CYCLOPS — An updated version 
of the HATTRACK/MOHATT steering program which 
can provide steering forecasts at the 1000, 
850, 700, 500, 400, 300, and 200 mb levels. 
The program can be run in the unmodified or 
modified version with analysis or prognostic 
fields. The program advects a point vortex 
on a preselected analysis and/or smoothed 
prognostic field at designated levels in 6- 
hour time -steps through 72 hours. In the 
modified version, the program uses the pre¬ 
vious 12-hour history position to compute 
the 12-hour forecast error and applies a 
bias correction to the forecast positions. 

As in previous years, the modified version 
in the prognostic mode for the 500 and 700 
mb levels was verified. 

(6) TYAN78 — An updated analog 
program which combines the earlier versions 
TYFN75 and INJAH74. The program scans his¬ 
tory tapes for cyclones similar (within a 
specified acceptance envelope) to the cur¬ 
rent cyclone. For the NW Pacific region, 
three types of 24-, 48-, and 72-hour posi¬ 
tion and intensity forecasts are provided 
(straight, recurve, and combined). For all 
other regions, types of tracks are not segre¬ 
gated. 

c. Testing and Results 

A comparison of selected techniques 
is included in Table 4-5 for all western 
North Pacific cyclones and in Table 4-6 for 
Indian Ocean cyclones. In Tables 4-5 and 
4-6, “X-AXIS" refers to techniques listed 
horizontally across the top, while "Y-AXIS" 
refers to techniques listed vertically. The 
example in Table 4-5 compares COMB to CY70. 

In the 394 cases available for comparison, 
the average 24-hour vector error was 133 nm 
for COMB and 138 nm for CY70. The difference 
of 5 nm is shown in the lower right. (Dif¬ 
ferences are not always exact due to compu¬ 
tational round off.) 















STATISTICS PQR YEAR 


24 HR FCSTS 
RECR 


416 135 417 132 
132 -2 132 0 


• KWfflER 

X-AXIS j 

| OP 

TECHNIQUE * 

t CASES 

ERROR j 

: Y-AXIS 

ERROR I 

i TECHNIQUE 

DIFFERENCE J 

[ ERROR 

Y-X S 


127 

13 

327 

127 

135 

-7 

393 

139 

135 

3 

V 13bT s^ 141 

141 

0 









126 

332 

135 

398 

135 

398 

133 431 

141 

437 

136 







9 

130 

-5 

136 

1 

136 

3 136 

-4 

136 

0 







130 

i03 

136 

128 

133 

128 

127 130 

141 

131 

133 

156 

137 





6 

130 

-5 

138 

5 

138 

11 137 

-3 

137 

S 

137 

0 





125 

348 

135 

414 

135 

414 

132 422 

141 

427 

136 

153 

135 

488 

160 



33 

151 

16 

160 

25 

160 

27 161 

20 

161 

25 

166 

31 

160 

0 



125 

343 

134 

409 

133 

409 

132 424 

141 

429 

135 

154 

137 

478 

160 

492 

143 

17 

134 

0 

142 

9 

142 

11 143 

2 

143 

7 

142 

5 

142 

-17 

143 

0 

125 

342 

134 

407 

133 

407 

132 415 

140 

420 

135 

151 

135 

478 

160 

478 

142 

4 

121 

-12 

131 

-2 

131 

0 131 

-8 

131 

-3 

131 

-3 

130 

-29 

130 

-11 


STATISTICS 

FOR YEAR 



48 HR FCSTS 











JTWC 

STRA 

RECR 

OB 


CY70 

CYSO TCMO 

CLlrf 

XTRP HPAC 

JTWC 

370 

243 












.... . 



243 

0 










JTWC - 

orriCAi. jtwc ro recast 














STRA - 

STRAIGHT 

(TYAN 78) 


STRA 

284 

243 

299 

295 








RECR - 

RECURVE 

(TYAN 78) 



288 

45 

295 

0 








CCMB - 

COMBINED 

(WAN 78) 














CY70 - 

CYCLOPS 

700-X8 PMC 


RECR 

309 

245 

299 

29S 

346 

257 






CYSO - 

CYCLOPS $00-KB PROG 



244 

-1 

251 

-44 

257 

0 






TCHO - 

TROPICAL CYCLONE MODEL 

(ONE-WAY) 













CLIH - 

CLIMATOLOGY 


CC«B 

309 

245 

299 

295 

346 

257 

346 

243 




XTRP - 

12-HCuR EXTRAPOLATION 



2)2 

-12 

235 

-59 

243 

-1) 

243 

0 




HP AC - 

KEAN or XTRP AND CLIMATOLOGY | 

CY?0 

311 

248 

277 

296 

322 

259 

322 

244 

350 

266 







262 

15 

262 

-33 

267 

8 

267 

24 

266 

0 






CY50 

318 

247 

283 

296 

328 

259 

328 

244 

350 

266 

357 

256 





254 

7 

253 

-43 

257 

-l 

257 

13 

254 

-11 

256 

0 




TOtt 

IIS 

262 

92 

304 

108 

269 

ioe 

253 

107 

258 

109 

248 128 

259 




251 

-10 

241 

•62 

248 

-20 

248 

-4 

254 

-3 

254 

6 259 

0 



CLIH 

356 

243 

296 

294 

341 

257 

341 

242 

338 

266 

345 

257 124 

252 

394 300 



281 

38 

279 

-15 

301 

44 

301 

59 

303 

37 

303 

46 307 

55 

300 0 


XTRP 

362 

244 

<96 

293 

340 

255 

340 

241 

344 

266 

351 

255 126 

257 

386 297 

399 306 


303 

60 

300 

6 

304 

49 

304 

63 

306 

40 

307 

51 32) 

66 

302 5 

306 0 

HPAC 

351 

243 

294 

293 

337 

255 

337 

241 

334 

265 

341 

256 122 

250 

386 297 

386 302 386 255 


244 

l 

242 

-50 

255 

0 

255 

14 

255 

-9 

256 

0 269 

19 

255 -41 

255 -47 255 0 


STATISTICS 

FOR YEAR 



72 MR FCSTS 











JWC 

STRA 

RECR 

CCMB 

CY70 

CY50 

TCMO 

CLIH 

XTRP 

HPAC 

jtv; 

268 

389 















359 

0 














STRA 

212 

394 

242 

451 













421 

27 

451 

0 












RECR 

228 

39) 

242 

451 

268 

386 











371 

-21 

376 

-74 

386 

0 










CCf© 

228 

39) 

242 

451 

268 

386 

268 

378 









364 

-28 

373 

-77 

378 

-7 

378 

0 








Cr70 

221 

403 

220 

455 

245 

394 

245 

380 

263 

419 







416 

13 

416 

•38 

420 

26 

420 

40 

419 

0 






C'SO 

228 

399 

228 

454 

252 

392 

252 

379 

262 

419 

270 419 






422 

23 

412 

-41 

419 

28 

419 

40 

417 

-1 

419 0 





TCMO 

66 

437 

60 

472 

C0 

398 

65 

374 

66 

398 

68 415 

•3 349 





361 

• 74 

343 

-128 

326 

-72 

326 

-47 

342 

-55 

341 -73 

349 0 




CLIM 

258 

394 

239 

446 

265 

387 

265 

375 

257 

418 

264 422 

80 341 

305 445 




429 

35 

425 

-20 

449 

62 

449 

73 

449 

30 

449 27 

427 85 

445 0 




TABLE 4-5. 

ERROR STATISTICS FOR THE WESTERN NORTH PACIFIC FOR 1980 


119 








































STATISTICS 

FOR YEAR 

24 

HR FCSTS 










JTVC 

TV 70 

CY70 

CYSO 

TO» 

CLIM XTRP 

HPAC 

JTWC 

7 

us 








~ 





0 







NUMBER 


X-AXIS : 


TY7Q 

6 

122 

9 

141 





OF 


TECHNIQUE ! 



114 

-8 

141 

0 





CASES 


ERROR J 



5 

129 

5 

117 

5 

99 





: 



99 

-30 

99 

-17 

99 

0 



Y-AXIS 


ERROR • 











TECHNIQUE 


DIFFERENCE j 


CY50 

5 

129 

S 

11? 

5 

99 

5 

10s 

ERROR 


»-x j 



106 

-23 

106 

-10 

106 

7 

106 

0 J 

4 209 




TCMO 

3 

141 

4 

136 

2 

80 

2 

IP 7 






183 

42 

209 

72 

218 

138 

210 

111 

209 0 




CLIM 

7 

US 

9 

141 

5 

99 

s 

106 

4 209 

10 144 



97 

-17 

ISO 

8 

98 

0 

98 

-6 

159 -49 

144 0 


XTRP 

7 

115 

9 

141 

5 

99 

5 

106 

4 209 

10 144 10 129 



100 

-14 

138 

-3 

103 

4 

103 

-2 

149 -59 

129 -IS 129 0 


HPAC 

7 

115 

9 

141 

S 

99 

5 

106 

4 209 

10 1«4 10 129 

10 125 


84 

-31 

134 

-6 

97 

-1 

97 

-8 

136 -72 

12S -18 12S -2 

125 0 


STATISTICS FOR YEAR 48 HR FCSTS 


JTVC TY78 CY70 CYSO 

JTVC 2 93 

93 0 


TY78 

1 

90 

5 

28S 




245 

1S6 

285 

0 



CY70 

0 

0 

1 

320 

1 

126 


0 

0 

126 

-193 

126 

0 

CY50 

0 

0 

1 

320 

1 

126 


0 

0 

369 

49 

369 

243 

TCMO 

1 

90 

3 

312 

1 

126 


271 

181 

303 

-8 

306 

179 

CUM 

2 

93 

S 

285 

1 

126 


326 

233 

419 

134 

504 

370 

XTRP 

2 

93 

S 

285 

1 

126 


72 

-20 

184 

-100 

221 

95 

HPAC 

2 

93 

5 

285 

1 

126 


144 

51 

278 

-s 

358 

231 


TCMO CUM XTRP HP AC 


»»»«»»«»»»««««»♦♦»»»»» 
j JTVC - OFF I CAL JTVC FORECAST 
l TY78 - ANALOG (TYAN 78) 
j CY70 - CYCLOPS 700-MB PROG 
: CYSO - CYCLOPS 500-MB proc 
i TCMO - TROPICAL CYCLONE MODEL (ONE-WAY) 

S XTRP - 12-HOUR EXTRAPOLATION 
J IIPAC - MEAN OF XTRP AND CLIMATOLOGY 

AwMtW Mm w HMM mM tt ii Mn i mi iiwtM mm h* mh i 4 

369 0 


1 369 3 303 

306 -62 303 0 


1 

369 

3 

303 

6 

401 





504 

135 

418 

US 

401 

0 





1 

369 

3 

303 

6 

401 

6 

159 



221 

-147 

200 

-102 

158 

-241 

158 

0 



1 

369 

3 

303 

6 

401 

6 

158 

6 

260 

358 

-10 

271 

-31 

260 

-140 

260 

101 

260 

0 


STATISTICS 

FOR YEAR 

72 

HR FCSTS 





■M 



JTWC 

TY78 

CY70 

CY50 

TCMO 

CLIM 

JTWC 

1 

167 











167 

0 










TY78 

1 

167 

2 

427 









389 

222 

427 

0 








CY70 

0 

0 

i 

465 

1 

77 







0 

0 

77 

-387 

77 

0 






CY50 

0 

0 

1 

465 

1 

77 

i 

681 





0 

0 

681 

216 

681 

604 

681 

0 




TCMO 

1 

167 

2 

427 

1 

77 

1 

681 

2 

304 



306 

138 

304 

-122 

303 

226 

303 

-377 

304 

0 


CLIM 

1 

167 

2 

427 

1 

77 

1 

681 

2 

304 

3 585 


513 

346 

636 

209 

760 

683 

760 

79 

636 

332 

585 0 


TABLE 4-6. 

ERROR STATISTICS FOR THE NORTH INDIAN OCEAN FOR 1980 


120 


















CHAPTER 2 - APPLIED TROPICAL CYCLONE RESEARCH SUMMARY 


1.JTWC RESEARCH 


Part of the mission of the Joint Typhoon 
Warning Center is to conduct applied tropical 
cyclone research as time and resources permit 
The purpose of this research is to improve 
the timeliness and accuracy of operational 
forecasts. During 1980, there was continued 
effort to convert and update operational pro¬ 
grams and to streamline operational proce¬ 
dures for compatibility with the Naval En¬ 
vironmental Display Station (NEDS). The 
following abstracts summarize the year's 
applied research projects which were com¬ 
pleted or arc still m progress. 

EQUIVALENT POTENTIAL TEMPERATURE/MINIHUM SEA- 
LEVEL PRESSURE RELATIONSHIPS FOR FORECASTING 
TROPICAL CYCLONE INTENSIFICATION 

(Dunnavan, G. M., NAVOCEANCOMCEN/JTWC) 

A technique for forecasting rapid/explo¬ 
sive deepening has been under operational 
evaluation by JTWC for the past two tropical 
cyclone seasons. The technique indicates 
situations where significant intensification 
can be expected to occur in the near future 
based on the current 700 mb equivalent po¬ 
tential temperature and surface pressure at 
the cyclone center. Data from the past three 
tropical cyclone seasons will be collected 
and used to "fine tune" the temperature/ 
pressure forecast graph. The results will 
then be published as a NAVOCEANCOMCEN/JTWC 
TECH NOTE. 

TROPICAL CYCLONE WIND RADIUS PROGRAM 

(Huntley, J. E., NAVOCEANCOMCEN/JTWC) 

A wind radius program, developed by 
Holland (Bureau of Meteorology, Melbourne, 
Australia) was adapted for use by JTWC fore¬ 
casters on a TI-59 calculator. The program 
requires the tropical cyclone's minimum sea- 
level pressure and the radius of maximum 
wind. This program is useful in data sparse 
areas in the northwest Pacific and was modi¬ 
fied to use Dvorak satellite intensity data 
for Southern Hemisphere tropical cyclones. 


EVALUATION OF OBJECTIVE TECHNIQUES 

(Matsumoto, C. R., NAVOCEANCOMCEN/JTWC) 

The 24-, 48-, and 72-hour position 
forecasts from the CYCLOPS steering program 
W'- : evaluated during the 1980 tropical cy¬ 
clone season. The unmodified and modified 
versions in both analysis and prognostic 
modes at the 500 mb level were compared 
against each other and against the official 
JTWC forecasts. Results indicate that none 
of the versions of CYCLOPS was able to match 
the official JTWC forecasts. However, the 
modified prognostic mode was very competi¬ 
tive and clearly superior to the other modes 
The modified analysis mode was a close sec - 
ond, while the unmodified analysis mode per¬ 
formed poorly. 


EVALUATION OF THE NAVY NESTED TWO-WAY INTER¬ 
ACTIVE TCM (NTCM) 

(Matsumoto, C. R., NAVOCEANCOMCEN/JTWC) 

The accuracy and timeliness of the new 
NTCM were evaluated during the 1980 tropical 
cyclone season. Approximately 70 NTCM fore¬ 
casts were received in an ARQ mode for tropir 
cal cyclones commencing with Typhoon Norris 
and ending with Typhoon Dinah. The average 
turnaround time for these forecasts was two 
hours. Preliminary verification indicates 
that the forecasts, although more accurate 
than the official JTWC forecasts at 48 and 
72 hours, were not as accurate as the One- 
Way interactive TCM that uses the analysis 
fields instead of 12-hour prognostic fields 
used by the NTCM. 

A NEW TROPICAL CYCLONE FORECAST AID BASED ON 
A BLENDING OF PERSISTENCE AND CLIMATOLOGY 
(BPAC) 

(Weir, R. C., NAVOCEANCOMCEN/JTWC) 

A program has been designed for use 
with a TI-59 calculator which generates 12 
to 72 hr forecasts. These forecasts are 
based on a non-linear persistence developed 
from the past 36 hr motion of a tropical cy¬ 
clone and blended with climatology. The 
blending routine gives less weight to per¬ 
sistence at each forecast interval. 

2. NEPRF RESEARCH 

TROPICAL CYCLONE RESEARCH AT OR UNDER 
CONTRACT TO THE NAVAL ENVIRONMENTAL 
PREDICTION RESEARCH FACILITY (NEPRF), 
MONTEREY, CALIFORNIA 


THE NAVY TWO-WAY INTERACTIVE NESTED TROPICAL 
CYCLONE MODEL (NTCM) 

(Harrison, E. J., Jr., NEPRF) 

A primitive equation, two-way interac¬ 
tive nested tropical cyclone model has been 
developed by NEPRT. Evaluation of the model 
as a typhoon track forecasting aid was begun 
during the 1980 typhoon season. The model 
is currently initialized from the FNOC glo¬ 
bal band prognosis fields. Within the next 
year the model will be coded for the new 
CYBER 203 computer being installed at FNOC, 
and will be initialized from the new global 
model prognosis fields. 


THE PERFORMANCE OF THE NTCM WHEN INITIALIZED 
WITH GLOBAL BAND ANALYSES VERSUS GLOBAL BAND 
12-HR PROGNOSES VALID AT THE SAME TIME 

(Fiorino, M. and Harrison, E. J., Jr, 
NEPRF) 

The present version of the NTCM is ini- 




















tialized with 12-hr old global band prognos¬ 
tic fields because the tau zero analysis is 
not available until several hours past warn¬ 
ing time. The performance of the model in 
1980 was not as good as expected considering 
the results of the developmental evaluation 
using test cases. Most of the difference is 
thought to be because the test cases were 
initialized with analyses. The 1980 fore¬ 
casts are now being recomputed with tau zero 
analyses. Initial results show differences 
which hopefully can be quantified with more 
cases. 

THE EFFECT OF HEATING ON TYPHOON TRACK FORE¬ 
CASTING USING THE NTCM 

(Fiorino, M., NEPRF) 

A major difference between the NTCM and 
other typhoon model is the analytic repre¬ 
sentation of the diabatic effects of cumulus 
convection. To determine which characteris¬ 
tics of the heating field have the largest 
influence on the track, the heating profile 
is varied m space and time. Once these 
characteristics (magnitude, spatial distri¬ 
bution, etc.) have been identified, an at¬ 
tempt will be made to find an optimum set 
of heating parameters for several storms 
which can be related to satellite observa¬ 
tions. 

PREDICTING TROPICAL CYCLONE FORMATION IN 
WESTPAC 

(Lowe, P. R., NEPRF) 

The "Genesis" program has been evaluated 
from spring 1980 to fall 1980. The procedure 
has correctly forecast all tropical cyclone 
development during this time period. Further, 
false alarms were minimal in that only one 
case was forecast to develop which subse¬ 
quently did not develop (TD-10). One proa- 
lem was isolated during the evaluation. 

During the months of August and September, 
"Genesis" was prone to forecast development 
somewhat prematurely. Subsequent analysis 
of the program determined and corrected the 
cause of the problem. "Genesis" became op¬ 
erational in early October. A formal techni¬ 
cal report on "Genesis" performance for the 
year 1980 is planned. 

TROPICAL CYCLONE STRIKE AND WIND PROBABILI - 
TIES 

(Brand, S., NEPRF, Jarrell, J. D., 
Science Applications, Inc., and Chin, D., 
Systems and Applied Sciences Corp.) 

Tropical cyclone strike and wind pro¬ 
bability is a method tor determining up 
through 72-hr that a tropical cyclone will 
come within or affect geographic points of 
interest to the user. The output from this 
program can be used as an aid for operational 
decisions associated with tropical cyclone 
evasion, evacuation, and base preparedness. 
Applications presently being developed, test¬ 
ed and implemented include: strike and wind 
probability and geographic depictions in the 
western North Pacific; optimum track ship 
routing (OTSR) aspects in the wesiern North 
Pacific; eastern North Pacific strike 'roba- 
bilities; and western North Atlantic and 
Gulf of Mexico strike probabilities. 


TROPICAL CYCLONE HAVEN STUDIES 

(Turpin, R. and Brand, S., NEPRF) 

Six additional ports and harbors have 
been evaluated and will be forwarded as 
change TWO to the Typhoon Havens Handbook 
for the Western Pacific and Indian Oceans. 

In addition, COMSECONDFLT and CINCLANTFLT 
have requested 22 ports and harbors in the 
Atlantic and Gulf of Mexico be evaluated as 
hurrican havens. Work has commenced on these 
port studies. 


SOUTHERN HEMISPHERE UPPER-LEVEL TROPICAL CY¬ 
CLONE STEERING TECHNIQUES 

(Hamilton, H., Systems and Applied 
Sciences Corp.) 

The current automated objective steer¬ 
ing forecast technique (operationally termed 
CYCLOPS) has been developed for operational 
forecast use in the Southern Hemisphere. 


TROPICAL CYCLONE SURFACE WIND DISTRIBUTION 

(Tsui, T., Brand, S., and Brody, L. R., 

NEPRF) 

Based on data from 1966 to 1977 JTWC 
tropical cyclone warnings, a statistical 
wind distribution forecast model has been 
devel.oped and tested. The results of the 
statistical test, using the independent 
data of the 1979 tropical cyclone season, 
showed that the 30-kt and 50-kt wind radius 
forecast model provides competitive automa¬ 
ted forecasts as compared to the official 
forecasts of JTWC. The asymmetric nature of 
a tropical cyclone is incorporated in the 
model. In addition, a by-product of this 
model is suggested wind radius information 
m a format for insertion into the tropical 
cyclone warning. 


TROPICAL CYCLONE INTENSITY 

(Tsui, T., Brody, L. R., and Brand, S., 

NEPRF) 

A climatology/persistence tropical cy¬ 
clone intensity forecast model has been de¬ 
veloped. The data base consists of 1966 to 
1979 western North Pacific tropical cyclones 
Synoptic variables such as equivalent poten¬ 
tial temperature are now being incorporated 
as predictors in the model. Two other pre¬ 
dictors which may be included in the future 
are the cloud-top temperature pattern and 
the spiral pattern of the cloud bands de¬ 
rived from the satellite IR and visible 
imagery, respectively. 


SATELLITE BASED TROPICAL CYCLONE INTENSITY 
FORECASTS 

(Brody, L. R. and Tsui, T., NEPRF) 

The Satellite Processing and Display 
System (SPADS) is being used both to test 
available statistical algorithms and to de¬ 
velop new statistical algorithms which make 


122 










24-nr rorecasts of <Jid;,gcs in tropical cy¬ 
clone intensity. These statistical algo¬ 
rithms are based on satellite-measured 
equivalent blackbody temperatures of cloud 
tops surrounding tropical cyclones. IR data 
for both GOES-LAST and GOES-WEST for the 1979 
tropical cyclone season are being used in 
this study. 

AUTOMATIC EXTRACTION OF TROPICAL CYCLONE 
SATELLITE WINDS 

(Lee, D. H., NFPRF) 

Satellite winds of the quality, quanti¬ 
ty, and density necessary for initialization 
of tropical cyclone models can be quickly ex¬ 
tracted from successive geostationary satel¬ 
lite images using the System for Automatic 
Wind Extraction from Geostationary Satellite- 
data (SAWEGS). This recently developed sys¬ 
tem used Fast Fourier Transforms to extract 
cloud winds by computing the cross-covariance 
between images, and includes a unique edge 
enhancement technique plus other features 
which allow the automatic production of winds 
in tropical cyclone cases. Recent studies of 
the application of SAWEGS to tropical cyclone 
image sets have shown the good quality and 
coverage of resulting vectors as well as the 
system's remaining difficulties. 


TROPICAL CYCLONE SPIRAL LINEARIZ, ’ION 
TECHNIQUE 

(Lee, D. H., NEPRF) 

A new technique for quantizing informa¬ 
tion inherent in the spiral banding structure 
of tropical cyclones has been developed. The 
Spiral Linearization Technique involves the 
transformation of a satellite image to polar 
stereographic coordinates and subsequent re¬ 
mapping into a selected spiral coordinate 
system. Cloud structures which conform to 
the spiral shape are portrayed as linear for¬ 
mations after linearization. Statistical and 
quantitative analyses of the linearized image 
yield information on a cyclone's structure 
which can be correlated with the cyclone's 
characteristics and behavior. A system to 
apply this technique is under development on 
the NEPRF Satellite-data Processing and Dis¬ 
play System. 

3. PUBLICATIONS 

Dunnavan, G. M., and Diercks, J. W., 1980: 

An Analysis of Super Typhoon Tip (October 
1979), Monthlv Weather Review , Vol. 108. pp 
195-203. 

Super Typhoon Tip was an eventful trop¬ 
ical cyclone which developed in the western 
North Pacific m early October 1979. Be¬ 
sides establishing the world’s record for 
the lowest minimum sea level pressure ever 
measured in a tropical cyclone. Tip also 
possessed the largest surface circulation 
pattern ever observed for a tropical cy¬ 
clone. The development cycle of Super Ty¬ 
phoon Tip from a weak disturbance to a 
mature typhoon to an extratropical system 
is discussed in view of the record breaking 
performance of this typhoon. 

Guay, G. A., 1980: Tropical Cyclone Fore¬ 
cast Verification as a Function of Recon¬ 
naissance Platform, NAVOCEANCOMCEN/JTWC 
80-3, TECH NOTE. 


Harrison (1975) examined tropical cy¬ 
clone forecas L iccu»-Cj ; as a function of the 
reconnaissance platform used as the basis 
for each forecast's initial position. Using 
1973 and 1974 data, Harrison showed that 
forecasts based on aircraft position fixes 
were most accurate when compared to the 
Joint Typhoon Warning Center's best traces. 
Unlike the earlier study, forecasts based 
on satellite reconnaissance were more ac¬ 
curate than forecasts based on aircraft 
reconnaissance for tropical cyclones which 
never reached typhoon intensity. 

Lubeck, O. M., and Shewchuk, J. D., 1980: 
Tropical Cyclone Minimum Sea Level Pressure 
Maximum Sustained Wind Relationship, 
NAVOCEANCOMCEN/JTWC 80-1, TECH NOTE. 

This paper investigates empirical re¬ 
lationships between maximum sustained 
surface winds and minimum sea-level pressure 
in western North Pacific tropical cyclones. 
The empirical equation developed by Atkinson 
and Holliday (1977) is reviewed and evalua¬ 
ted using 13 independent cases collected 
since the original study. New relationships 
were developed using the original dependent 
data set in Atkinson and Holliday and were 
tested also against the 13 independent cases. 
These new relationships were based on differ¬ 
ent assumptions for reducing observed peak 
wind gusts to one-minute sustained surface 
winds. There were no significant differences 
between the original Atkinson and Holliday 
relationship and the new relationships. In¬ 
troducing environmental pressure and latitude 
as additional predictors did not improve the 
pressure-wind relationship. 

Shewchuk, J. D., and Weir, R. C., 1980: An 
Evaluation of the DVORAK Technique for Esti¬ 
mating Tropical Cyclone Intensities from 
Satellite Imagery. NAVOCEANCOMCEN/JTWC 80-2, 
TECH NOTE. 

This paper investigates the accuracy of 
tropical cyclone intensity estimates as de¬ 
rived from the Dvorak technique. Estimates 
of current intensity and 24-houi forecast 
intensities were verified against JTWC 
official best track data. Results from a 
396-case sample indicate overall absolute 
and bias errors of less than one Cl number, 
even though forecast intensity errors were 
twice that of the current intensity esti¬ 
mates. Comparison of Dvorak and JTWC inten¬ 
sity errors indicate that they are essen¬ 
tially equal. The Dvorak 24-hour forecast 
intensities are also superior to all ob¬ 
jective forecast aids available to the JTWC. 
Dvorak forecast data were also evaluated as 
a function of the tropical cyclone’s life 
cycle. Results show a tendency of the Dvorak 
technique to over-forecast developing and 
weakening trends. Verification of cases 
which included a PLUS or MINUS symbol indi¬ 
cated no improvement over cases with no sym¬ 
bols. However, the use of the symbols is 
believed to reduce forecast intensity error. 













ANNEX A TROPICAL CYCLONE DATA 


1. WESTERN NORTH PACIFIC CYCLONE DATA 


TROPICAL DEPRESSION 01 
BEST TRACK DATA 


MQ/DA/HR 

BEST TRACK 

POSIT UIND 

POSIT 

DARNING 

ERRORS 

UIND DST UIND 

24 HOUR FORECAST 
ERRORS 

POSIT UIND DST UIND 

43 HOUR FOPECAST 
ERRORS 

POSIT UIND DST UIND 

72 HOUR FORECAST 

POSIT UIND DST UIND 

0318082 

6.4 

140.9 

15 

o.e 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

9. 

-0. 

0 . 

0.0 

8.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

83180S2 

16.8 

140.S 

20 

«.o 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

•0. 

0. 

0.0 

0.0 

0. 

-8. 

0. 

0.0 

0.0 

0. 

-0. 

8. 

8318122 

7.6 

139.7 

20 

0.0 

0.0 

0. 

-0. 

0. 

O.O 

0.0 

0. 

-0. 

0. 

0.0 

8.0 

0. 

-0. 

0. 

0.0 

O.O 

0. 

-0. 

0 . 

B318182 

8.2 

139.0 

20 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

6.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

9. 

03190e2 

8.7 

138.3 

20 

0.0 

0.0 

0. 

-O. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

O.O 

0.0 

8 . 

-0. 

0. 

0.8 

0.0 

0. 

-0. 

0. 

0319062 

8.8 

137.9 

20 

0.0 

0.0 

0. 

-0. 

0 . 

0.0 

0.0 

0. 

-0. 

0 . 

0.0 

0.0 

0. 

-0. 

0. 

e.e 

0.0 

0. 

-0. 

0 . 

0319122 

9.0 

137.3 

20 

0.0 

0.0 

8 . 

-0. 

0. 

0.0 

6.0 

0. 

-8. 

0. 

0.0 

0.0 

e. 

-0. 

0. 

0.0 

0.0 

e. 

-0. 

0. 

0319182 

9.0 

136.7 

20 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

9.0 

6. 

-O. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0 . 

0320002 

9.0 

136.2 

25 

0.0 

8.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

e. 

0.0 

O.U 

0. 

-0. 

c. 

0320062 

9.0 

135.6 

25 

9.2 

135.! 

25. 

32. 

0. 

9.9 

132.1 

20. 

101. 

5. 

11.2 

129.7 

35. 

51. 

to. 

13.0 

127.2 

40. 

90. 

10. 

0320122 

9.0 

135.0 

25 

8.9 

134.8 

25. 

13. 

0. 

9.4 

132.4 

3b. 

13. 

10. 

10.4 

129.8 

40. 

69. 

15. 

12.3 

127.7 

40. 

101. 

10. 

0320182 

9.1 

134.6 

25 

9.2 

134.2 

30. 

24. 

5. 

10.0 

131.8 

35. 

59. 

10. 

11.2 

129.3 

40. 

69. 

15. 

13.5 

127.0 

40. 

179. 

10. 

9321002 

9.2 

134.2 

25 

9.4 

133.7 

38. 

32. 

5. 

10.2 

131.2 

35. 

G9. 

10 . 

11.6 

120.9 

40. 

79. 

10. 

13.3 

127.C 

40. 

192. 

10. 

0321662 

9.3 

133.7 

2S 

9.1 

133.7 

30. 

12. 

5. 

9.5 

131.o 

35. 

153. 

10. 

10.7 

128.3 

40. 

90. 

10. 

12.5 

123.4 

35. 

202. 

15. 

032M22 

9.2 

132.3 

25 

9.6 

133.0 

30- 

48. 

5. 

10.6 

130.0 

35. 

77. 

:o. 

11.9 

127.2 

48. 

70. 

10. 

13.3 

124.6 

35. 

18S. 

15. 

6321182 

10.1 

no.a 

25 

9.9 

132.1 

30. 

77. 

5. 

10.9 

129.1 

35. 

S3. 

IU. 

12.3 

126.2 

40. 

77. 

ID. 

13.9 

125.3 

35. 

152. 

20. 

8322O02 

10.4 

129.7 

25 

10.5 

129.7 

30. 

6. 

5. 

’2.5 

I2S.3 

20. 

167. 

<■ _ 

IS.3 

122.2 

25. 

150. 

s. 

e.e 

0.0 

0. 

-0. 

8. 

3322062 

10.5 

129.2 

25 

10.7 

129.0 

38. 

17. 

5. 

12.6 

125.2 

30. 

124. 

0. 

15.3 

122.2 

35. 

90. 

15. 

0 0 

0.0 

0. 

-0. 

0. 

0322122 

10.8 

128.7 

25 

11.2 

128.0 

30. 

47. 

S. 

13.5 

124.0 

30. 

14- . 

0 . 

16.7 

121.7 

35. 

162. 

15. 

0.0 

0.0 

0. 

-O. 

8. 

0322182 

10.8 

128.2 

25 

11.3 

127.8 

30. 

38. 

5. 

12.7 

12$. I 

30. 

17. 

0 . 

14.7 

122.8 

25. 

12b. 

10. 

0.0 

0.0 

0. 

-0. 

0. 

0323002 

11.0 

127.7 

30 

10.8 

127.7 

20. 

12. 

-10. 

I2.0 

125.5 

20. 

124. 

-10. 

0.0 

0.0 

e. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

032306Z 

11.5 

127.0 

30 

11.3 

127.4 

20. 

26. 

-10. 

12.3 

125.2 

20. 

196. 

0. 

0.0 

0.0 

e. 

-0. 

0. 

0.0 

O.O 

0. 

-0. 

0. 

6323122 

12.0 

126.0 

30 

12.1 

126.3 

20. 

19. 

-19. 

14.0 

123.4 

15. 

110 . 

-5. 

9.0 

0.0 

0 . 

-O. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0323182 

12.5 

124.9 

30 

12.5 

125.0 

20. 

6. 

-10. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0 . 

-0. 

0. 

0.0 

0.0 

0 . 

-0. 

0. 

0324082 

13.1 

123.7 

30 

13.3 

123.8 

20. 

13. 

-10. 

O.O 

0.0 

0. 

-0. 

6. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

e. 

8324eGZ 

13.8 

122.2 

20 

14.1 

122.2 

20. 

18. 

0. 

0.0 

0.0 

0. 

“0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0 . 

-0. 

e. 

0324122 

14.0 

121.5 

20 

O.d 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0 . 

-0. 

0 . 

O.D 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0 . 

-0. 

0 . 

0324182 

14.2 

170.7 

15 

0.0 

0.0 

0. 

-0. 

0. 

O.O 

0.0 

0. 

-0. 

0 . 

O.C 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0 . 

-0. 

0. 

0325002 

14.3 

119.3 

15 

0.0 

0.0 

0. 

-8. 

0. 

0.0 

0.0 

0 . 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0 . 

-0. 

0. 


all forecasts TYPHOONS 1WILE OVER 3S kts 



LRKG 

24-HR 

40-HR 

72-KR 

IftHG 

24-HP 

48-HR 

72-KR 

AVG FORECAST POSIT ERROR 

26. 

102. 

94. 

157. 

0 . 

0. 

e. 

e. 

AVG PIGMT ANGLE ERROR 

12. 

20. 

S3. 

6$. 

0. 

0. 

0. 

0 . 

AVG INTENSITY MAGNITUtE ERROR 

6. 

C. 

tl. 

13. 

a. 

O. 

0. 

0 . 

AVG INTENSITY DIAS 

-0. 

4. 

11. 

13. 

0 . 

0. 

o. 

0. 

NUffiER OF FORECASTS 

17 

14 

11 

7 

0 

0 

0 

8 


DISTANCE TRAVELED BY STORM IS 2439. NM 


AVERAGE SPEED Of STORM IS 15. KNOTS 


TROPICAL DEPRESSION TD-8! 

FIX POSITIONS FOR CYCLONE NO. I 


SATELLITE F1>£S 


FIX TIFE FIX 

NO. <Z' POSITION ACCRY DVORAK CODE SATELLITE COftfMTS SITE 


1 162358 6.0N 147.5E PCN 6 T0.0/0.0 Df€P39 I*iT OBS PGTU 

2 170300 S.8N 146.6E PCN 0 OTHER PGTy 

3 180121 8.5N 140.IE PCN 5 T1 9/1.0 /D1.0/2SHRS DMSP39 PCTW 

* 4 181007 10.0N 140.3E PCN 6 N0AA6 PCTU 

* S 182247 8.BN 139.SE PCN 5 KOAA6 pfiTU 

6 190101 8.BN 138. IE PCN 3 Tl.0/1.0 /S0.0/24HRS D«P39 PCTU 

* 7 19094S 10.6N 137.46 PCM S NOAAS PCTU 

8 I9222S 9. IN 135.9E PCN 3 NOAAS PCTU 

9 200841 9. IN I35.6E PCN 3 T2.0/2.0 /DI.0/24HRS W1SP39 PCTU 

10 201104 9.4H 134.3E PCN 6 NOAAS PCTU 

11 201600 9.7N 134.0E PCN 0 OTHER PCTU 

12 202203 9.6H 133.7E PCN 5 NOAA6 DATA EDGE PCTU 

13 210203 9.38 133.S€ PCN 5 T2.0/2.0 /S0.0/26HRS D«P39 PCTU 

14 216203 10.5H 132.SE PCN S T2.0/2.0 DMSP3S INIT OBS RPrtc 

* 15 210900 IB.BN J31.9E PCN 0 OTHER PCTU 


124 

























16 

211043 

11 . IN 

130.9E 

PCM S 



N0AA6 


PGTU 

I? 

211600 

12.8N 

130.9E 

PCN o 



OTiER 


PGTU 

18 

212322 

10.3*1 

130.4E 

PCN 3 



N0AA6 

EXPOSED LLC 

PGTU 

19 

229124 

11.5N 

128.2E 

PCN 3 

Tl.0/1.6 

/S8.0/24HRS 

Drf»P39 


RODN 

2e 

220144 

10.9N 

130.26 

PCN 5 

Tl.0/1.0 


DOSP39 

IN1T OPS 

RODH 

21 

228144 

10.4N 

130.IE 

PCN 3 

Tl.0/2.0 

/TJ1.0/24HRS 

DMSP39 


PGTU 

22 

228900 

II.ZN 

129.IE 

PCS 0 



OTHER 


PGTU 

23 

221021 

II.8H 

129.?£ 

PCN S 



N0AA6 


PGTU 

24 

221600 

II.3N 

129.3E 

PCN 0 



OTHER 


PGTU 

25 

222300 

10.7H 

120.3E 

PCH 5 



N0AA6 


PGTU 

26 

230124 

1I.4N 

128.IE 

PCN 3 

Tl.0/1.0 

/S0.0/24HRS 

DMSP39 


PGTU 

2 7 

230900 

12. IN 

126.9E 

PCN 0 



OTHER 


PGTU 

26 

231630 

12.3N 

125.4£ 

PCN 0 



OTHER 


PGTU 

29 

232100 

13.8H 

124.4£ 

PCN 0 



OTHER 


FGTU 

30 

240880 

12.8N 

123.4E 

PCN 0 



OTHER 


PGTU 

31 

24024 6 

14.6M 

12I.9E 

PCN 5 

T2.8/2.0 


DH5P39 

INIT OBS 

RFftt 

32 

240246 

13.8N 

122.5E 

PCN 5 

Tl.0/1.6 

/S0.0/2SHRS 

PMSP39 


RODN 

33 

260206 

It. BH 

112.46 

PCN S 

Tl.5/1.5 


DT6P39 

INIT OSS 

PGTU 

14 

260308 

12. IN 

112.46 

PCN 0 



OTHER 


PGTU 

35 

261200 

12.5N 

116.BE 

PCN 0 



OTHER 


PGTU 

36' 

26121S 

12.3N 

116.5E 

PCH 6 



N0AA6 


RPNC 

3? 

22014? 

II.8N 

114.96 

PCN 5 



DHSP39 


PGTU 

38 

220300 

12.2N 

114.36 

PCN 0 



OTHER 


PGTU 

39 

220320 

12. IN 

115.0£ 

PCN 5 



VKP39 

HO DVORAK 

RPI* 

40 

221153 

12.2N 

113.7E 

PCN 6 



N0AA6 


RPTK 

4! 

230000 

II.SN 

112.8E 

PCN 0 



OTHER 


PGTU 

42 

280309 

n.en 

111.36 

PCH S 

Tl.0/1.0 


W6P35 

INIT OBS 

RODH 







AIRCRAFT FIXES 



FIX 

TIME 

FIX 

FLT 

2001® 

OBS 

MAX-SFC- 

•t*D 

mx-FLT-LVL- 

■CUD 

ACCRY 

EYE 

EYE ORIEH* 

EYE TEN> (C) 

MSN 

NO. 

<Z> 

POSITION 

LVL 

HCT 

11SLP 

VEL/BRG/RHC 

DIRAEL/BRG/RNG 

NAV/TET 

SHAPE 

DlArt/TATION 

OUT/ IN/ DP/SST 

NO. 

I 

180205 

5.3H 

149.6E 

1503FT 


1085 

2D 050 

240 

090 

44 050 

240 

5 S 



♦2- *23 +22 


I 

2 

190C07 

8.3N 

!38.9E 

I500FT 


1006 

20 030 

230 

100 

30 030 

230 

5 10 



♦22 *23 *23 

28 

2 

3 

20O045 

9. IN 

135.26 

l50t*" T 


1003 

25 038 

30 

120 

32 068 

70 

6 7 



♦25 

24 

3 

4 

200526 

8.2H 

135.16 

7031® 

3123 


35 020 

129 

130 

22 020 

128 

5 10 



♦ 9 *13 ♦ 6 


4 

5 

210100 

8.5N 

134.IE 

7031® 

3097 


25 610 

65 

130 

28 040 

128 

6 8 



♦ 9 ♦ 8 


6 

6 

210635 

9.4N 

133.7E 

7031® 

3083 


10 120 

10 

250 

18 000 

680 

10 10 



♦ I! ♦ 9 


6 

7 

212202 

10.4N 

130.0£ 

706TB 

3101 

1003 

15 338 

55 

090 

46 010 

130 

5 IS 



♦12 +12 +11 


8 

0 

221946 

11.IN 

123.5E 

7081® 

3104 


it 120 

100 

098 

42 810 

150 

10 15 



♦12 ♦ B 


10 

9 

222315 

!A.6N 

127.7E 

7001® 

3120 

1005 

15 096 

68 

166 

32 100 

63 

4 45 



♦12 +12 ♦ B 


10 






SYHOPTIC FIXES 

FIX 

TirC 

FIX 

INTENSITY 

NEAREST 

NO. 

<z> 

POSITION 

ESTIMATE 

DATA (Krt) COtttNTS 

* I 

230000 

12.0N 128.0E 

030 

28 

• 2 

231200 

11.SN 127.0E 

030 

20 

3 

231000 

12.4N 125.OF 

030 

90 

4 

232108 

I2.8H 124.56 

030 

20 

5 

248006 

13.0H 124.06 

010 

20 


NOTICE - THE ASTERISKS <«) INDICATE FIXES UNREPRESENTATIVE AND HOT USED FOR BEST TRACK PURPOSES. 


125 














TROPICAL STORM CARMEN 
BEST TRACK DATA 


I HOUR FORECAST 
ERPORS 


0404962 

4.7 

161.4 

20 

0.0 

0.0 

0. 

-9. 

0. 

0.0 

O.O 

0. 

-0 

940 1062 

6.0 

181.2 

7S 

0.0 

0.0 

0. 

O. 

0. 

0.0 

0.0 

0. 

-0 

0404122 

7.2 

i8i.: 

30 

O.n 

0.0 

0. 

*0. 

0. 

0.0 

O.n 

0. 

-8 

0404IB2 

8.3 

100.4 

35 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0 

9405002 

9.2 

179.6 

40 

9.S 

160.0 

30. 

30. 

-10. 

13.7 

177.7 

40. 

56 

0405062 

10.1 

170.5 

45 

10.0 

170.9 

30 

24. 

-15. 

17.6 

176.2 

40. 

155 

0105122 

11.6 

177.8 

SO 

11.0 

178.2 

49. 

45. 

10. 

14.7 

175.8 

CA. 

184 

0405IC2 

!3. 1 

1’7.4 

55 

13.8 

177.7 

4f . 

•IS. 

-10. 

19.6 

179.9 

50. 

136 

O4060U2 

14.5 

177.2 

60 

14.7 

176.0 

43. 

26. 

-15. 

10.7 

176.6 

50. 

136 

04.06562 

16.0 

177.2 

60 

15.5 

177.2 

<*5. 

30. 

-15. 

19. > 

1C0. I 

40. 

23 

0406122 

17.1 

177.6 

55 

17.0 

177.5 

30. 

8. 

5. 

20.0 

102.8 

45. 

172 

044t> 162 

!7.9 

178.» 

50 

18.4 

178.7 

50. 

38. 

0. 

22.>J 

104.4 

35. 

263 

0407002 

10.8 

179.0 

45 

1C. 5 

175.8 

50. 

49. 

0 . 

21.0 

105.0 

40. 

200 

0497062 

19.4 

179.7 

45 

0.0 

0.0 

0. 

-8. 

0. 

0.0 

0.0 

0. 

•9 

0497122 

19.7 

190.0 

40 

0.9 

0.0 

0. 

-8. 

0. 

0.0 

6.0 

0. 

-0 

04071C2 

23.0 

160.2 

•10 

0.0 

O.f 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0 

01OS002 

20.3 

ICC.4 

35 

0.0 

0.0 

0. 

-8. 

0. 

0.0 

0.0 

0. 

-0 

0-103062 

20.6 

160.6 

35 

0.0 

0.0 

0. 

-8. 

0. 

O.n 

0.0 

0. 

-0 

0408122 

20.9 

181.1 

30 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0 

04081C2 

21.2 

131.6 

30 

0.0 

e.o 

0 . 

-0. 

0 . 

0.0 

0.0 

0 . 

-0 

0409C02 

21.4 

1C2.0 

25 

0.0 

0.0 

0 . 

-0. 

0. 

0.0 

0.0 

0. 

-0 


49 HOUP FORECAST 
ERPORS 


72 HOUR FORECAST 


POSIT 

UlHt 

PSf UIND 

POSIT 

UIND 

DST UIND 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

e.o 

8. 

-0. 

0. 

0.0 

0.0 

6. 

-0. 

0. 

0.0 

o.e 

e. 

-0. 

0. 

0.0 

0.0 

0. 

-u. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-o. 

0. 

0.0 

o;o 

a. 

-0. 

0. 

1-9.1 

170.0 

45. 

70. 

0. 

20.9 

181.5 

35. 

91. 

0. 

17.0 

176.4 

40. 

236. 

-5. 

20.0 

100.3 

30. 

40. 

-5. 

10.5 

177.9 

55. 

139. 

IS. 

21.2 

101.7 

45. 

38. 

15. 

22.8 

186.5 

50. 

330. 

10. 

2S.0 

192.7 

48. 

C50. 

10. 

21.9 

103.4 

35. 

193. 

0. 

24.0 

109.3 

30. 

431. 

s. 

23.0 

105.6 

35. 

Jl2. 

0. 

0.0 

0.9 

0. 

-0. 

0. 

23.9 

190.0 

35. 

523. 

5. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

C. 

e.o 

0.0 

0- 

-0. 

0. 

0.0 

0.0 

O. 

-O. 

0. 

8.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

e.o 

0.0 

0. 

-0. 

0. 

0.0 

o.e 

0. 

*0. 

0. 

o.e 

0.0 

0. 

-e. 

0. 

0.0 

e.o 

0. 

-0. 

0. 

o.e 

0.0 

0. 

-0. 

G. 

0.0 

0.0 

0. 

-0. 

0. 

o.e 

0.0 

0. 

-0. 

0. 

0.0 

e.o 

e. 

-0. 

6. 

e.o 

o.e 

0. 


0. 

O.U 

0.0 

e. 

-0. 

0. 

o.e 

0.8 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

u.e 

0. 

-0- 

0. 


AVC FORECAST POSIT ERROR 
A VC RIG»*T ANCLE ERROR 
A VC INTENSITY MAGNITUDE ERROR 
AVG INTENSITY BIAS 
NWCER OF FORECASTS 


ALL FORECASTS 
tNC 24-HR .lO-HR 72-13? 

32. 154. 266. 250. 

19. 90. 179. 218. 

9. 9. 5. 7. 

-7. -3- 4. 5. 

9 9 7 5 


TYPHOONS L1IILE aVEP 35 X7S 
UPNC 24-HP 43’HR 72-HR 


DISTANCE TRAVEtCO BY STORM is 1179. NM 
AVERAGE SPEED OF STORM IS 10. KNOTS 


TROPICAL STORM CARTON 
FIX POSITIONS FOR CYCLONE NO. 


SATELLITE FI>£S 


FIX 

Tift 

FIX 




NO. 

(Z) 

POSITION 

ACCRY 

DVORAK CODE 

SATELLITE 

* I 

310008 

6.7N 

174.3U 

PCN 0 


OTHER 

2 

0400IS 

4.SN 

179.30 



C06S3 

3 

848980 

6.9M 

179.eu 

PCN 0 


OTHER 

* 4 

041815 

S.7N 

179.9E 



G06S3 

5 

041200 

7. IN 

170.3U 

PCN 0 


OTHER 

6 

041515 

7.4N 

100.0£ 



C0ES3 

7 

041530 

7.5N 

179.7E 

PCN 6 


M0AA6 

e 

041600 

G.8N 

179.eu 

PCN 0 


OTHER 

* 9 

041714 

6.6N 

180.0E 

PCN 6 


K0AA6 

10 

041915 

8.5N 

179.9E 



C06S3 

t! 

041954 

ft.SN 

179.7E 

FCH 6 

T2.5/2.S 

N0AA6 

12 

041954 

9.0(1 

179.9E 

PCN 6 


N0AA6 

13 

042100 

9.5N 

179.20 

PCN 0 


OTKR 

14 

050800 

9.7M 

179.6E 

PCN 0 

T2.5/2.5 

OTHER 

IS 

050233 

9.4N 

179.16 

PCN 6 

72.5/2.5 

TIROSN 

16 

050234 

9.6N 

170.46 

PCN 6 


NCAAS 

17 

050300 

9.flN 

179.OE 

PCN 0 


OTHER 

18 

050653 

9.4N 

170.26 

PCN 6 


N0AA6 

19 

esc90o 

11.3N 

178.96 

PCN 0 


OTHER 

20 

051119 

11. IN 

177.56 



COE S3 

21 

051260 

II. 8N 

178.36 

PCN 0 


OTHER 

22 

051519 

13.ON 

177.66 

PCN 4 


TIROSN 

23 

051600 

13.SN 

178.86 

PCN 0 


OTHER 

• 24 

051932 

13.9N 

177.36 

PCN 6 


H0AA6 

25 

651932 

13.6N 

177.26 

PCN 6 

T3.S/3.5 /DI.0/24KKS 

H0AA6 

26 

052615 

13.7M 

177.06 



COE S3 

27 

052160 

14. IN 

177.56 

PCN 0 


0T1CR 

28 

052231 

14. IN 

177.06 

PCN 2 

T4.5/4.5 /D2.8/20MRS 

DMSP39 

29 

060860 

14.SN 

177.46 

PCN C 

T3.S/3.S /D1.0/24HRS 

OTHER 

30 

O6P780 

J4.8N 

177.76 

PCN 0 


9TXR 

31 

060450 

1S.0H 

177.26 



C06S3 

32 

060608 

16. IN 

177.36 

PCN C 


OTHER 

33 

06O811 

16.5N 

177.26 

PCN 6 


NOAAS 

34 

060900 

16.4N 

177.76 

PCN C 


OTHER 

35 

061280 

I6.8N 

177.56 

PCN C 


OTHER 

36 

061569 

18.ON 

170.46 

PCN 6 


TIROSN 

37 

061660 

17.7N 

178.2C 

PCN C 


OTTCR 

38 

061615 

!?.■« 

178.06 



CC6S3 

39 

061CO0 

is.tm 

178.86 

PCN C 


OTHER 

40 

C61910 

I8.4N 

178.36 

PCN 5 

T3.S/4.5 /UI.0/2IWS 

NCAAG 

41 

062100 

ie.es 

179.26 

PCN 0 


OTHER 

42 

0b2»l0 

18.3N 

179.86 

PCN 6 

T3.3/4.S /UI.0/2**S 

WSP3S 

43 

a?eeae 

18.SH 

179.26 

PCN 0 

T2.S/3.5 /U1.6/2«*$ 

OTHER 


EST mx UOS 35 KTS 


EST mx UHDS 45 KTS OVER UATER 


EST MAX SFC IW)S 55 KTS 


PCD EYt EST mx l*DS 66 KTS 
R6D BNDC EYE 


RCD EYE 

PARTIALLY BND1NC EYE 


RCD EYE 

EST mx l*DS 65 KTS 



jHfc! 




























44 071115 19.5M 179.5U 

45 071915 20.ON 179.5U 

46 C7215I 20.IN 17S.9U PCN 6 

47 072315 20. IN 175.5U 

49 0S0615 20.6N 179.4U 

49 001200 20.6N 179.4U 

50 601680 21.OH 170.5U 

51 032131 21.3H 178.2U PCN 3 Tl.0^2.0 ✓ U. 

52 890083 21.4H 170.8U 


COES3 NESS 
GOES3 H£SS 
WTSP39 PM IK 
GOES3 NESS 
50ES3 NESS 
COES3 HESS 
SOES3 NESS 
OrKP39 LLCC PHIK 
GOES3 K£$S 


NOTICE - THE ASTERISKS (*> INDICATE FIXES UNREPRESENTATIVE AND HOT USED FOR BEST TRACK PURPOSES. 






















TYPHOON DOM 
BEST TRACK DATA 


BEST TRACK UAtalHG 24 HOUR FORECAST 43 HOUR FORECAST ?2 HOUR FORECAST 

ERRORS ERRORS ERRORS 


tt)vD A/hR 

POSIT UIND 

POSIT 

UIND 

5ST UIND 

POSIT 

u:nd 

DST UIND 

POSIT 

UlND DST 

UIND 

POSIT 

UlND DST UIND 

6508007 

8.2 

142.6 

20 

0.9 

8.0 

0. 

-8. 

0. 

O.O 

0.0 

0. 

-8. 

0. 

0.0 

0.0 

c. 

-0. 

0. 

0.U 

0.0 

0. -0. 

0. 

0508062 

8.2 

141.8 

20 

O.O 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

o. 

-0. 

0. 

0.0 

6.0 

0. 

-0. 

0. 

0.0 

0.0 

0. -0. 

0. 

0508122 

8.1 

140.9 

20 

0.0 

0.0 

0. 

-9. 

0. 

o.n 

0.0 

a. 

-0. 

0. 

0.0 

0.0 

e. 

-0. 

e. 

8.0 

0.0 

0. -0. 

0. 

0508182 

7.9 

14Q.2 

26 

o.e 

C.O 

0. 

-V. 

0. 

0.0 

0.0 

u. 

-0. 

0. 

0.0 

0.0 

6. -e. 

0. 

0.6 

C.0 

0. -0. 

8. 

0599BC2 

7.7 

139.2 

25 

7.8 

148. l 

30. 

54. 

s. 

0.3 

137.7 

40. 

164. 

10. 

9.2 

135.3 

50. 262. 

10. 

10.2 

133.3 

55. 426. 

-5. 

0509062 

0.3 

138.2 

25 

7.8 

130.7 

39. 

42. 

5. 

0.3 

S3G.0 

40. 

139. 

10. 

5.3 

13?.8 

58. 249. 

5. 

10.5 

131.9 

55. 4||. 

-18. 

0509122 

9.1 

137.4 

25 

8.1 

137.3 

30. 

60. 

5. 

0.7 

134.1 

40. 

139. 

10. 

9.4 

131.3 

45. "’09. 

-5. 

10,1 

129.9 

45. 370. 

-25. 

0509152 

9.9 

136.6 

30 

9.2 

137.4 

30. 

63. 

0. 

11.3 

135.3 

48. 

175. 

5. 

12.3 

133.1 

45. 388. 

-10. 

J2.3 

130.8 

45. 418. 

-30- 

0510097 

10.2 

135.7 

30 

10.0 

137.8 

30. 

77. 

0. 

12.3 

I34.0 

40. 

199. 

0. 

14.1 

132.6 

50. 

332. 

-1C. 

!5.8 

130.8 

58. *96. 

-38. 

05I0062 

10.3 

134.0 

30 

*0.7 

135.4 

30. 

43. 

0. 

I3-0 

132.4 

45. 

137. 

8. 

15.0 

129.9 

50. 237. 

-15. 

17.8 

128.5 

45. 294. 

-45. 

0510122 

11.0 

133.7 

30 

11.6 

133.S 

30. 

28. 

0. 

14.5 

129.4 

40. 

132. 

-18. 

17.8 

126.8 

58. 

163. 

-20. 

*?.? 

124.3 

45. 171. 

-48. 

O5101C2 

11.3 

132.3 

35 

12.? 

132.3 

30. 

54. 

—5. 

14.8 

128.6 

40. 

113. 

-15. 

17.0 

125.8 

50. 124. 

-25. 

19.2 

123.2 

40. 137. 

-40. 

05!1002 

11.5 

131.5 

40 

11.9 

131.5 

?e. 

24. 

-10. 

14.0 

120.0 

■10. 

63. 

-20. 

IC.8 

125.1 

45. 

37. 

-35. 

19.5 

123.2 

35. 139. 

-48. 

0511062 

11.8 

130.4 

45 

12.0 

129.8 

40. 

37. 

-5. 

13.5 

124.# 

50. 

70. 

-IS. 

15.3 

122.* 

45, 

190. 

-45. 

18.3 

122.5 

40. 61. 

-25. 

051112? 

12.3 

129.3 

58 

12.3 

1?9.S 

45. 

12. 

-5. 

14.11 

125.4 

55. 

59. 

-15. 

*5. C 

122.5 

45. 

42. 

-40. 

19.2 

122.7 

35. 102. 

-20. 

0511182 

13.0 

128.0 

55 

13.5 

128.4 

30. 

38. 

-5. 

*6.2 

125. 

50. 

76. 

-25. 

10.2 

124.0 

63. 

93. 

-20. 

20.8 

124.6 

3S 223. 

*lb- 

05«2602 

13.6 

126.9 

60 

13. e 

126.7 

50. 

17. 

-10. 

17.» 

i?3.C 

CO. 

72. 

20. 

19.7 

123.9 

50. 

162. 

-25. 

22.2 

126.8 

35. 32 2. 

-J8. 

0512062 

14. t 

125-9 

55 

14.5 

125.4 

55. 

38. 

-10. 

13.? 

123.5 

60. 

114. 

-30. 

19.7 

123.9 

50. 

159. 

-15. 

23.0 

126.1 

35. 349. 

-IS. 

0512127 

14.9 

125.0 

70 

1S.1 

124.9 

C9. 

13. 

-10. 

17.S 

123.6 

65. 

74. 

-20. 

20.0 

124.0 

55. 

172. 

8. 

23.6 

126.3 

48. 366. 

-15. 

0512182 

15.5 

124.3 

75 

15.0 

124.3 

68. 

18. 

-15. 

I9.0 

125.3 

65. 

126. 

-10. 

22.5 

125.0 

50. 

322. 

0. 

25.7 

128.8 

48. 522. 

-20. 

0513002 

15.9 

123.9 

80 

16.0 

124.0 

70. 

A. 

-10. 

io. e 

125.2 

CO. 

53. 

5. 

2!.? 

123.9 

65. 289. 

20. 

24.8 

127.6 

58. 414. 

-15. 

0513062 

16.3 

123.6 

?0 

16.3 

123.8 

70. 

tt. 

-20. 

10.1 

123.3 

RO. 

59. 

IS. 

21.2 

123.9 

65. 

193. 

IS. 

24.8 

127.4 

50. 383. 

-15. 

5513122 

15.6 

123.3 

85 

16.0 

123.2 

05. 

13. 

0. 

19.4 

122.7 

05. 

114. 

30. 

22.8 

124.9 

70. 284. 

lb. 

25.9 

128.9 

50. 452. 

-15. 

0513182 

16.9 

*23.1 

80 

17.2 

122.9 

OS. 

21. 

5. 

19.6 

122.9 

CO. 

117. 

30. 

?2.9 

125.1 

65. 266. 

5. 

26.0 

129.0 

45. !I9. 

-26. 

0514007 

17.2 

122.8 

75 

17.5 

122.8 

05. 

18. 

10. 

19.5 

12?.6 

75. 

90. 

36. 

'*.6 

125.8 

65. 224. 

0. 

26.2 

129.2 

45. 397. 

-15. 

0514062 

17.3 

122.7 

65 

17.3 

l?2.9 

99 

11. 

15. 

19,2 

125.0 

65. 

64. 

15. 

22.6 

125.5 

55. 215. 

-18. 

26.2 

129.2 

45. 767. 

-15. 

0514127 

*7.5 

122.5 

55 

17.A 

1*2 .6 

75, 

e. 

20. 

13.5 

122.7 

60. 

55. 

5. 

22.3 

125.2 

45. 16!. 

-28. 

26.1 

129-8 

30. 325. 

-25. 

0514107 

17.7 

122.4 

50 

17.8 

122.3 

CO. 

0. 

10. 

19.7 

i22.3 

55. 

48. 

-5. 

22.5 

124.8 

45. 

137. 

-20. 

9.8 

0.0 

0 -0. 

O. 

0515002 

18.0 

122.4 

45 

18.0 

122.3 

55. 

c 

to. 

13 8 

122.6 

45. 

29. 

-20. 

22.6 

124.0 

40. 

123. 

-20. 

0.0 

0.0 

O. *0. 

8. 

0515062 

18.3 

12?.4 

50 

18.4 

122.3 

55. 

8. 

S. 

29.3 

122.9 

45. 

40. 

-?0. 

23.5 

125.6 

40. 

156. 

-20. 

0.8 

0.0 

0. -0. 

0. 

0515122 

18.6 

122.5 

55 

18.5 

122.7 

45. 

13. 

-10. 

20.2 

123.4 

48. 

33. 

-25. 

24.2 

126.1 

30. 

ICO. 

-25. 

0.0 

0.0 

0. -0. 

0. 

0515102 

19.1 

122.6 

60 

19.0 

122.7 

45. 

8 . 

-15. 

21.7 

124.0 

49. 

90. 

-25. 

0.0 

C.O 

0. 

-ti. 

0. 

0.0 

e.e 

0. -8. 

0. 

GSI60O2 

19.4 

122.9 

CS 

19.0 

122./ 

40. 

26. 

-25. 

21.8 

124.0 

30. 

102. 

-30. 

U.O 

0.0 

C. 

-0. 

0. 

0.0 

0.0 

0. -0. 

0. 


0516062 19.7 1/3.2 65 20.1 123.4 60. 26. -5. 24.n 126.0 59. 103. -16. C.U O.C 0. *0. 0. 9.0 0.0 0. -0. 9. 

0516122 19.9 123.9 6b 20.1 124.1 55. 16 -1C. 23.! 12C.2 45. 151. -10. 4.0 0.0 0. -0. 3. O.e 0.0 9. -O. 0. 

P5I618J 20.? 124.7 65 20.4 124.0 5b. 13. -10. 23.5 129.0 45. 175. -5. 0.9 0.0 O. -0. 0. 3.0 O.C »l -0. O- 

G5I70O4 20.6 125.3 CO 20.5 125.7 65 . 23 . 5 . 24.2 132.2 >S. 323. -10. 0.0 O.O 0. -O. 0. 0.0 0.0 0. -0. 0. 

0517062 20.9 125.0 69 21.0 126.4 65. 34. 5 . 22.S 129.'I 45. 196. S. 9.0 0.0 0. -0. 0. 8.0 8.8 0. -0. 0. 

0517*22 21.2 126.4 SS 21.2 126.5 65. 6. 10. 24.3 131.3 35. 333. 0. 0.0 0.0 0. -0. 0- 0.0 O.O 0. -8. 0. 

051*10? 21.3 126.9 50 21.2 127.2 69. 18. 10. O.O 0.0 0. -0. 0. 0.0 0.0 0. -0. 0. 8.0 O.O 0. O. O. 

e5I*»e02 21.1 127.4 45 21.3 127.1 5b. 21. 10. 23.3 133.5 38. 2G6. 0. 0.0 O.H 8. -0. 0. O.O 0.0 0. -0. 0. 

0515062 2*» « 127.1 49 21.2 127.0 55. 46. 15. 22.9 131.2 39. 715. 5. 0.0 O.O 0. -0. 0. 0.0 0.0 0. -0. 0. 

C$18127 20.7 126.7 35 21.1 128.0 59. 76. *5. 21.9 131.0 39. 324. 5. 9.0 0.0 0. -0. U. 9.0 0.9 9. -0. 0. 

0536197 20.6 126.4 39 21.1 129.0 45. 140. 15. 21.2 131.5 20. 29$. ID. 0.0 O.O 0. -0. 0. 0.0 0.0 0. -0. P. 

O5190C2 20.8 116-! it 20.9 126.2 40. Q. 10. 0.0 *J.« 0. -0. 0. 0.0 O.O O. -0. O. 3.0 0.0 0. -0. 0. 

051S067 21.0 125.9 2b 20.9 125.** 3b. 6 . 10. 0.0 0.0 0. -9. O. 0.0 O.O O. -O. 0 0.0 0.0 0. -0. 0. 

6519122 21.3 126.0 2b 0.0 3.0 9. -0. 0. 0.0 0.0 C. -0. 0. 0.0 0.0 0. -0. 0. 0.0 0.0 0. -0. 0. 

0519187 21.5 126.2 20 0.0 0.0 0. -0 . 0. 6.9 9.0 0. -6. 0. 0.0 0.0 0. *0. O. T.** O.O 0. -0. 0- 

e52C007 21.7 126.5 20 0.0 0.0 0. -0. 0. 0.0 O.O 0. -0. 0. 0.0 0.0 0. -0. 0. 0.3 9.0 0. -0. 0- 


ALL FORECASTS t'.PPOONJ WILE OVEP 35 PIS 



%MttQ 

24-HR 

■10-HR 

7>liR 

l*HG 

24-HR 

43-HR 72 -TR 

AVC FORECAST POSIT ERROR 

29. 

137. 

191. 

324. 

22. 

115. 

191. 

324. 

AVS RIGHT ANGLE CTPOR 

15. 

106. 

133. 

435. 

12. 

03. 

133. 

233. 

AVG INTENSITY mGNlTUDE EPROS 

9. 

14. 

17. 


18. 

15. 

17. 

22. 

AVG INTENSITY BIAS 

0 . 

-4. 

-11. 

-22. 

0. 

-6. 

-11. 

-22. 

HUt€CP OF FORECAST' 

DISTANCE TRAVELED BY STORM IS 

42 

1938. 

39 

NT1 

27 

23 

32 

32 

27 

23 


AVERAGE CREED OF STORM !$ 7. KNOTS 


TYPHOON DOM 

FIX POSITIONS FOR CYCLONE NO. 3 


SATELLITE FI>XS 


FIX 7irt FIX 

NO. C7> POSITION ACCRY DVORAK CODE SATELLITE COfttNTS 


SITE 


• 1 850916 

• 2 852156 

• 3 860829 

• 4 871615 

5 072137 

6 872255 

7 080131 

8 838632 

• 9 860953 

• 18 801735 

• 11 692!16 
12 862233 
12 898118 

• 14 890111 
15 098388 
IS 898930 

17 891688 

18 892855 

19 892168 
28 892218 

21 16666S 

22 150398 

23 181050 

24 101688 

25 16218? 

26 182215 

27 ie2330 

20 118213 


8.6N 149.2E 
10.IN 149.46 

10.1M 140.9E 
9.8N 14J.2E 
0.8N 142.66 
8.7N 142.66 
8.ON 141.9E 

8. CN 142.16 
10.3N I42.SE 
10.4N 141.7E 
8.8N 148.32 
8.6H 148.3£ 
8.9N 148.46 
9.6N 148.6E 
8.4N 148.86 

9. BN 137.76 
18.IN 137.CE 
16.3N 136.8£ 
10.ON 136.SE 
18.9N 136.IS 
II.IN 135.96 
I1.2N 135.26 
11.7N 133.26 
11.5N 132.8C 
12.2N 131.76 
II.6N 131.4E 
11.5N 131.86 
II.8N 138.3E 


PCH 6 N0AA6 

PCN 5 Tl.B/1.8 N0AA6 

PCM 5 D**P39 

PCH 6 N0AA6 

PCH 5 DMSP37 

PCN 5 N0AA6 

PCN 5 Tl.0/1.0 DCSP39 

PCN S TlfiOSN 

PCH 5 NOAAS 

PCN 5 TIROSM 

PCH 3 DTSP37 

PCN 5 K0AA6 

PCH 5 T2.5/2.5 /Dl.5>^4HR3 DMSP39 

PCN 5 Tl.5'1.5 DfSP39 

PCH 0 OTXR 

PCH 5 P0AA6 

PCH 0 OTHER 

JXH S DTSP37 

PCH C OTTER 

PCH S N0AA6 

PCH 5 T2.S/2.S /S8.8/2*«RS 1*6*39 

PCH 0 OTHER 

PCH 5 N0AA6 

FCH 0 OTHER 

PCN 0 other 

PCH S !*6P37 

PCH 5 N0AA6 

PCH 5 T3.0/3.B WSP39 


1NJT OBS 


PSN SUSPECT 


1NJT OS 


INIT OSS 


PGTU 

PGTU 

PCTU 

PCTU 

pern 

PCTU 

PGTU 

PCTU 

PCTU 

PGTU 

PCTU 

PC7U 

PCTU 

RPnc 

PCTU 

PCTU 

PCTU 

PODH 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

pstu 

PCTU 

ROOM 


128 


















29 

116213 

II.ON 

13C.4F 

PCN 5 

T2.5/2.S*/C0.0/2SHRS 

DT6P39 

33 

118380 

I1.6N 

130. IE 

PCX 0 


OTHER 

31 

118600 

11. SN 

129.6E 

PCN 0 


OTHER 

32 

120988 

12.3N 

12S.7E 

PCH 0 


OTHER 

33 

111928 

12.3H 

129.6E 

rCN 3 


H0AA6 

74 

m6ea 

13. IN 

128.7E 

PCH 0 


OTHEP 

35 

112154 

13.6H 

127,6E 

PCN 3 


MtiP37 

36 

112307 

14.6 h 

127.3E 

PCH 1 


N0AA6 

37 

128153 

14.2N 

126.<£ 

PCH 3 

T3.5^.5 

W6P39 

39 

!2»!S? 

13.9N 

126.SC 

PCH 3 

T3.5/3.5-/D1.6/24HRS 

£46P39 

39 

126388 

14.1H 

126.4£ 

PCH C 


OTKR 

40 

123900 

14.7N 

125.6E 

PCH C 


OTKR 

41 

121147 

15.3N 

125.2£ 

PCH 6 


N0AA6 

42 

121200 

15.3N 

125.IE 

PCH C 


OTHER 

43 

121600 

15.7N 

124.8E 

PCH C 


OTHER 

44 

122133 

16.2H 

124.5E 

PCH 5 


Wt>PT7 

45 

122245 

■6.eH 

124.3E 

PCH 3 

74.8/4.0 /M.5/21 HRS 

>r>** 

46 

133134 

16.2H 

I24.e£ 

1 

TS.0/5.8 

W6P39 

47 

138134 

16.2H 

123-8E 

PCH 1 


Wfi**33 

48 

138980 

16.7N 

123.6C 

PCN E 


OTHER 

49 

131125 

17. BN 

123.2£ 

PCH 2 


HOARS 

se 

131125 

1G.8N 

123.3E 

PCN 1 


N0AA6 

51 

131683 

16.9N 

123.IE 

PCH E 


OTHER 

S2 

140084 

17.2N 

122.9E 

PCH 3 

T4.0/5.0 /U0.S/25KRS 

K0AA6 

53 

140114 

17.2H 

122.7E 

PCH 5 


DtSP35 

54 

140255 

17.2N 

122.8£ 

PCH 3 


DMSP39 

55 

140255 

17.215 

122.7E 

PCH 2 

T4.5/4.5 

DttSP39 

56 

148C60 

17.5H 

122.3E 

PCH E 


OTHER 

57 

148900 

17.7N 

122.3E 

PCH 0 


OTHEP 

50 

141182 

17.68 

122.5E 

PCH I 


H0AA6 

59 

141600 

17.68 

122.4£ 

PCN C 



60 

142234 

17.88 

122.3£ 

PCH 3 


W6P37 

61 

342342 

18.08 

122.4C 

PCH 3 

T3.S/3.5 

N0AA6 

62 

150235 

18.08 

122.3E 

PCH 3 

T4.0/4.5 AX. 5/26««7 

WCP39 

63 

150236 

18.18 

122.3F 

PCH 5 

T3.0/3.0 /U1.5/24HRS 

tT6P39 

64 

151040 

18. CN 

122.5E 

PCH 3 


H0RA6 

65 

151680 

18.98 

122.5E 

PCN 0 


O'HER 

66 

151808 

15.18 

123.IE 

PCN 0 


OTrEP 

67 

152168 

19.18 

122.8£ 

PCN C 


0TK62 

6C 

152211 

19.18 

123.3C 

PCH 3 


tTSPZ, 

69 

JS2328 

19.-»« 

123.IE 

PCN 3 


K0AA6 

76 

160216 

19.68 

123.1C 

PCH 3 

T4.0/4.0-/t>0.5/26NBS 

&TSP39 

71 

166216 

19.58 

123.IE 

PCH 3 

T4.0/4.0-/O1.0/24HRS 

DTBP39 

72 

I689e0 

19.88 

123.7E 

PCN C 


OTHER 

73 

161018 

19.68 

123.8E 

PCN 3 


H0AA6 

74 

161600 

20.68 

124.2E 

PCN E 


OTKR 

75 

161800 

20.08 

124.4C 

PCH C 


OTKR 

76 

152159 

20.48 

125.IE 

PCH 3 


WCP37 

77 

170156 

20.68 

125.3E 

PCN 3 

75.0/5.0 

W€P39 

78 

170156 

20.78 

125.46 

PCN 3 

T4.0/4.0-/S8. C/Z-a^S 

5T6P39 

79 

1789O0 

21.08 

126.IE 

PCN E 


OTHER 

ee 

171137 

21.18 

126.« 

PCN 6 


H0AA6 

91 

171600 

20.98 

126.6E 

PCM 0 


OTKR 

82 

172100 

21.68 

127.26 

PCN 0 


OTKR 

83 

172129 

21.28 

126-96 

PCH 5 


C«P37 

84 

172235 

21.28 

126.SE 

PCN 5 


HOAAC* 

85 

1&6617 

21.68 

127.76 

PCN 5 


KCAA6 

96 

180136 

20.88 

127.2E 

PCN 5 

T3.0/3.5 /*J1.0/2«*S 

W«P39 

87 

180136 

21.88 

127.IE 

PCH 5 

73.e/3.5 /U1.0/73NRS 

6n5T39 

89 

180280 

21.18 

127.3E 

PCH 0 


OTKR 

89 

186908 

21.68 

128.CE 

PCN C 


OTKR 

90 

iai2ee 

26.88 

128.46 

PCH 0 


OTKR 

91 

181600 

21.28 

128.6E 

PCN 0 


OTKR 

92 

182100 

21.08 

129.3£ 

PCN 0 


OTHER 

93 

182354 

20.98 

126.2E 

PCN 3 

T2.0/3.0 /v:.6/23»*S 

NORrtS 

94 

198117 

28.88 

126.2E 

PCH 3 

Tl.5/2.5 /U1.S/2««S 

6TCP39 

95 

198117 

20.98 

126.IE 

PCN 3 


IFSP39 

96 

191853 

21.28 

125.9E 

PCN 3 


HOARS 


OH TATA E&SE 



FIX TIK 
HO. <Z) 


1 fcWJl?2 

2 106963 

3 166663 

4 166663 

5 162136 

6 116647 

7 116915 

8 111925 

9 112266 
16 126615 

11 126336 

12 121932 

13 122151 

14 136664 

15 136644 

16 131919 

17 132268 

18 146936 

19 141966 
26 156663 
21 168211 

22 161961 

23 162142 

24 171449 


FIX 

POSITION 


AIRCRAFT FIXES 


flt rcr* oes mx-SFc-uo mx-n.T-tv^-uo accry 'ye 

LVL HIT ns*.r DIR/VEL"8RC/RNC KfiV/rCT SHAPS 


EYE CRItN- EYE TEH» <C» 

DJOfVTflTjCW OUT/ I HZ' 0P/S$T 


TOOTS 

3519 

1605 

30 680 

130 

176 

40 8*9 

130 

5 53 



♦14 *12 *16 

4 

7C«nB 

3091 


:o x6« 

70 

220 

28 160 

130 

8 SC 




4 

760f« 

3083 


25 320 

45 

038 

27 370 

45 

6 

:s 



♦13 *11 ♦ 6 

4 

7©0f® 

3081 


36 610 

26 

130 

35 630 

80 

4 

10 



*10 ♦» *16 

5 

70CT8 

3834 


43 680 

46 

ICO 

65 0*0 

40 

S 

s 




S 

TOOT® 

3622 

991 

55 350 

16 

270 

40 230 

«6 

5 

3 



-73 *14 »:o 

6 

Toenfi 

2973 




210 

50 'SO 

70 

S 

3 




7 

709T* 

2970 

585 

40 340 

26 

270 

32 180 

25 

€ 

i 



♦12 414 *16 

7 

rocre 

2916 


55 616 

45 

150 

64 040 

50 

6 

A 




e 

TOOTS 

2889 

976 

55 350 

35 

ore 

6* 350 

65 

12 

3 



♦ll +14 ♦!* 

8 

70er« 

2838 




3:e 

44 220 

IS 

4 

2 




9 

70088 

2834 

968 

55 320 

25 

e?0 

72 330 

20 

5 

2 



♦11 *17 +10 

9 

TOTS 

2751 


45 368 

10 

3 >3 

59 260 

35 

7 

» 




16 

TOOTS 

2736 

956 

56 350 

60 

CTO 

80 350 

40 

13 

3 

CIRCULAR 

30 

*11 *21 ♦ 5 

;e 

to an 

2766 




250 

90 160 

20 

5 

2 




n 

TtCre 

2767 

963 

75 310 

IS 

060 

90 310 

20 

5 

2 

CIRCULAR 

30 

♦SI *22 ♦ 6 

u 

76€f® 

2944 

983 

TO 620 

10 

270 

44 190 

70 

4 

2 

circular 

40 

♦12 *16 *12 

12 

7oere 

2947 

982 



040 

53 350 

It 

3 

2 

CIRCULAR 

38 

♦10 *17 *11 

14 

786TS 

3009 


35 ISO 

35 

248 

66 ISO 

IS 

4 

3 




15 

TOOTS 

2900 

977 

55 100 

60 

220 

59 000 

70 

5 

5 



♦18 *16 ♦ 8 

16 

toots 

2»S 




290 

62 200 

50 

5 

S 




17 

TOOTS 

2071 

974 

65 2« 

29 

320 

07 230 

IS 

5 

3 

CIRCULAR 

SO 

*17 *17 *10 

17 

TOSS 

2906 




230 

69 170 

20 

5 

5 



*13 *15 *12 

10 


NOTICE - THE ASTERISKS «•? INDICATE FIKS 1P*EP«S£nTATI\€ AN3> HOT USS5 FOB BEST T5« PtfC'CSSS. 































TYPHOON ELLEN 
BEST TRACK DATA 


rO/K/rfl 

pas: 

CEST TRACK 

T UIND 

°0S1T 

USRNlHG 

ERRORS 

UlfO OS - ' JlNt» 

24 HOUR FORECAST 
ERRORS 

POSIT UtND DST U1HD 

43 *OUR FORECAST 
ERRORS 

POSIT UIND DST UltQ 

72 K5.R FC^SCRST 

POSIT UIND DST WIND 

**5lll22 

6.9 

149.5 

15 

0.0 

0.0 

8. 

-0. 

0. 

C.0 

3.6 

«. -e. 

0. 

0.8 

8.8 

0. -0. 

0. 

0.0 

0.3 

3. -0. 

a. 

esinez 

6.S 

147.9 

IS 

0.0 

0.* 

e. 

-0. 

0. 

0.0 

6.0 

6. -0. 

0. 

0.0 

8.8 

0. -0. 

0- 

9.0 

e.e 

0. -0. 

0. 

6*312002 

7.0 

147.4 

20 

0.9 

0.0 

e. 

-0. 

0- 

3.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

6. -6. 

0. 

0.0 

6.8 

0. -0. 

0. 

0512262 

7.0 

144 

2i 

0.0 

0.0 

o. 

•0. 

0. 

3.3 

0.0 

8. -3. 

e. 

0.0 

0.0 

0. -0. 

0. 

0.8 

0.0 

0. -0. 

8. 

051217? 

7.0 

146.1 

30 

0.0 

e.o 

0. 

-0. 

8. 

0-0 

6.8 

0. -3. 

0. 

0.0 

8.8 

0. -8. 

0. 

0.0 

8.6 

8. -0. 

e. 

K12182 

7.1 

145.4 

35 

0.0 

0.9 

e. 

-P. 

0. 

0.8 

C.0 

t. *8. 

8. 

8.0 

6.0 

0. -0. 

0. 

0.0 

6.0 

8. -0. 

e. 

0513082 

7.2 

144.8 

40 

0.0 

0.0 

a. 

-0. 

0. 

0.8 

0.0 

0. -0. 

6. 

0.0 

0.9 

0. -0. 

8. 

e.e 

0.0 

0. -6. 

6. 

0513062 

7.3 

144.2 

45 

7.2 

144.1 

49. 

8. 

-5. 

7.8 

141.2 

58. 96. 

0. 

9.3 

136.1 

55. 239. 

-20. 

11.3 

134.0 

65. 366. 

-45. 

C513I72 

7.5 

143.8 

45 

7.6 

147.5 

50. 

54. 

5. 

0.9 

138.9 

60. 282. 

5. 

11.2 

135.0 

65. 398. 

-20. 

13.8 

131.5 

75. 574. 

-35. 

0513182 

7.8 

143.5 

45 

7.4 

143.0 

50. 

38. 

5. 

8.3 

140.2 

63. 128. 

0. 

10.0 

136.6 

65. 314. 

-35. 

12.2 

133.3 

75. 468. 

-35. 

0514032 

8.1 

143.2 

50 

8.2 

143.2 

45- 

6. 

-5. 

3-5 

141.0 

55. 59. 

-10. 

11.2 

137.3 

60. 241. 

-50. 

12.2 

133.5 

75. 453. 

-35. 

0514062 

8.4 

142.7 

SB 

8.5 

142.8 

45. 

9. 

-5. 

10.1 

?39.S 

55. lO. 

-26. 

11.5 

135.8 

65. 372. 

-45. 

13.8 

130.5 

75. 623. 

-25. 

0514122 

8.6 

142.2 

55 

8.5 

142.0 

45. 

13. 

-XO. 

>-S 

139.6 

55. 154. 

-30. 

IS.7 

136.8 

65. 314. 

-45. 

14.2 

131.8 

75. 538. 

-35. 

0514182 

9.0 

142.1 

60 

8.6 

141.C 

56. 

30. 

-10. 

9.8 

:39.S 

78. 160. 

•30. 

11.6 

136.0 

29. 310. 

-33. 

14.3 

131.6 

00. 533. 

-25. 

0515082 

9.5 

142.0 

65 

9.6 

141.0 

65. 

13. 

0. 

11.2 

139.1 

95. 142. 

-IS. 

13.2 

135.6 

100. 326. 

-10. 

16.2 

131.7 

iee. 567. 

-5. 

0515062 

16.4 

142.0 

75 

15.4 

142.fi 

75. 

0. 

0. 

13.0 

142.8 

108. 94. 

-16. 

16.8 

144.1 

90. 249. 

-20. 

20.2 

146.X 

70. 412. 

-35. 

9515122 

11.2 

141.8 

85 

11-2 

141.9 

09. 

6. 


14.5 

142.8 

108. 143. 

-10. 

:*.! 

144.8 

99. 302. 

-20. 

21.2 

147.3 

70. 515. 

-35. 

0515102 

11.6 

141.7 

100 

11.6 

141.9 

1C?. 

12. 

0. 

14.5 

142.7 

110. 130. 

e. 

17. e 

144.4 

90. 266. 

-15. 

21.2 

147.3 

88. 525- 

-26. 

0518032 

12.2 

141.3 

lie 

12.3 

141. S 

lie. 

13. 

0. 

l$.l 

141.5 

110. 109. 

0. 

17.8 

143.0 

90. 194. 

-IS. 

21.2 

145.3 

06. 438. 

-2C. 

0518062 

12.4 

141.3 

110 

12.5 

141.2 

110. 

8. 

6. 

14.7 

10.9 

95. «. 

-is. 

17.3 

141.9 

05. 1X9. 

-20- 

20.3 

144.1 

70. 370. 

-30- 

0516122 

12.6 

141.3 

110 

12.6 

141.2 

105. 

6. 

-5. 

14.2 

140.1 

98. 61. 

-26. 

16.9 

I41.S 

08. 137. 

-25. 

20.0 

143.8 

70. 365. 

-25. 

0516182 

12.B 

141.3 

no 

13.0 

141.3 

105. 

12. 

-5. 

14.7 

141.3 

194. 34. 

85. 

17.4 

141.8 

63. 165. 

-20. 

20.3 

144.1 

70. 417. 

-25. 

0517002 

13.3 

141.2 

lie 

13.3 

141.2 

110. 

0. 

0. 

15.2 

141.1 

95. 42. 

-10. 

10.6 

141.3 

68. 170. 

-20. 

21.3 

143.8 

70. 412. 

-IS. 

0517062 

13.7 

141.2 

lie 

13.7 

141.2 

110. 

6. 

0. 

15.3 

141.2 

95. 87. 

-10. 

18.3 

141.3 

05. 267. 

-15. 

21.6 

142.S 

75. 421. 

0. 

0517122 

14.5 

141.1 

no 

14.4 

IAJ.2 

110. 

9. 

0. 

17.1 

141.1 

95. 96. 

-10. 

19.0 

141.8 

85. 253. 

-10. 

22.8 

143.6 

75. 462. 

10. 

0517182 

15.0 

146.8 

105 

14.4 

141.2 

110. 

43. 

5. 

17.1 

141.1 

95. 127. 

-5. 

19.8 

141.8 

e5. 299. 

-It. 

22.0 

143.7 

75. 586. 

15. 

0518082 

15.6 

143.5 

105 

15.6 

10.5 

lie. 

0. 

5. 

1O.0 

139.3 

95. 85. 

-5. 

21.1 

140.8 

05. 297. 

0. 

24.5 

143.2 

75. 453. 

25. 

0518362 

16.3 

140.1 

165 

16.2 

140.2 

110. 

8. 

5. 

18.6 

139.8 

95. 126. 

-5. 

21.7 

141. c 

85. 327. 

10. 

24.9 

143.6 

75. 478. 

35- 

0516122 

16.9 

135.4 

105 

17.1 

139.5 

1C5. 

13. 

6. 

20.5 

138.2 

90. 62. 

-5. 

23.7 

138.7 

00. 190. 

IS. 

26.5 

141.5 

65. 466. 

30. 

0518182 

17.4 

138.9 

IW 

17.0 

138.6 

105- 

25. 

5. 

20.1 

136.0 

90. e2. 

-5. 

23.0 

134.7 

00. 276. 

20. 

26.2 

137.0 

65. 828. 

35. 

6519002 

18.6 

138.3 

106 

18.0 

138.2 

1W. 

6. 

0. 

20.7 

135.6 

85. 114. 

0. 

23.4 

134.0 

70. «S. 

20. 

0.0 

0.0 

8. -9. 

O. 

0519062 

18.9 

137.7 

100 

18.8 

137.5 

ICC. 

13. 

0. 

22.0 

134.7 

85. 129. 

10. 

25.2 

134.2 

70. 457. 

33. 

0.0 

e.e 

0. -0. 

e. 

0515122 

19.5 

137.3 

95 

19.8 

137.3 

95. 

S. 

0. 

23.2 

135.2 

80. 146. 

15. 

26.2 

135.0 

65. 503. 

30. 

0.0 

e.e 

0. -0. 

8. 

0519162 

21.3 

136.7 

95 

21.3 

136.6 

95. 

6. 

0. 

26-6 

135.2 

00. 57. 

20. 

29.2 

136.5 

70. 602. 

40. 

0.0 

0.0 

0. -0. 

0. 

0520602 

22.6 

135.7 

05 

22.1 

135.6 

85. 

30. 

0. 

25.9 

134.3 

55. 266. 

3. 

0.0 

9.C 

0. -6. 

0. 

9.0 

8.8 

6. -0. 

0- 

0520082 

24.0 

135.6 

75 

23.4 

135.2 

75. 

42. 

0. 

20.0 

135.0 

50. 296. 

10. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.6 

0. -0. 

8. 

0520122 

25.6 

135.7 

65 

25.6 

135.6 

65. 

5. 

0. 

31.7 

143.9 

40. 157. 

5. 

0.6 

0.0 

0. -0. 

8. 

0.0 

0.0 

6. -0. 

0. 

0520102 

27.5 

135.9 

60 

27.1 

135.B 

55. 

24. 

5. 

32.1 

141.0 

30. 410. 

0. 

e.e 

e.e 

0. -6. 

0, 

0.0 

0.B 

6. -8. 

8. 

0521002 

29.7 

137.0 

50 

29.6 

136.5 

55. 

B. 

5. 

e.e 

0.0 

0. -0. 

0. 

8.0 

8.0 

0. -0. 

0- 

8.0 

0.3 

6. -0. 

0. 

0521062 

31.7 

138.8 

40 

31.3 

139.8 

45. 

26. 

5. 

6.0 

9.0 

P. -9. 

0. 

e.e 

0.0 

0. -C. 

0. 

6.0 

0.6 

0. -0. 

0. 

0521122 

34.3 

141.3 

35 

34.3 

*41.3 

35- 

0. 

0. 

e.e 

8.0 

0. 

0. 

0.0 

8.0 

0. -0. 

0. 

9.8 

0.8 

0. -0. 

0. 

0521182 

36.1 

145.1 

30 

0.0 

0.0 

#_ 

“0. 

0. 

6.0 

0.0 

0. -6. 

0. 

e.e 

0.0 

0. -0. 

0- 

9.0 

0.8 

6. -0. 

8. 

ALL r 

UW5 

AvC FORECAST PCS1T ERROR 14. 

AVC RIGHT OHCU ERROR 16. 

AVC MTOSITY TOC^ITUDE fWCS 3. 

AVC INTENSITY BIAS -0. 

KTOiR CF FORECASTS 34 

DISTANCE TRAVELED BY S7OT IS 2424. *C 

AvERASE SPttt OF STDAn is 10. knots 

CRICASTS 
Z4-H? 40-K 

130. 366. 

76- 261. 

12. 23. 

-2. -10. 
31 27 

* 72-W 

«S?4. 

414. 

26. 

-13- 

23 

TYPKXXS 104 IlE 0%E* 35 KTS 
«NC 24-rtR 40-Ht 72*t« 

14. 121. 266- 463. 

10. 77. 207. 423. 

3. 12. 22. 26. 

6. -2. -12. -15. 

34 3« 26 22 







TYPXOW ElXEM 

FIX PCSITIWS FXM CYOO* «. 4 


SATELLITE FIXS 


FIX 

TUC 

FIX 




NO. 

(2) 

POSITION 

ACOfY 

DVORAK CODE SATELLITE 

, 

121106 

7.9H 144.21 

PCX 5 


X0AA6 

2 

122133 

7.0H 143-9C 

PCX 5 


WCP37 

3 

122245 

6.9N 143.5E 

PCN 5 

72.8/Z.e 

tOPt 

4 

122352 

7.0N 143.X 

PCX 5 


8TSP39 

< 

130944 

6.«« 143.3E 

PCX 5 


>0*6 

6 

131200 

S.SN I4J.3E 

PCX 0 


OT** 

7 

131600 

6.0N 143.21 

PCX 0 


OTX* 

• 

132112 

7.01 143.SE 

PCX 5 


BrqP37 

9 

132223 

7.m I43.2E 

PCX 5 

T3.ft"3.0 sDX.*/2«4RS 

fOMt 

10 

14114 

8.0N 143.21 

PCX 5 


STSP39 

11 

14114 

0.2N J4J.0E 

PCX 5 

12.8/2.* 

DCSP39 

12 

I«92l 

•.» 142.2E 

PCX 5 


1044 

13 

141600 

1.41 I4I.9E 

KM 0 


one* 

14 

142*51 

9.2N 142.1C 

PCX 4 


jnspjp 

15 

1422*1 

S.SN 141.*E 

PCX 3 

74.5/4.5 /91.5^4*S 

m AA6 

16 

150054 

S.SN 141.7E 

PCX 1 


HSP39 

17 

15*054 

S.SN 142. IE 

PCX l 

T3.S/3.S /D».S/2««S 

ST6P39 

10 

13*330 

10.0N 141.9E 

pcx e 


CDCt 

19 

15*512 

10.3N 141.0C 

PCX 1 


TtRCSN 

20 

15*6** 

!•.«« 1«.«E 

PCX £ 


one* 

21 

15*90* 

It.*N 14I.9C 

PCX E 


OWE* 

22 

151*40 

11-2* >41.*C 

*tx i 


>0*6 

23 

15X2** 

SI. IN 141.9C 

KM C 


one* 

24 

1516** 

II.5N 14I.7E 

PCX c 


one* 

25 

151757 

11.7N I4I.4 

PCX 1 


THKXU 

26 

S51SB* 

S1.7N 14t.CE 

rex E 


0T*«* 

27 

152*29 

11.«N 141.X 

PCX 2 




GntuTS 

WIT OBS 

Laj w eued fton r.m 

WIT OSS 

r* rxx 

E* FIX 


SITE 


PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

*Pt« 

pctu 

PCTU 

PCTU 

pctu 

PCTU 

VR 

pctu 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 


130 
































2* 

152IW 

!2.fr< 

241,6c 

25 

152135 

12.8" 

141.56 

38 

:fcJW3< 

12. IH 

I4I.2E 

3i 

:&9U 

12. 1H 

I41.3C 

32 

:£*?** 

12.** 

141.35 

33 

168588 

12.5« 

I4I.2S 

34 

161818 

!*.£" 

MI.H 

35 

16I6ST3 

I27*i 

141.21 

34 

I6I633 

12.&* 

141.J£ 

3? 


I3.fr* 

14S.3£ 

33 

16225* 

13. 1" 

i*i. n 

33 

22W15 

23 .2* 

241.3c 

40 

!2«3» 

13.5" 

141.21 

4: 

178338 

24.2N 

241.31 

*2 

124556 

14.2* 

242.S 

43 

X7I283 

14.5* 

141.3£ 

44 

=*?!tee 

25. I* 

ui.ec 

45 

! 2125 

15.fr< 

l«.?t 

46 

222235 

15.4* 

i4e.5£ 

47 

2«!36 

l*.*i 

248.51 

46 

'53136 

25.?* 

24C.46 

45 

i£*»e 

I6.fr* 

24C.JC 

54 

2SS534 

16.6* 

235.61 

SI 

!32«e 

I7.fr 

135.81 

52 

2 £2182 

2?.CN 

I33.-S*. 

S3 

122213 

17.81 

233.4c 

S4 

•59126 

18.2* 

13*. 3£ 

ss 

S«2X? 

18.2* 

I 34. It 

56 

2582 2? 

18.2* 

133.l£ 

«7 

252853 

25.** 

137.8C 

sa 

I9I6» 

28.8* 

236.5c 

55 

152846 

21.7* 

136.5c 

68 

152332 

22. I* 

236.C1 

61 

288857 

22.8* 

1J5.Sk 

62 

23885? 

22.Tt* 

235.71 

63 

«86ee 

2J.fr* 

236.CC 

64 

28:«» 

24.4« 

IJT.St 

65 

»:^e 

26.-* 

235.?C 

6& 

282328 

25.8* 

13?.!£ 

62 

22883? 

25.fr* 

13’.:£ 

64 

21883? 

38.2* 

136.36 

69 

218228 

39.4* 

XJ?.6f 

re 

219J98 

38.6* 

133.86 

?i 

211882 

33.2* 

148.21 

22 

21*888 

33.5* 

Ifr.C 


0T»« 

ICMi 

rs.t^.9 tr&i* :h:t ats 

T5.V5.S /SJ.MW8 8*2*35 
OT*ca 
or^Ctf 
»OWS 
0T>£* 

OT>C* 

Ofr« 

IOH4 

76.8'<-®-'2*.S'24®S S*5^35 

CT»C» 8 ISC 

CTX* 

:0»6 

©no 

OT>€S 

S«?37 

Ti.fr*.# :«*35 WIT CCS 

rs.s^.e /a.vrses rrs*jj 

07XR 

K3C«JS 

OTK* 

»S?F 

u.e^.c 

TC.e^.e s^.V^frCtS 

TS.e^S.C 5rsrj> I*J7 CBS 


K.e^.e /ts.i^4«s 
T3.V4.5 ilfl.V3MS frrSfrJS 
OTK» 
)C«9£ 
CTX* 


: ?Ctt» 24.S» X33-5£ 


*G. tjj 


r:x 

rasjri» 


T7.V3.S >r..V2«»j 

T3.M.5 K»J1 

W 5-iC*r 

0T>«» 


•SKUTT fUtS 


7#*® cbs ?*x*5^-v*c mx-?LT-*,vt-*JO <ctrr 

*CT rS^F *»Aei/»&’«C MW?C? 


nt oBirss- nc ?cr cc> 
st«v»TD( sar/ ai/ i^>sst 


t 

23*422 

7.2* 

144.* 

788?® 

3888 

555 

M 268 

68 

328 

5? 248 

75 

X 

2 




♦14 *15 ♦ S 

1 

2 

:32:28 

*.fr* 

:4J.* 

70fr® 

3833 


45 358 

25 

868 

45 258 

-® 

4 

5 




*18 *14 ♦:# 

2 

3 

;«u 

8.2* 

10.26 

7188 

3125 


53 858 

27 

• 18 

62 *48 

3* 

4 

4 





2 

4 

148243 

«.fr 

142.« 

?8fr® 

3822 


55 358 

23 

128 

55 838 

25 

4 

3 




*12 *14 *18 

2 

5 

142358 

9.5" 

X42.8S 

7 44* 8 

2389 

5?S 

65 263 

28 

368 

?4 26# 

It 

S 

2 

CTOU8 

22 


*12 *:< *18 

3 

6 

158688 

it.-m 

142. :E 

7*fr® 

2812 


88 858 

If 

888 

75 858 

15 

4 

3 





4 

? 

158588 

it.?* 

142. I£ 

?»8 

2766 

56? 

•8 358 

28 

*78 

7* 888 

28 

4 

6 

£UI?T’*Cit 

IS 18 

858 

*12 *18 *v2 

4 

8 

S5I«4§ 

XI- 1 * 

141.6c 

reerfr 

2742 




368 

88 27* 

8 

4 

3 





4 

5 

151736 

11.5" 

14J.X 

?3e® 

2535 




11* 

58 36* 

25 

6 

2 

cs*c*« 

12 


•12 *28 ♦ 5 

3 

18 

15:5*5 

11.7* 

X41.5C 

Tte® 

2522 

535 



1*8 

57 158 

29 

5 

2 





5 

1! 

5S2S23 

11.5" 

142 .St 

70S® 

2518 

533 

188 258 

38 

388 

185 258 

Sfr 

5 

2 

ZZttL** 

12 


* 8 *21 *11 

5 

12 

:%8SU 

J7.3* 

14*.2t 

7*8® 

25*2 


188 858 

15 

!« 

57 858 

6 

5 

4 





< 

13 

26:533 

12 .*** 

14 

?8fr® 

2452 




328 

85 27* 

12 

5 

s 

CiaCGUs* 

22 



7 

14 

16212 2 

IJ.fr* 

141.26 

?8fr fr 

245? 

53: 

68 338 

38 

e*e 

5* 328 

IS 

6 

5 

CilSXM 

21 


*18 *21 *11 

7 

15 

178638 

I3.fr* 

141.26 

■*«W 

2525 


65 m 

28 

188 

126 828 

28 

S 

S 





* 

26 

178385 

14. S* 

141.26 

7488 

1541 

5?S 

:88 JJ8 

28 

338 

tm 258 

28 

5 

5 

cacwi 

:S 


♦11 *15 *11 

3 

I? 

*71588 

25. X* 

Ifr.K 

?ee® 

2551 




2J8 

285 138 

26 

5 

t 





5 

18 

•72132 

X5.fr* 

Jfr.X 

?te® 

2568 

535 

188 188 

5 

318 

52 :< 

XX 

5 

1 

C £*tst«* 

13 


•12 *17 *11 

5 

19 

131342 

27.7* 

:».J5 

72fr® 

26X6 




1*8 

72 838 

55 

6 

5 


:s it 

168 


11 

28 

152*33 

2X.fr* 

:36.3t 

7*4rf 

2785 




288 

115 158 

28 

5 

2 





13 

21 

152115 

21.5" 

XJ5.5S 

?»fr® 

2756 

567 

65 328 

15 

858 

61 328 

68 

2 

3 




♦17 *25 * * 

13 

22 


24.0* 

233.66 

Tfrfrfr 

2*35 


88 158 

It 

27# 

68 vm 

12 

5 

1 





14 

23 

288585 

24.fr* 

235.66 

Tee* 

2869 

5?4 

*8 328 

18 

368 

3? 32* 

48 

4 

2 




*21 *15 • 5 

14 

24 

»:»K 

28.2* 

136.16 

786® 

2587 




23* 

53 158 

73 

5 28 





IS 

25 

292:88 

28.5" 

136.54 

?ee« 

2516 

5S9 

35 338 

78 

838 

55 338 

52 

5 29 




* * *14 *11 

IS 


JCTI2 - T< **1 frCIO»T£ f PCS -NUMffJTfiTM *CT I 


I W UST WCI W»5SS. 












TROPICAL STORM FORREST 
BEST TRACK DATA 


GCST TRUCK UARNIMG 24 HOUR FORECAST 40 HOUR FORECAST 72 HOUR FORECAST 

ERRORS ERRORS ERRORS 


Nfr-M'IIK 

POSIT UIHP 

POSIT 

UlIlD 

PST 

UIHP 

POSIT 

UIHP PST 

U1MD 

POSIT 

UIHP 

PST 

U1ND 

POSIT 

UIHP 

PST UIHP 

0519002 

6 4 

154.6 

20 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

*0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

O51906Z 

6.2 

153.9 

20 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

r *.o 

0. 

-0. 

0. 

0S19I2Z 

6 8 

153.? 

25 

0.0 

0.0 

0. 

-0. 

0 

0.0 

0.0 

0. 

-\J. 

0. 

0.3 

0.0 

0 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0S191GZ 

6.9 

152.4 

25 

0.0 

0.0 

0. 

0. 

0. 

0.0 

0.0 

0. 

-0 

0. 

0.0 

0.0 

0 

-0. 

0. 

o.o 

0.0 

0. 

“0. 

0. 

0520002 

2.2 

151.4 

30 

C.7 

151.4 

35. 

30. 

5. 

7.9 

S48.3 

45. 210. 

5. 

9.5 

145.3 

55 

307. 

10. 

11.2 

142.4 

65. 

506. 

20. 

0520062 

2.4 

149.8 

30 

7.7 

150.1 

35. 

25. 

5. 

10.0 

146.2 

45. 

160. 

0 . 

11.6 

143.7 

55. 366. 

10. 

14.2 

142.1 

65. 

665. 

20. 

0520122 

0.0 

148.1 

35 

7.7 

147.0 

35. 

25. 

0. 

9.0 

143.5 

45. 

100. 

0 . 

11.8 

140.9 

55. 292. 

10. 

14.2 

138.9 

65. 

569. 

20. 

0520102 

0,2 

146.5 

40 

0.3 

145.0 

40. 

40. 

0. 

SO.2 

140.2 

so. 

6. 

5. 

12.2 

136.7 

60 

174. 

15. 

13.0 

133.0 

70. 

358. 

20. 

0521002 

9 3 

144.9 

■iO 

9.2 

145.2 

40. 

19. 

0. 

11.2 

140.3 

so. 

97. 

5. 

12.9 

136.7 

60. 278. 

15 

14.2 

133.6 

70, 

428. 

15. 

05210G2 

9 5 

143.4 

45 

9.6 

143.7 

45. 

19. 

0 . 

12 0 

130.0 

65. 

77. 

20. 

13.7 

134.3 

75. ?39. 

30. 

16.0 

132.0 

00. 

422. 

25. 

0521122 

9.7 

141.0 

45 

9.6 

142.1 

•IS. 

19. 

0 . 

11.2 

137.3 

60. 

70. 

15. 

12.8 

133.6 

70. 250. 

25. 

14.7 

131.0 

CO. 

413. 

30. 

0521102 

10 1 

140.2 

45 

9.8 

140.0 

45. 

40. 

0 . 

11.0 

136.2 

60. 

124. 

IS. 

12.8 

132.8 

70. 289. 

20. 

15.? 

130.6 

00. 

457. 

30. 

0522002 

10.5 

130.8 

45 

10.6 

138.6 

40. 

13. 

-b. 

12.7 

132.3 

45. 

too. 

0 . 

14 7 

128.2 

50. 

159. 

-5. 

16.4 

125.4 

60. 

?17. 

15. 

05??067 

10.0 

137.5 

4b 

11.2 

136.? 

45. 

53. 

0. 

13.S 

130.2 

55. 

147. 

10. 

15.7 

126.3 

60. 

131. 

5. 

18.0 

124.0 

60. 

225. 

30. 

0522122 

10.A 

136.0 

45 

11.0 

136.0 

45. 

6. 

0 . 

12.0 

130.8 

55. 104. 

10. 

15.2 

127.0 

60. 193. 

10. 

17.3 

124.5 

60. 

269. 

40. 

OS22I02 

10.0 

134. t 

45 

11.4 

134 5 

45. 

43. 

0. 

13.0 

129.0 

55. 

120. 

5. 

1C.5 

125.3 

60. 

184. 

to. 

19. 1 

123.? 

60. 

196. 

40. 

0523C02 

10.9 

132.4 

45 

10.0 

132.2 

50. 

13. 

5- 

11.2 

125.6 

55. 

101. 

0 . 

12.7 

121.3 

45. 150. 

0 . 

15.5 

119.0 

jO 

“32. 

30. 

05230G2 

II 2 

131.1 

45 

10.0 

130.S 

50 

43 

5. 

11.0 

124.4 

SO. 

151 

“5. 

13.0 

120.5 

45. 

160. 

15. 

16.0 

118.5 

55, 

311. 

35. 

0523122 

11.6 

129.5 

45 

11.3 

129.7 

45. 

21. 

0 . 

12.2 

124 6 

33. 

115. 

-15. 

13.4 

121.1 

30. ?20. 

10. 

0.0 

0.0 

0 , 

-0. 

0 . 

0523102 

12.1 

127.9 

50 

11.5 

127.8 

45. 

36. 

-5. 

*2.8 

122.0 

35. 

114. 

-15. 

14.3 

119.5 

30. 251. 

10. 

0.0 

C 0 

0. 

0. 

C. 

0524002 

12.? 

126.4 

5S 

12.7 

126 3 

50. 

6. 

-5. 

15.1 

121 7 

45. 

13. 

0. 

17.9 

119.2 

35. 

145. 

15. 

0.0 

0.0 

0. 

8 

0, 

0524062 

13 4 

12S.2 

55 

13.2 

121.0 

55. 

26. 

0. 

15.7 

120. G 

40. 

13. 

10. 

13.1 

119.1 

40. 

176. 

20. 

0.0 

0.0 

0. 

-o. 

0. 

0524122 

14.0 

1?3-*» 

50 

13.9 

124.1 

55. 

13. 

5. 

16.0 

12C.2 

40. 

64. 

20. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-0. 

e. 

0524102 

14 7 

122.7 

50 

14.8 

122.4 

55. 

18. 

5. 

17.3 

119.0 

40. 

85. 

20. 

0,0 

0.0 

0 . 

- 0 . 

0 . 

0.0 

0.0 

0. 

-o. 

e. 

0525002 

15.3 

121.0 

45 

15.2 

121.9 

50. 

0 . 

5. 

10.0 

119.6 

35. 

130. 

15. 

0.0 

0.0 

0. 

'0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0525062 

15.8 

120.0 

30 

15.i 

121.4 

45. 

35. 

15. 

10.2 

119 7 

35. 

196. 

15. 

0.0 

0.0 

0 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

c. 

0525I22 

17.0 

119.0 

20 

15.7 

120.6 

35. 

90. 

15. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

O.C 

0.0 

0. 

-0. 

e. 

0525102 

18.5 

119.0 

20 

16.2 

119 S 

35. 

130. 

15. 

0.0 

0.0 

0. 

■0. 

0. 

0 0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-o. 

0. 

0526002 

20.0 

120.5 

20 

10.9 

119.0 

25. 

77. 

5. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0S26UG2 

21.0 

121.5 

20 

19.9 

120.5 

20. 

06. 

0 

0 0 

0 0 

0 . 

-0. 

0 . 

0.0 

0.0 

0 . 

- 0 . 

0 . 

0.0 

0.0 

0 . 

9. 

0 . 


AIL FORECASTS TSHlOONS UllLE OVER 3S KT5 



DRUG 

21-HR 

40-HR 

72-MR 

DRUG 

24-MK 

40'HR 

72-HR 

AVG FORECAST POSIT ERROR 

37. 

10i>. 

2?7. 

300. 

0 . 

0 . 

0 . 

0 . 

AVC RIGHT ANGLE ERROR 

17. 

5b. 

121. 

227. 

0 . 

0 . 

0 . 

0 . 

AVI, iHTEHblTi mGHIfUDC ERROR 

4. 

9. 

13. 

2G. 

0 . 

0 . 

0 . 

0 . 

FVG IHTFHOITY BIAS 

3. 

6. 

13. 

26. 

0 . 

0 . 

0 . 

0 . 

NUMBER OT FORECASTS 

26 

22 

10 

1m 

0 

0 

0 

0 


DISTANCE IRAVELED OY STORM IS MM 

AVERAGE SPEED Of STORM IS 14. KNOTS 


TROPICAL STORM FORREST 
FIX POSITIONS FOR CYCLONE NO. 5 


SATELLITE FIXTS 


FIX 

TIME 

FIX 






HO. 

12* 

POSITION 

ACCRY 

DVORAK CODE SATELLITE 

CONTENTS 

SITE 

1 

101723 

5.24 

155.7E 

PCM 5 


TIPOSH 


PGTU 

2 

102335 

6.IM 

155.IE 

PCM 5 

TI.O/'.O 

DLSP39 

IH’.T 00$ 

PG1U 

3 

l r *'»911 

6.5M 

154.1E 

PCI1 5 


M0AA6 


PGTU 

4 

191600 

7 .2H 

IS1.6E 

PCM 0 


OTHER 


PGTU 

% 5 

192046 

7.SM 

154.:e 

rc*i 5 


DM5P37 


PGTU 

6 

192151 

6.9N 

151.OC 

rCN 5 


NQAA6 


PGTU 

7 

200357 

6.8M 

159.6E 

PCN 5 

T2.0/2.0 /D1.0/2SMRS 

I>rr,P39 


PGTU 

8 

200600 

7.5M 

149.3E 

PCM 0 


OTHER 


PGTU 

9 

200049 

7.4N 

140.rr 

PCM S 


MQAA6 


PGTU 

10 

200900 

7 »5N 

148. 7t 

PCM ft 


OTHER 


PGTU 

11 

201200 

O.ON 

147,8t 

PCN 0 


OTHER 


PGTU 

i? 

2C1600 

0.?H 

1 16.SC 

*>CM 0 


OTHER 


PGTU 

13 

202015 

O.ON 

145,HE 

PCN 5 


DfBP37 


PGTU 

14 

202529 

0.6M 

145.76 

PCM 5 


NOAAb 


PGTU 

15 

25003? 

9.2N 

144 8E 

PCN 5 

T3 0/3 0 

DMSP34 

IM.T 08S 

RODN 

16 

210300 

9.2H 

144.0£ 

PCM 0 


OTHER 


PGTU 

17 

210900 

9.2H 

142.4t 

PCN 0 


OTHER 


PGTU 

10 

2*1000 

9.6N 

14?.OE 

FCN 5 


N0AA6 


PGTU 

19 

2l1200 

9.6H 

141.IE 

PCN 0 


OTHER 


PGTU 

?0 

21I6C0 

9.7N 

140 OE 

PCN 0 


OTHER 


PGTU 

21 

212?10 

9 8N 

13P.QE 

PCM 3 


NOAAG 


PGTU 

* 22 

<.„uOI7 

:0.4M 

137.OE 

PCN 3 

T3.5/3.S /SO n/24MRS 

DreP39 


PGTU 

* 23 

220946 

10.4>I 

135.4E 

PCN 5 


N0AA6 


PGTU 

24 

2'’1200 

10.Sw 

13S.CE 

PCN 0 


OTHER 


PGTU 

2b 

221600 

10.7H 

133 3E 

PCN 0 


OTHER 


PGTU 

* 26 

222226 

10.4H 

132.06 

°CN 3 


N0AA6 


PGTU 

* 27 

222226 

10.4H 

132.OE 

FCN 3 


N0AA6 


PGTU 

28 

230139 

10.3N 

131.8E 

PCN 5 

T3.0/3.S-/UQ.5/2SMRS 

DMSP39 


PGTU 

29 

230139 

10.3H 

i3i.ee 

PCN 3 

T4 0/4.0 

DMSP39 

1N1T OOS 

RODN 

30 

230600 

II. 2N 

130.9E 

PCN 3 


OTHER 

EXPOSED LLCC 

PGTU 

31 

23B90P 

11. Sn 

130.2E 

PCN 0 


OTHER 


PGTU 

32 

231105 

11.414 

129.4F 

PCN 5 


N0AA6 


PGTU 

33 

231600 

11.2N 

120.IE 

PCN 0 


OTHER 


PGTU 

34 

232345 

12. iN 

126.4E 

PCN S 


N0AA6 


PGTU 

35 

240114 

12.6H 

I26.lt 

PCN 5 

T4.0/4.0-/D1.Q/24HRS 

DMSP79 


PGTU 

36 

248119 

12.7N 

526.16 

PCN 3 

T4.0/4.0 /S0.0/24HRS 

DMSP39 


RODN 

37 

241043 

13.7H 

124.3E 

PCN 5 


NOAAG 


PGTU 

30 

241600 

14.3N 

122.9E 

PCN 0 


OTHER 


P GTU 

33 

242223 

14. SM 

122.2E 

PCN 5 


DKSP37 


PGTU 

40 

242322 

15. ?N 

122.46 

PCN 5 

T3.S/4.0-/UG.5/22HRS 

N0AA6 


PGTU 

41 

250241 

15.4H 

121.5E 

PCN 5 

Ti 5/3.5 

DM3P19 

IN1T OBS 

RPlfc 

42 

250241 

15.5N 

121.2£ 

PCN 5 

T4 0/4.0 /SO 0/2SHRS 

DMSP39 


RODN 

43 

250900 

S5.6N 

128.4E 

PCN 0 


OTHER 


PGTU 

» 44 

251200 

15.9N 

119.8E 

PCN 0 


OTHER 


PGTU 

* 45 

251202 

16.3n 

110.6E 

PCN 6 


N0AA6 


RODN 


13.2 














* 46 251600 16.OH 1I0.9E PCN 0 OTHER 

* 4? 260221 16.911 118. IE PCN 5 Tl .5/2.0 ''U2.0/27HRS DM5P39 

* 40 260221 I?.ON U0.8E PCN 5 D71SP39 


PGIU 

PGTU 

RODN 


AIRCRAFT FIXES 


FIX 

THE 

FIX 

FLT 

70078 

OBS 

7BX-SFC- 

UND 

HftX-FLT-LW 

IND 

ac: 

:ry 

EYE 

EYE 0R1EN- 

EYE TEfB i 

CC) 

NO 

t2> 

POSITION 

LVL 

HGT 

71SLP 

VEL/8RG/RNG 

DIR/VEL/BRG/RNG 

NAV/MET 

SHAPE 

DIAH/TATION 

OUT/ IN/ DP/SST 

I 

190102 

6.4N 

154. 7C 

?oora 

3139 

1007 

25 040 

10 

120 

24 

070 

10 

4 

2 



+24 

♦25 

♦24 

29 

2 

200024 

6.7N 

151.2C 

1590FT 


1802 

45 270 

10 

690 

55 

090 

28 

3 

2 



+29 

+26 

♦26 

27 

3 

200315 

7.3N 

150.8E 

700ft) 

3119 

1001 

25 140 

10 

170 

39 

140 

10 

S 

2 



♦ 11 

♦ 14 

♦ 6 


4 

202102 

9. ON 

145.9E 

70978 

3114 

100? 

SO 360 

40 

160 

50 

360 

40 

5 

5 



♦ 11 

+14 

♦ 6 


5 

210311 

9.3N 

144.26 

700hB 

3074 

990 

SS 360 

15 

100 

52 

360 

15 

5 

3 

CIRCULAR 

20 

♦ 10 

+15 

+ 6 


6 

219952 

9.ON 

142.7£ 

700M0 

3128 

1009 

40 360 

60 

100 

47 

020 

90 

2 

5 



♦ 15 

♦U 

♦ 10 


7 

212136 

10.4N 

139.3E 

700113 

3112 

1002 

40 030 

20 

160 

48 

070 

45 

5 

3 



♦ 14 

+ 12 

♦ 9 


a 

220607 

10.7N 

137.5E 

ZOOM) 

3082 


45 04C 

45 

120 

40 

040 

45 

IB 

20 







9 

220841 

10.9N 

136.8E 

700MB 

3079 

999 

30 208 

60 

220 

30 

190 

60 

5 

10 



♦ 10 

♦13 

♦ 11 


10 

222136 

10.8N 

132.9E 

70078 

3061 

996 

90 140 

10 

100 

60 

030 

15 

S 

5 



♦ 14 

♦16 

♦ 7 


u 

230820 

11.3N 

130.SF 

70078 

3067 

999 

50 340 

40 

119 

60 

030 

90 

2 

3 



♦ 12 

♦12 

+ 9 


12 

232121 

12.4N 

127.0E 

73078 

3034 


50 270 

20 

080 

47 

330 

82 

6 

2 







13 

232242 

I2.6N 

126.6E 

70078 

3029 

994 

50 310 

IS 

090 

61 

010 

10 

6 

2 

CIRCULAR 

20 

♦ IP 

♦ 1? 

♦ 13 


14 

240633 

13.6M 

125.IE 

7O0 f B 

3014 


50 350 

30 

050 

59 

350 

30 

5 

5 







15 

240828 

13.7N 

124.?£ 

700MB 









3 

0 

CIRCULAR 

12 





16 

241930 

14.9N 

122.4E 

70078 

3079 

999 



080 

49 

350 

30 

1 

3 







17 

242220 

15. IN 

122.2E 

70018 

3861 

996 

50 060 

30 

150 

60 

060 

30 

1 

3 



♦ 12 

+ 12 

♦ 9 


id 

251945 

18.2N 

119.7E 

70078 

3106 


30 000 

00 













19 

252138 

19.3N 

120.IE 

70078 

3136 


25 030 

50 

080 

12 

350 

30 

5 

20 



+ 14 

♦ 11 

+ 7 









RADAR 

FIXES 












FIX 

TI78 

FIX 



EVE 

EYE 

RAD3B-C0DE 


RADAR 

SITE 

NO 

(2) 

POSITION 

RADAR 

ACCRY 

SHAPE 

DIA71 

ASUAR TDDFF 

COMMENTS 

POSITION 

UMO NO, 

1 

210013 

9.IN 144.6E 

ACFT 





S4LRS 



2 

240828 

13.6M 124.?E 

ACFT 

POOR 

CIRCULAR 

12 


RDR EYE 13.7N 124.7E 54LFS 



3 

250O0O 

15.4N 121.9E 

LAND 






16.3N 120.6E 

98321 

4 

250235 

15.6N 121.8E 

LAND 





CELL DEFINED UALL CLOUD 

IS.2N 120.Ft 

98327 

5 

250300 

15.bH 121.SE 

LAND 






16.3N 120.6E 

98321 

6 

25e30S 

15.7N 121.8E 

LAND 






15.2N I20.6E 

98327 

7 

250400 

15.7N 121.5E 

LAND 






14.IN 123.0E 

98440 


NOTICE - THE ASTERISKS <*) INDICATE FIXES UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES. 





































TROPICAL STORM GEORGIA 
BEST TRACK DATA 


24 HOUR FORECAST 
ERRORS 


48 HOUR FORECAST 
ERRORS 


POSIT UIND 

POSIT 

UIND 

DST UIND 

POSIT 

WIND 

DST UIND 

POSIT 

UIND 

DST UIND 

POSIT 

15.5 

115.8 

28 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

8.0 

0. 

-0. 

8. 

0.B 

0.0 

0. 

-0. 

0. 

0.0 

0.8 

IS.3 

114.4 

28 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-O. 

0. 

0.9 

6.0 

0. 

-0. 

0. 

8.0 

8.0 

15.0 

114.0 

28 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

O. 

-0. 

0. 

0.0 

0.0 

0 . 

-0. 

6. 

0.0 

0.0 

14.4 

114.4 

28 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

8.0 

0. 

-O. 

0 . 

0.0 

0.0 

14.0 

115.0 

25 

0.0 

0.0 

0. 

-0. 

8. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

13.9 

115.3 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

8.0 

0 . 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

14.5 

116.4 

25 

0.0 

0.0 

0. 

-0. 

0 . 

8.0 

8.U 

0. 

-0. 

0. 

0.0 

0.0 

8 . 

-0. 

0 . 

0.0 

0.0 

15.0 

116.4 

30 

15.3 

116.6 

30. 

21. 

0 . 

16.6 

117.0 

35. 

15b. 

-15. 

10.2 

110.2 

40 

229. 

-15. 

21.2 

121.8 

15.5 

116.1 

30 

15.5 

116.7 

30. 

35. 

0. 

16.6 

117.0 

35. 

146. 

-15. 

18.2 

110.2 

40. 

259. 

-15. 

21.2 

121.0 

16.2 

ns.e 

40 

16.2 

115.7 

30. 

6. 

-10. 

17.C 

116.4 

35. 

113. 

-15. 

If.9 

MQ.3 

35. 

204. 

-20. 

0.0 

0.0 

16.7 

115.4 

45 

16.3 

115.0 

30. 

24. 

-IS. 

18.2 

116.3 

35. 

127. 

-20. 

19.9 

* 13.0 

<•0. 

231. 

-5. 

0.0 

0.0 

17.4 

114.4 

SO 

17.5 

114.4 

45. 

6. 

-5. 

19.6 

114.9 

55. 

7.1. 

0. 

22.0 

116.5 

60. 

146. 

15. 

o.e 

0.0 

18.0 

114.9 

50 

17.9 

114.8 

45. 

8 . 

-5. 

20.0 

116.2 

60. 

110. 

5. 

22.9 

117.0 

60. 

123. 

30. 

8.0 

0.0 

16.8 

114.7 

50 

18.6 

1.5.2 

45. 

31. 

-5. 

21.1 

116.8 

68. 

101. 

5 

0.0 

0.0 

0 . 

-O. 

0. 

0.0 

0.8 

19.6 

114.6 

55 

19.2 

115.0 

50. 

33. 

-S. 

21.5 

115.7 

65. 

127. 

20. 

0.0 

0.0 

8 . 

-0. 

0. 

0.0 

0.8 

20.8 

115.2 

55 

20.4 

114.8 

50. 

33. 

“5. 

23.5 

115.8 

48. 

100. 

-5. 

0.0 

0.0 

O. 

-0. 

0 . 

0.0 

0.0 

21.9 

115.8 

55 

21.4 

115.4 

SS. 

37. 

0 . 

24.3 

117.5 

30. 

56. 

P. 

0.0 

O.U 

O. 

-O. 

0 . 

0.0 

0.0 

22.7 

116.2 

55 

22.2 

116.0 

55. 

32. 

0 . 

0.0 

0.0 

0 . 

-0. 

0. 

0.0 

0.0 

0 . 

-0. 

0. 

0.0 

e.o 

23.5 

116.5 

45 

23.4 

121.4 

30. 

269. 

-15. 

O.O 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0 . 

-0. 

0. 

0.9 

0.0 

24.3 

117.4 

45 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0 . 

0.0 

0.(1 

e. 

-0. 

0. 

0.0 

0.0 

24.9 

110.3 

30 

0.0 

0.0 

0. 

-0. 

0. 

0.8 

0.0 

o. 

-0. 

6 . 

0.0 

0.0 

u. 

-0. 

0. 

0.0 

e.o 


72 MOOR FORECAST 


HI HD DST I 
0 . “ 0 . 


ALL FORECASTS 



URNG 

24* HR 

48'HR 

72-HR 

AVG FORECAST POSIT ERROR 

44. 

112. 

199. 

299. 

AVG RIGHT ANGLE ERROP 

29. 

52. 

140. 

293. 

AVG INTENSITY MAGNITUDE ERROR 

5. 

10. 

17. 

8. 

AVG INTENSITY BIAS 

-5. 

-4. 

-2. 

-3. 

NUH3ER OF FORECASTS 

12 

to 

6 

2 


DISTANCE TRAVELED 3Y STORM IS 993. Ntt 
AVERAGE SPEED OF STORM IS 9. KNOTS 


typhoons while over 35 kts 

LRH6 24-HR 40-HR 72-HR 

0 . 0 . 0 . 0 . 

0 . 0 . 0 . 0 . 

0 . 0 . 0 . 0 . 

0 . 0 . 0 . 0 . 


FIX Tift 
HO. (2) 


TROPICAL STORM GEORGIA 
FIX POSITIONS FOR CYCLONE NO. 


SATELLITE FIXES 


1 

191200 

16.6N 

117.0E 

PCN 0 



OTHER 

2 

201208 

14.2N 

115.7E 

PCN 0 



OTHER 

3 

210210 

15.2N 

117.0E 

PCN 5 

Tl.0'1.0 


DMSP39 

4 

210210 

15.2*1 

116.2E 

PCN 5 



DMSP39 

s 

218988 

15.5N 

115.SE 

PCN 0 



OTHER 

6 

211150 

15.3N 

116.4E 

PCN 5 



H0AA6 

7 

211212 

13.3N 

116.4E 

PCN 6 



N0AA6 

8 

211508 

IS.9N 

I15.6E 

PCN 0 



OTHER 

9 

212100 

16.SH 

115.4t 

PCN 0 



OTHER 

10 

228029 

16.7N 

115.9E 

PCN 5 

T2.e/2.0 


N0AA6 

11 

220029 

16.7N 

M5.7E 

PCN 5 

Tl.0/1.8 


NOAAG 

12 

220159 

16.8N 

11S.2E 

PCN 5 

T2.S/2.5 

/D1.5/24KRS 

IMSP39 

13 

221127 

17.BN 

114.7E 

PCN 5 



N0AA6 

14 

221208 

10.4N 

U4.6E 

PCH 0 



OTHER 

15 

221600 

10.7M 

I14.8E 

PCN U 



OTHER 

16 

222002 

18.“N 

114.7E 

PCN 3 



T1R0SN 

17 

23OO09 

19.6H 

114.9E 

PCN C 



OTHCR 

ie 

23C0O6 

19.6N 

114.3E 

PCN 5 

T2.0^2.0 

/S0.0/24HRS 

N0AA6 

19 

230328 

20.3N 

115.9E 

PCN 3 

T3.0/3.0 

/D2.0/27HRS 

Df«P39 

20 

23O600 

28. ?N 

I15.2E 

PCN C 



OTHER 

21 

238930 

21.ON 

115.4E 

PCN 0 



OTHER 

22 

231165 

21.7N 

1IS.6E 

PCN S 



N0AA6 

23 

231600 

21.9N 

115.8E 

PCN 0 



OTHER 

24 

231958 

22.4N 

116.2E 

PCH 5 



TIROSH 

25 

2319S0 

22.4H 

116.3E 

PCN 3 



T1R0SH 

26 

232345 

22.8N 

116 9£ 

PCH 5 



N0AA6 

27 

24O301 

22.4N 

11‘. .IE 

PCH 3 

VJ.0/3.0 

/SO.0/24HRS 

DMSP39 

28 

241043 

21.5N 

1.7.SE 

PCN 5 



N0AA6 


AIRCRAFT FJ>CS 


FIX Tltt 
NO. <Z> 


1 220703 17.6N 114.4E 

2 22090S 17.6N II4.6E 


flt ?eere obs wx-sfc-lhd max-flt-lvl-lnd accry eye 
LM. HGT OSIP VEL/0RG/RNG DIRAEL/8RG/RNG NAV/TET SHAPE 


EYE OR I EH- EYE TEM> (C> FSN 
DlAfVTATIOH OUT/ IN/ DP/SST MO. 


700MB 2996 
700TO 2986 


50 110 75 198 57 110 110 10 5 
30 330 65 120 59 360 77 18 10 


lljll'jMIlllll'H 











SYNOPTIC FI*£S 


FIX Tim FIX INTENSITY NEAREST 

NO. (Z) POSITION ESTIMATE DATA (Ntt) COMMENTS 


1 

190000 

16.5N 

117.5E 

15 

10 

2 

191200 

15.SN 

115.0E 

28 

80 

L 

200000 

15.0N 

114.0E 

20 

60 

4 

210000 

14.SN 

116.5E 

25 

20 

s 

211200 

15.5H 

U5.8E 

30 

10 

6 

2212A0 

18.0N 

115.0E 

35 

3C 

? 

243000 

23.5N 

1I6.SE 

45 

10 


NOTICE - THE ASTERISK6 <*) INDICATE FSXCS UNREPRESENTATIVE 1 ' JSED FOR BEST TRACK PURPOSES. 



























fD^DA'HR 

POSIT WIND 

POSIT ultlii 

D»T 

uim> 

OF * 9002 

6 0 

1-1.0 

10 

0.0 

0.0 

0. 

-O. 

u. 

0619062 

6.3 

1 11.0 

10 

0.0 

0.0 

0. 

-0 

u. 

061^122 

G. 7 

140.9 

19 

0.0 

o.o 

0. 

-0. 

A. 

CGIS 102 

2.0 

139 * 

15 

0.0 

0.0 

0. 

-9. 

0. 

Ch20no2 

2.2 

IS6.5 

15 

o.o 

0.0 

0. 

-9. 

0. 

0G20062 

2.6 

132.9 

15 

0.0 

0.0 

0. 

-0 

0. 

0623122 

2 .c 

13? 1 

15 

0.0 

0.0 

0. 

-0. 

0. 

0620102 

8.1 

136.2 

15 

0.0 

0.0 

0. 

0. 

9. 

0621002 

0.3 

135.? 

15 

0.0 

O.C 

0. 

-0. 

0. 

0F21CG2 

8.6 

131.1 

15 

c.o 

0.0 

0. 

-0 

0. 

0o21122 

8.9 

133.0 

IS 

o.o 

0.0 

0. 

'0. 

0. 

OF?1102 

2.1 

1*1.9 

20 

0.0 

0.9 

9. 

-0. 

0. 

06^2002 

9.3 

130.9 

20 

0.0 

0.0 

O. 

-e 

0. 

0622002 

9.6 

129.C 

25 

0.0 

0.0 

0. 

-0. 

0. 

0622122 

9.8 

«2A.F. 

25 

o.o 

0.0 

C. 

-0. 

0. 

06221C2 

10.2 

122.4 

25 

0.0 

0.0 

0. 

-0. 

0. 

0623002 

10.S 

120.0 

25 

0.0 

o.a 

c. 

-0. 

0. 

0623062 

11.1 

124.0 

25 

0.0 

0.0 

0. 

-0. 

0. 

0623222 

11.6 

123.5 

25 

0.0 

0.9 

0. 

-0. 

0 

0423102 

12.0 

122.2 

30 

0.0 

0.0 

0. 

-0. 

0. 

0G24C02 

12.3 

120.7 

35 

0.0 

0.0 

0. 

-9. 

0. 

O6*40f,Z 

12.3 

119.2 

40 

0.0 

0.0 

0. 

-0. 

•J. 

0624I22 

12.9 

117.2 

40 

12.5 

uc.e 

35. 

39. 

-5. 

06*4182 

13 6 

116.4 

40 

13.1 

116.7 

35. 

35. 

-5 

662S002 

14.3 

115.2 

45 

14.5 

115.1 

35. 

13. 

-10. 

062S0C2 

15.0 

114.0 

50 

15. 1 

11„. 1 

49. 

35. 

-1U, 

062SI2Z 

15 5 

112.8 

59 

16.0 

lla.3 

45. 

41. 

-5, 

OF ">3102 

16.0 

112.0 

60 

10.7 

112.0 

*.Q. 

42. 

0. 

06*6002 

16.2 

111.3 

59 

17.0 

m.o 

45. 

?5 

”5, 

CS-'COCZ 

12.3 

110.8 

50 

17.5 

110.3 

.15. 

31 

“5. . 


IC.O 

110.5 

45 

18.5 

110.6 

49. 

HI. 

-5. i 

06261C2 

18.5 

no o 

45 

10.9 

no. i 

49. 

25. 

- j 

0622002 

19.0 

109 7 

45 

19.2 

109.6 

35. 

13. 

-10. ; 

0622062 

19.5 

109.7 

45 

19.7 

10?.5 

35. 

16. 

-10. . 

062212t 

2U,? 

109.6 

45 

20.5 

109. C 

35. 

21. 

-10. 

OC22102 

20.6 

109.5 

45 

21.0 

109.6 

30. 

25. 

- «5. 

0628002 

21.1 

109.? 

46 

21.n 

1U9.7 

25. 

50. 

-JO. 

0620UG2 

21.2 

108.2 

40 

0.0 

0.0 

0. 

-0. 

o. 

0623123 

21.9 

106.9 

20 

9.0 

0.0 

0. 

-0. 

0. 

0628182 

22.4 

105.6 

15 

0.0 

0.0 

0. 

-0. 

0. 

C6290O2 

22.9 

104.2 

10 

0.0 

0.0 

9. 

-0. 

0. 






PEL F0PFLA5T5 






VJRHG 

2 

•1-HP 

4P.-HR 

A'*. FOPCCAST POSIT EFPO* 


29. 


78. 

130. 

A .’j PIGHf FhfGLE EPPOP 


19. 

39. 

102. 

AV6 lMTL**Sl?Y II'GIUTUDE 1 

ERROR 

8. 


13. 

13. 

AVG MTHIGITY 01 ns 



-0. 

- 

! 1. 

-10. 

NUMBER OF 

‘ FOKECHSTS 





n 

7 

DISTiiMCC 

traveled TY STORM IS 

2521. 

;<m 




TROPICAL STORM HERBERT 
BEST TRACK DATA 


24 Hour FORECAST 

CPI’ORS 

:u wimp i>sr uim* 

0.0 0. -o. 0. 

o.o o. -n. o. 

o.o c. ‘0. o. 

o.o o. -o. o. 

0.0 0. -0. 0. 

o.o e. -n. o 

o.o o -o o. 

o.o o. -a. o. 

O.o o. -0. p. 

0.0 0. 0. 0. 

o.n o. -o. o 

o.o o. -o. o. 

0.0 0. “0. 0. 

0.0 0. -o. 0. 

0.0 0. -o. 0. 

0.0 0. -0. 0. 

O.C 0. -0. 0. 

o.o o-oo 
0.0 0. -o. 0. 

0.0 0. -0 0. 

U.O 0. -0. 0. 

0.0 0. -0. 0. 

113.0 .10. C‘l. 10. 

11*’. 3 «to. SO -10. 

111 .'* 45 . 96 . - 5 . 

110.0 45. 100. -5. 

I1?.0 S3. 20. 10. 


109.2 30. 12. -IS. 

109.0 30. ro. -so. 


0 HOUR FQ'*{ COST 
ERRORS 

uim» i*st urn 
0.0 0. -G. 0 

0.0 0 . - 0 . 0 . 

0.0 0 . - 0 . 0 

0.0 0 . - 0 . 0 . 

O.o 0. -0. 0. 

0.0 0 . - 0 . 0 . 

o.o o. -a. o 


0.0 0 . - 0 . 

0.0 0 . - 0 . 

Eho 0. -9. 

0.0 0. -0. 

P.o 0. -0. 

0.0 0 . - 0 . 

0.0 0. -0. 


30. iM. -is 
S3. .33. 10 

o. i-4i. 

23. 130 -29 

p. -0 (1 


72 HOUR FP. ECAST 


POSIT I 

0.0 0.0 


Tirnooii. UIILL -..TP 29 


AVERAGE SPEED OF S1QRH IS II. frHOTO 


TROPICAL STORM HEPBERT 
FIX POSITIONS FOR CYCLONE NO. 


SATELLITE FIXES 


FIX Tilt 
HQ. <c> 


1 

210031 

8.4N 

135.IF 

PCN S 

T0.5/0.5 

DMSP39 

IM1T CBS 

PGTU 

2 

211027 

8.9M 

13>.3E 

PCH 5 


NOAAS 


PGTU 

3 

211003 

9.ON 

I32.2E 

PCN 0 


OTHER 


PGTU 

4 

212307 

9.3N 

130.9E 

PCN 6 


N0AA6 


PGTU 

S 

220152 

9.4H 

130.BE 

PCN s 

Tl.0'1.0 /'D6.5/25HRS 

DISP39 


PGTU 

6 

22u300 

•T.SN 

129.6E 

PCH 0 


OTHER 


PGTU 

7 

221003 

10.6H 

l29.eE 

PCN 5 


H0AA6 

DATA EDGE 

PGTU 

* 8 

222245 

n .bn 

124 9E 

PCN 5 


H0AA6 

DATA EDGE 

PGTU 

9 

23D133 

10.3N 

125.5E 

PCN 3 

T2.0/'2.0-/DI.0/24HRS 

DMSP39 


PGTU 

* 10 

231290 

12.BN 

120.6E 

PC» 0 


OTHER 


PGTU 

* 11 

231390 

12.8N 

I19.5E 

PCN 0 


OTHER 


PGTU 

* 12 

240000 

12.4M 

119.«E 

PCN 0 


OTHER 


PGTU 

13 

2400G0 

12.4M 

120.DE 

PCN 0 


OTHER 


PGTU 

14 

240151 

12.3N 

120. Vi 

PCN 5 

T2.0^2,0 

DMSP39 

IN1T OBS 

RPffc 

* 15 

240380 

12.2N 

I19.2C 

PCH 0 


OTHER 


PGTU 

16 

2409C0 

12.6H 

118.3E 

PCH 0 


OTHER 


PGTU 

17 

241102 

12.8N 

117.7E 

PCN 5 


H0AA6 


PGTU 

1C 

24S200 

13. ON 

II7.5E 

PCN 0 


OTHER 


PGTU 

19 

241600 

13.2N 

116.7E 

PCN 0 


OTHER 


PGTU 

* 20 

242100 

14.4H 

114.4E 

PCN E 


OTHER 


PGTU 

2l 

242311 

14. SH 

114.8E 

PfN 3 

13.5^3.5 

N0AA6 

INIT OBS 

PGTU 

* 22 

25823S 

14. SM 

112.4F 

PCH S 

T3.0'3.0 -'D1.0/24HRS 

DMSP39 


RPft. 

* 23 

25023S 

I4.7M 

ii3.?e 

PCN 5 

T3.0^3.0 *■ 

omp3? 

INIT OBS 

RODJI 

24 

250680 

15. IN 

113.2E 

PCN 0 


OTHER 


PGTU 

23 

251200 

15.4M 

112.2E 

PCN 0 


OTHER 


PGTU 

26 

251221 

15.6N 

112.7E 

PCN 5 


H0AA6 


RP1K 

2/ 

251600 

16.2h 

112.BE 

PCN 0 


OTHER 


PGTU 

* 28 

252100 

17. IN 

111.3E 

PCH 0 


OTHER 


PGTU 

29 

252255 

16. SM 

211.2L 

PCN 6 


DMSP3? 


RPffc 

30 

260109 

16.9n 

It i .OE 

PCN 6 

T3.5^3.5 -'D0,5'22WRS 

N0AA6 


RPFK 

31 

260215 

17.ON 

in.oe 

PCN 5 

T2.5'3.5-'U!.0/26MRS 

DMSP39 


PGTU 

32 

260215 

17. IN 

ne,8c 

PCN 5 

T2.S'3.6 /*J0.5/24HRS 

DMSP39 


RODS 

33 

26C6CO 

17.6N 

i n .26 

PFN 0 


OTHER 


PGTU 

34 

26O90O 

10. IN 

in.ee 

PCN 0 


OTHER 


PGTU 

35 

26115? 

17.ON 

ii?.se 

PCN S 


N0AA6 

280X1 CH3 

RODH 

3$ 

261200 

18.2N 

I18.4E 

pcn o 


OTHER 


PGTU 























37 

26!6e3 

18.5N 

110.2E 

PCM 

0 


OTHER 


PGTU 

38 

262100 

19.IN 

110.BE 

PCN 

0 


OTHER 


PGTU 

39 

262234 

18.8N 

109.5E 

PCM 

6 


DnSP37 


RPCK 

40 

262234 

19.0N 

109-6E 

PCN 

3 


DMSP37 


RODN 

41 

276038 

19.0N 

109.4E 

PCN 

5 

T4.a/4.0-/D0.5'24HRS 

N0AR6 


RWK 

42 

270336 

15.6N 

109.7E 

PCN 

5 


DMSP39 


RPttC 

43 

270908 

20 3N 

H8.1E 

PCN 

0 


OTHER 


PGPJ 

44 

271136 

20. IN 

209.3E 

PCN 

5 


N0AA6 


RODH 

45 

271208 

20.3N 

110.2E 

PCN 

0 


OTHER 


PGTU 

46 

271600 

20.8N 

109.9C 

PCN 

0 


OTHER 


PGTU 

47 

272213 

20.7N 

109.3E 

PCN 

5 


DMSP3? 

DATA EDGE 

RODN 

4>j 

28O808 

21.5N 

109.4E 

PCN 

0 


OTHER 


PGTU 

49 

280016 

20-8N 

109.2E 

PCN 

5 

T3.0/3.8- 

H0AA6 

INI? 08S 

RODN 

50 

280300 

21.8N 

108.7£ 

PCN 

0 


OTHER 


PGTU 

51 

288316 

2I.4N 

108.4£ 

PCN 

3 

T3.O'4.0-/U1.0/26HRS 

rnSP39 


RPTK 

52 

280316 

21.6N 

188.6E 

PCN 

5 


01SP3S 


ROW* 

S3 

280900 

21.5N 

107.1£ 

PCM 

G 


OTHER 


PGTU 

54 

281200 

2I.8N 

186.6E 

FCN 

0 


OTHEP 


PGTU 


11 

\ 

1 

t 


y 


i 

% 




4 




AIRCRAFT FIXES 


FIX 

Tire 

FIX 

FLT 

700MB 

08S 

MAX-SFC- 

■UND 

mX-FLT-LVL- 

■UND 

ACCRY 

EYE 

EYE C°1FN- 

EYE TEfP <C) 

ttSN 

NO. 

<Z> 

POSITION 

LVL 

HGT 

nsip 

vcl/^RG/kng 

DIR/VEL/0RG/RNG 

NAV/TET 

SHAPE 

Dlfttt/TATION 

OUT/' IN/ 0F/3S7 

NO. 

1 

240717 

12.4N 118.9E 

I508FT 


996 

40 040 

7 

220 

50 160 

10 

5 

I 



+24 +27 +24 27 

2 

2 

242390 

14.4N 115.2E 

70ef« 

3061 

998 

25 050 

30 

160 

40 050 

S 

5 

5 



+12 +12 

3 

3 

250620 

14.9N 113 8E 

7oefe 

3851 

996 

35 090 

20 

140 

49 090 

10 

5 

3 




4 

4 

250822 

15 4N 113.7E 

700ro 

3020 

992 

45 850 

18 

150 

42 050 

10 

6 

3 



+14 +12 +12 

4 


i FIX 

TIME 

FIX 

intensity 

NEAREST 

J NO. 

(Z> 

POSITION 

ESTimTE 

DATA <NM 


221280 

18.5N 129.0E 

25 

15 

i 2 

230080 

11.0N 126.BE 

25 

40 

3 

23l2e0 

11.5N 123.SE 

20 

30 

i 4 

271200 

20.0N 110.0E 

30 

20 

* 5 

280600 

21.IN 109.2E 

45 

2e 


SYNOPTIC FIXES 


NOTICE - THE ASTERISKS <*) INDICATE FI>SS UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES. 


137 





















TROPICAL STORM IDA 
BEST TRACK DATA 


t HOUR FORECAST 


l HOUR FORECAST 


72 HOUR FORECAST 


MO/DA/HR 

POSIT UIND 

POSIT 

UIND 

ERRORS 
DST UIND 

POSIT 

UIKD 

ERRORS 

DST UIND 

POSIT 

UIND 

ERRORS 

DST U1HD 

POSIT 

UIND 

DST WIND 

0700062 

12.5 

139.9 

25 

12.2 

139.8 

25. 

19. 

0. 

15.6 

135.8 

35. 

135. 

“5. 

14.0 

131.8 

45. 

273. 

-5. 

15.0 

128.6 

55. 

389. 

0. 

0706122 

13.2 

130.8 

30 

12.9 

139.7 

25. 

55. 

-5. 

14.5 

136.0 

40. 

191. 

0. 

15.7 

r> 2.2 

45. 

339. 

-10. 

16.2 

128.9 

45. 

452. 

-s. 

0?0bie2 

13.9 

137.6 

30 

13.7 

138.7 

38. 

65. 

0. 

15.3 

134.7 

45. 

281. 

5. 

16.4 

130.5 

45. 

306. 

-10. 

17.1 

126.9 

45. 

378. 

-5. 

0707002 

14.7 

136.5 

35 

14.5 

136.2 

40. 

21. 

5. 

16.4 

131.7 

SS. 

124. 

18. 

10.0 

127.6 

6U. 

197. 

0. 

20.2 

123.8 

70. 

192. 

20. 

0707062 

15.6 

135.3 

48 

15.5 

135.4 

40. 

19. 

0. 

17.5 

131.8 

S5. 

145. 

5. 

19.6 

126.9 

65. 

208. 

10. 

22.0 

123.3 

?0. 

207. 

25. 

0707122 

16.7 

133.6 

40 

16.5 

133.8 

40. 

17. 

0. 

19.6 

129.2 

50. 

133. 

-5. 

21.4 

125.0 

60. 

i?e. 

10. 

22.4 

120.6 

65. 

188. 

20. 

0787102 

17.2 

131.0 

40 

17.2 

132.0 

45. 

11. 

5. 

19.6 

126.9 

SS. 

75. 

0. 

21.2 

122.9 

65. 

89. 

15. 

22.5 

119.0 

65. 

45. 

20. 

0788002 

17.8 

130.1 

45 

18.0 

130.2 

45. 

13. 

0. 

20.9 

123.8 

66. 

101. 

0. 

22.9 

118.8 

55. 

143- 

5. 

0.0 

0.0 

0. 

-0. 

0. 

0708062 

18.3 

128.6 

50 

13.3 

128.6 

50. 

0. 

0. 

28.7 

123.5 

60. 

S4. 

5. 

23.4 

110.2 

50. 

137. 

5. 

0.0 

0.0 

0. 

-0. 

e. 

0708122 

18.6 

127.1 

55 

10.8 

127.0 

55. 

13. 

0. 

20.7 

120.6 

65. 

93. 

15. 

24.1 

116.9 

50. 

167. 

5. 

o.e 

0.0 

0 . 

-O. 

e. 

0709102 

18.9 

125.8 

55 

19.2 

125.0 

55. 

49. 

0. 

21.6 

110.5 

60. 

170. 

10. 

25.2 

116.6 

30. 

206. 

-15. 

0.0 

0.0 

O. 

-0. 

0. 

070900Z 

19.3 

124.4 

60 

19.2 

124.6 

68. 

13. 

0. 

2fa. 8 

119.? 

60. 

48. 

10. 

23.5 

116.7 

50. 

77. 

5. 

0.6 

0.0 

0 . 

-0. 

0 

0709062 

19.0 

123.2 

55 

19.7 

123.3 

60. 

8. 

S. 

21.4 

110.6 

60. 

56. 

IS. 

24.3 

116.2 

20. 

102. 

-2S. 

0.0 

0.0 

0 . 

-0. 

0. 

0709122 

20.3 

122.2 

50 

20.3 

122.2 

60. 

0. 

10. 

22.4 

117.7 

60. 

71. 

15. 

25.2 

115.9 

IS. 

125. 

-30. 

e.e 

0.0 

0. 

-0. 

0. 

0709182 

20.7 

121.4 

50 

20.7 

120.7 

60. 

39. 

10. 

23.2 

116.7 

58. 

95. 

5. 

0.0 

0.0 

0. 

-0. 

8 . 

0.0 

e.e 

0. 

-0. 

0. 

0710002 

?i. i 

1ZC.S 

50 

20.8 

120.9 

55. 

29. 

5. 

22.? 

118.5 

45. 

50. 

0 . 

c.o 

0.8 

0. 

-0. 

0. 

0.0 

8.0 

0. 

-0. 

0. 

0710062 

21,5 

119.6 

45 

21.2 

119.8 

55. 

21. 

JO. 

22.8 

116.0 

45. 

17. 

0. 

0.0 

0.0 

0. 

-0. 

0 . 

0.6 

0.0 

0. 

-3. 

0. 

0710122 

22.0 

118.9 

45 

21.7 

110.9 

55. 

19. 

10- 

23.8 

115.0 

30. 

57. 

-IS. 

0.0 

0.0 

0 . 

-0. 

0. 

0.0 

e.o 

0. 

-8. 

0. 

0710132 

22.4 

no.2 

45 

22.4 

118. 1 

55. 

6. 

10. 

24.6 

116.1 

25. 

48. 

-5. 

0.0 

0.0 

0. 

-0. 

8. 

0.0 

0.0 

0. 

-0. 

0. 

0711002 

22.6 

117.7 

45 

22.7 

116.8 

45. 

50. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-8. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0711062 

22.0 

117.1 

45 

22.7 

117.1 

45. 

6. 

0. 

0.0 

0.0 

0 . 

-0. 

0. 

o.e 

0.0 

0 . 

-0. 

0. 

e.e 

0.0 

0. 

-0. 

0. 

0711122 

23.2 

116.6 

45 

23.0 

116.6 

4S. 

12. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0 . 

0711182 

23.3 

116.2 

30 

23.8 

116.2 

30. 

0. 

0. 

0.0 

o.e 

0. 

-0. 

0. 

0.6 

0.0 

0 . 

-0. 

6 . 

0.0 

o.e 

0. 

-0. 

0. 


ALL FORECASTS 


AVS FORECAST POSIT ERROR 
AVG RIGHT ANGLE error 
AVG INTENSITY MAGNITUDE ERPOR 
AVG INTENSITY BIAS 
NUHJER OF FORECASTS 


LftNG 

24-HR 

40-HR 

72-HR 

21. 

99 

182. 

253. 

11. 

37. 

73. 

126. 

3. 

7. 

11. 

14. 

3. 

3. 

-3. 

11. 

23 

19 

14 

7 


TYPHOONS UHJLE OVER 35 KTS 
LFNG 24*HR 48-HR 72-HR 
0 . 0 . 6 . 0 . 

8 . 0 . 8 . 8 . 


DISTANCE TRAVELED BY STORM IS 152?. KM 
AVERAGE SPEED OF STORM IS 12. KNOTS 


TROPICAL STORM IDA 
FIX POSITIONS FOR CYCLONE NO. B 


CmTELLITE fi>es 


FIX 

Tir£ 

FIX 

NO. 

<Z> 

POSITION 

* 1 

050600 

f .oN 

144.8E 

2 

e69037 

11. Bn 

140.9E 

3 

060529 

12.1H 

139.9F 

4 

060957 

I2.5H 

140.IE 

5 

061690 

14. IN 

13?.9E 

6 

062C43 

13.?N 

136.?E 

7 

0C210O 

14.0N 

137.4E 

8 

8622j6 

14.0N 

136.2E 

9 

07O150 

14.9N 

135.6E 

* 10 

070159 

15.5N 

135.5E 

It 

070300 

15.3N 

I35.2E 

12 

071116 

16 *N 

133.5E 

13 

071200 

16.2N 

133.4E 

14 

0716C0 

16.6N 

132.4E 

15 

072355 

I7.6N 

12S.7E 

16 

072355 

17.9N 

123.€E 

1? 

890139 

17.6N 

129.4£ 

10 

ecoi39 

17.BM 

129.6E 

13 

080139 

17.7N 

129.4E 

20 

CGI053 

16.6N 

126.7£ 

« 21 

931608 

19.4N 

125.0E 

>2 

092142 

19.1H 

124.5E 

23 

0C2333 

19.FN 

124.5E 

24 

090119 

19.1H 

I24.BE 

2S 

090H9 

19.4N 

124.2E 

26 

098119 

18.9H 

124,IE 

2? 

098300 

19. SH 

123.9E 

28 

391031 

19.9N 

121.BE 

25 

69i6eo 

20.4N 

120.6E 

38 

692310 

21.0N 

120.BE 

31 

186241 

21.ON 

119.SE 

32 

I0»241 

21.8N 

120.?E 

35 

180625 

21.5N 

I19.8E 

34 

180625 

21. BN 

U9.6E 

25 

10080? 

21.2W 

119.3E 

36 

101150 

21.4N 

110.6E 

37 

10I600 

22.8H 

110.SE 

38 

102ieo 

22.2N 

117.6E 

* 39 

182240 

22.3H 

116.7E 

40 

110838 

22.4M 

117.7E 

41 

110220 

22.0N 

1I7.5E 

42 

118221 

22.6M 

1I7.5E 

43 

110221 

22.OH 

117.4E 

44 

110756 

23.2N 

116.3E 

45 

110980 

23.3H 

116.4E 

46 

111200 

23.7N 

UG.3E 

4? 

112219 

24.?H 

115.3F 

48 

112220 

23.3N 

114.0E 

49 

128807 

23.8H 

114.66 

SO 

120201 

24.8H 

1I4.2E 


T2.0^2.0 /D2.8/22HRS 


T3.5/3.S /DI.S/2?HRS 
T4.8/4.0 /D1.0/24HRS 
T4.8/4.84- 


T4.0/4.8 /S0.O/24HRS 
T3.5/3.S /S8.0/24HRS 
T4.0/4.8 /S8.0/24HRS 


T3.0/3.5 /U8.5/20HRS 
T3.0/4.0 /UI.0/24HRS 
T3.0/4.0-./U1.0/25HRS 


T3.0«'3.0“/SO.0/22HRS 

T3.0/3.O-/Sd.0/24HRS 

T3.0/3.0-/S8.0/2?HRS 

T4.5/4.S-/D0.S/26HRS 


T2.3/3.8-/U0.5/24NRS 

T1.5/3.0-/UI.5/24HRS 


PSN BASED 0*1 UL FEATURES 


DVORAK DM 39 PASS 


lHlT 08S 

PARTIALLY EXPOSED LLCC 







AIRCRAFT r!XZS 


fix Tire fix 

HO. <2J POSITION 


FIT 

IV- 


708TB oes WX-SFC-UiP mK-FLT-LVL-tND ACC8Y 
KGT ft>LP VEL/BRC'RNC DIR/^L/BRCX!«C NAV/TET 


eye 

SHAPE 


EYE OR1EM- EYE TErP <C> *SH 
&|AfV'TftT!OH OUT ' ,4< ' E *NO. 


066145 

062326 

078615 

878915 

872130 

888633 

880850 

082133 

030735 

330903 

331936 

692217 


II.8N 14C.9E 
14.SH 136.56 
15.6M 135.4£ 
16.3N 134.66 
17.SN 130.86 
18.3H 120.5t 
18.5N 127.86 
19- 1ft 125. IE 
I9.9N 122.56 
20.2« 122.66 
26.7N 121.36 
20.8N 121.06 


lsoerr 
708TB 
700TB 
ree?B 
7C0TB 
7C8 m 
768re 
788TB 
788TB 
788TB 
70CTB 
78 STB 


‘0J0 

3035 

3021 

383! 

2975 

2361 

2311 

2360 

2357 

2365 

3880 


iee 2 

938 


932 

932 


25 260 60 260 34 240 69 3 2 

50 030 60 190 46 888 62 3 5 

4? 130 30 220 46 138 128 55 

25 220 05 239 28 190 100 42 

35 030 15 170 45 090 108 10 2 

60 078 98 IS 8 

998 55 C1B 35 120 55 010 35 10 9 

65 050 6« 108 S3 028 40 5 5 

85 040 28 178 46 180 125 5 10 

981 85 098 40 130 30 030 40 5 10 

360 35 210 120 3 5 

398 45 130 70 2 12 


*74 *25 *24 26 
♦ I! -*11 *11 


♦13 *15 ♦IB 
♦ 13 ♦M ♦ 9 


♦19 ♦!© ♦ 9 
♦14 + 16 +12 


♦15 *16 ♦!& 
♦12 *16 *13 


NOTICE - THE ASTERISKS (*) INDICATE Fl>ES ONRE PRESENT AT l Vfc AHt» NOT USED FOR BEST TRACK PURP'*5E5. 


139 




















TYPHOON JOE 


BEST TRACK DATA 


2A hour Forecast 
ERRORS 


I HOUR FOFf CAST 
CREAPS 


72 HOUR FORECAST 


DISTANCE TRAVELED BY STORM IS 2541. MH 
AVERAGE SPEED OF STCftn IS IS. KNOTS 


rC'DA/HS 

POSIT UlHD 

POSIT UlHD 

DST 

U1ND 

POSIT 

U1ND 

DCT UlHD 

POSIT 

UlHD PST U1NP 

POSIT 

UIKP PST UlHD 

eneeez 

9.2 

148.3 

15 

6.6 

0.0 

0. 

-8. 

0. 

0.6 

8.0 

0. 

-8. 8. 

8.0 

0.0 

3. -8. 

8. 

0.8 

0.0 

O. -C. 

0. 

0716062 

10.: 

147.2 

2e 

e.e 

8.0 

0. 

-0. 

0. 

0.0 

6-C 

a. 

-0. 0. 

0.8 

0.0 

0. -0. 

8. 

6.9 

e.e 

0. -0. 

•*. 

e716122 

il-0 

146.0 

23 

e.o 

8.0 

0. 

“0. 

0. 

0.0 

0.6 

0. 

-0. 0. 

0.0 

0.0 

0. -8. 

0. 

0.0 

o.c 

0. -3. 

i 

e?i6ie’ 

It. 9 

145. 1 

25 

0.0 

0.0 

e. 

*8. 

6. 

0.8 

6.8 

0. 

-0. 8. 

0.0 

0.0 

C. -0. 

0. 

0.0 

0.0 

0. -0. 

0. 

8/17802 

12.4 

144.1 

30 

12.7 

143.8 

28. 

25. 

-1C. 

16.1 

139.6 

40. 

I06. 5. 

■9.5 

I3S.4 

55. 318. 

0. 

20.2 

139.8 

7U. 336. 

- r 

0717662 

12.7 

142.8 

38 

13.3 

142.9 

28. 

36. 

-!C. 

16.2 

130.9 

40. 

154. C. 

18.8 

134.9 

55. 299. 

-5. 

28.3 

138.4 

70. 396. 

-75. 

6717122 

12.9 

141.6 

30 

13.0 

142.5 

28. 

S3. 

-10. 

15.2 

138.2 

45. 

120. 0. 

17 3 

133.7 

55. 2*3. 

-10. 

19.2 

129.1 

70. 347. 

-3"*. 

3717132 

13.C 

140.3 

38 

13.1 

140.4 

20. 

8. 

-10. 

14.4 

135.5 

*15. 

40. -5. 

15.5 

130.0 

55. 158. 

-20. 

17,0 

126.1 

70. 223. 

u. 

orieecz 

13.4 

13C.9 

3S 

13-2 

139.8 

25. 

13. 

-10. 

14.2 

134.2 

SO. 

63. -5. 

15.5 

129.C 

60. 173. 

-25. 

17,3 

125.1 

73. 269. 

S'.. 

0718062 

13.5 

137.7 

48 

14.1 

137.5 

35. 

17. 

-5. 

15.3 

>32.5 

55. 

60. -S. 

17.0 

127.6 

55. 158. 

-38. 

19.3 

123.2 

79. 254. 

-■ 

0710*22 

14.2 

126.4 

45 

14.2 

136.3 

43. 

6. 

-5. 

15.7 

131.2 

60. 

73. -5. 

17.8 

126.2 

78. 162. 

-35. 

20.4 

121.7 

79. 275. 

- * . 

C71S162 

14.4 

134.8 

58 

14.4 

135.1 

45. 

17. 

-5. 

16.1 

138.1 

65. 

117. -10. 

10.2 

I2S.2 

TO. 185. 

0. 

20.9 

12C.7 

Tjj. >!6. 

-20. 

0719062 

M.6 

135.2 

55 

14.6 

133.3 

50. 

6. 

-5. 

16.3 

127.2 

70. 

54. -15. 

1C.1 

i?2.e 

75. 116. 

15. 

20.5 

117.6 

OS. 229. 

- . 

C719C62 

15.0 

131.S 

60 

15.0 

131.7 

55. 

12. 

-5. 

16.6 

125.7 

75. 

50. -20. 

18.8 

120.5 

ce. 184. 

5. 

21.5 

116.3 

05. 259. 

5. 

8?19?22 

15.3 

130.8 

65 

15.3 

130.1 

65. 

6. 

0. 

17.2 

123.9 

90. 

43. -15. 

19.7 

118.7 

no. :u. 

25. 

22.7 

115.C 

110. 200. 

*P» 

3719102 

IS.4 

128.2 

75 

15.0 

128.8 

78. 

42. 

-5. 

18.0 

123. C 

95. 

75. 25. 

28.3 

118.3 

110. 178. 

28. 

23.3 

114.3 

-*'4. 

— 

6726002 

15.6 

126.6 

C5 

15.7 

126.7 

DO. 

8. 

-5. 

17.3 

119.4 

60. 

C2. 0. 

19.0 

115.1 

70. S3. 

-28. 

22.3 

112.5 

75. iil. 

5* . 

0720062 

16.1 

125.3 

95 

16.8 

125.0 

85. 

6. 

-10. 

17.5 

tie.6 

65. 

29. -18. 

19.3 

114.8 

70. 162. 

-1*. 

0.0 

n.o 

0. -0. 

0. 

6720122 

16.S 

123.7 

105 

16.4 

123.3 

90. 

24. 

-IS. 

17.9 

118.1 

70. 

58. -15. 

19.6 

114.4 

70. 241- 

0. 

8.0 

0.0 

O. -0. 

1*. 

0720182 

17.0 

P2.2 

70 

17.1 

122.2 

95. 

6. 

25. 

10.8 

117-5 

70. 

125. -20. 

28.1 

113.9 

70. ill. 

5. 

0.0 

0.0 

ft. -0. 

0. 

6721002 

16-9 

123.4 

ce 

17.4 

129.7 

C5. 

34. 

5. 

IP.C 

116.1 

80. 

144. -iu. 

21.2 

113.1 

BO. 362. 

55. 

3.0 

O.C 

O. -0. 

t*. 

0721062 

17 .C 

:i9.e 

75 

17.0 

119.0 

05. 

8. 

10. 

20.3 

113.7 

70. 

90. -18. 

8.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. -0. 

0. 

0721122 

18.4 

117.3 

85 

18.7 

117.5 

75. 

21. 

-10. 

22.0 

1*3.1 

70. 

180. 8. 

C.0 

8.8 

0. -8. 

0. 

0.0 

o.c 

*i. -o. 

u. 

0721182 

10.9 

IIS.5 

96 

19.2 

115.3 

75. 

21. 

-IS. 

23.2 

112.1 

15. 

250. -50. 

0.9 

0.0 

0. -0. 

0. 

0.0 

e.o 

** -ft. 

0. 

0722CO2 

19.4 

1X3.7 

90 

19.9 

113.7 

73. 

39. 

-20. 

0.8 

0.0 

0. 

-0. 0. 

0.0 

C.0 

0. -o. 

0. 

0.0 

0.0 

ft. -0. 


0722062 

19.9 

112.0 

ee 

20.2 

1I2.0 

88. 

18. 

0. 

0.0 

0.0 

0. 

-0. 9. 

0.0 

0.0 

0. -0. 

0. 

8.0 

0-9 

9. -O. 


6722122 

20.4 

110.2 

70 

20-4 

110.2 

83. 

e. 

18. 

0.8 

8.0 

0. 

-0. 0. 

0.0 

9.0 

U. -P. 

0. 

0.0 

0.0 

0. -o. 


87221C2 

20.8 

108.4 

6S 

20.8 

103.2 

P$. 

n. 

15. 

0.6 

0.3 

0. 

-0. 0. 

O.U 

0.0 

0. -8. 

0. 

0.0 

o.n 

»j. -n. 

i«. 

0723002 

21.2 

106.6 

25 

21.3 

186.9 

55. 

10. 

30. 

0.0 

3.8 

9. 

-0. 0. 

0.0 

0.0 

8. -0. 

0. 

0.3 

0.3 

e. -o. 

V. 






fiLL FOPS CASTS 




TYPHOONS l«! 

LE OVER 35 flS 











IPHC 

24-HR 

48-m 72- 

HR 


UT6 

'4-^ 40- **t 72-»« 






five rcrecasT posit efror 


10 


99. 

197. 

30* 

. 


15. 


107. 

299. 






fivC RIGHT ANCLE ERRCP 


13 


61. 

98. 

IP4. 


13. 

61. 

yi. 

189. 






five INTENSITY mCHITUDC 

LkRW 

10 


11. 

16. 

19 



9. 

11. 

11. 

17. 






five INTENSITY OlfiS 



-2 


-8. 

-2. 




0. 

-0. 

-v 

•3. 






NUreEP OF FOPtCfiaTS 



25 

20 

17 

13 


20 

2C 

1C 

12 







TYPHOON JOE 

FIX POSITIONS FOR LtXLCiK K». 2 


SATELLITE FIXES 


FIX 

HO. 

Tire 

<r> 

FIX 

POSITION 

ACCRY 

1 

I60926 

10.Cn 

146.2L 

PtN 6 

2 

162216 

12. !N 

145.BE 

PCM 5 

- 3 

170822 

12.2H 

144.6€ 

PCS 5 

4 

170300 

12. SH 

144.3C 

PCI 0 

5 

17CSW 

I3.4H 

142.7£ 

PtN 0 

6 

1709F0 

13.5H 

I42.CE 

PCN C 

7 

•71203 

13.*i 

141.4£ 

PCM 0 

8 

171600 

S3.7N 

140.2£ 

PC* 0 

9 

171800 

13.ON 

139.85 

PCM 0 

10 

17215-1 

13.6N 

139.fc£ 

PCN 5 

11 

180143 

14. IN 

13G.5E 

PCN s 

12 

180141 

13.5N 

13C.3C 

PCN 5 

13 

180900 

14,-Si 

136.91 

PCN 0 

14 

191037 

14.3H 

136.3E 

PCN 5 

15 

181200 

14.5H 

136.0C 

PCM 0 

1C 

131600 

14.8H 

135.4S 

PCN 0 

17 

182132 

14.-W 

134.2E 

PCN s 

SO 

182312 

S4.6N 

133.2t 

PCN 5 

19 

19P123 

14.6N 

132.6E 

PCN 3 

20 

190I23 

!4.8N 

132.OS 

PCN 3 

21 

190SW 

14. feN 

137.IE 

PCS 0 

22 

191011 

14.SN 

130.2£ 

PCN 3 

23 

191600 

15.ON 

12S.4E 

PCN 0 

24 

192250 

15.7N 

127.SE 

PCH 3 

25 

20^103 

15.US 

126.CE 

PCN 3 

26 

200103 

15.5N 

125.9E 

FCM 3 

27 

200300 

16-IN 

126.:e 

PtN E 

28 

208612 

lb. w 

123.2E 

fcm i 

29 

201280 

16 . -si 

123.CC 

PCN E 

3? 

2ft 1C CO 

16.9h 

122.7E 

PCM E 

31 

20105? 

S7.2H 

I2I.2E 

PtN c 

32 

282100 

S7.2N 

121.2C 

PCH c 

33 

2:0089 

17.2N 

129.ee 

PCh 5 

34 

210225 

I7.5M 

119.8E 

PCN I 

35 

21C225 

I7.SH 

119."E 

PCN l 

36 

2I0225 

I'.-Si 

119.BE 

PCN I 

37 

211107 

18.41 

117.6E 

PCN 3 

38 

211CC0 

18.8N 

115.7E 

PCN c 

39 

212100 

19.2N 

* 14.SC 

PCH c 

40 

212347 

19.3H 

ii4.ee 

PCN 2 

4: 

220205 

19.ON 

ns.es 

PCN I 

42 

220295 

19. tH 

112.2t 

PCN l 

4? 

22O90O 

28.2N 

Hi-IE 

PCN C 

44 

221226 

2S.CH 

109.96 

PCN 6 

45 

221600 

20.5N 

108.BE 

PCN C 

46 

222103 

20.9N 

107.6E 

PCN E 

47 

230000 

21.ON 

106.6E 

PCN C 


SATELLITE 


irGPZ* 
0TH.R 
OTHER 
OTHER 
OTXR 
OTXR 
UTKR 
hOAAC 

TS.SV.S /DI.5/27rtfS DW39 

T*. S'1.5 DN5P39 

OTKR 
NQAA6 
OTHER 
OTHER 

«*SP3? 

T3.V3.5 /VI.0/2OAS t*SP3? 

T3.5/3.5 'M.0/24HRS IW39 
07*** 
NOAAfc 
OTHER 
KOaAg 

T4.S'4.S-'DI.0/2*iRS tfC#*3S 

TS.P/S.O-'n.5/2*»tffS DPSP39 
0T>€P 
TIROS* 

OTXR 
OTXR 
TIfOSH 
CT>€R 
r=CAA6 

T4.C'4.e*'VB.5/25^S 0^5*3? 

TS.C/S.O /S0.0/2S*«S t*CP39 

T4.5'4.5* IS6P39 

HUAA6 
OTHER 
OTHER 
N0AA6 

TS.S'S.S*'DC.5'74MRs rrSP39 

TS.O/S.C-'Dl.C^-MfS 2*6*39 
nil er 
NQAA6 
OT>CP 
OTHER 
OTHER 


DVORAK CODE 

Tl.O'I.O 


COrtENTS 


IHIT CCS 


IHlT CSS 


UEA* TrecrAL £YE 


IHIT CCS 


SITE 


PC7U 

PCTU 

PCTU 

rciu 

pent 

pcm 

PCTU 

PCTU 

PCtU 

PCTU 

PCTU 

P05H 

PCTU 

PCTU 

PCtU 

PCTU 

PCTU 

PCTU 

PCTU 

PODH 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

ROI* 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

PCTU 

ROHl 

PCTU 

PODei 

R»'SO 

PCTU 

PCTU 

PCTU 

PCTU 

ROt#l 

PCTU 

PCTU 

Rom 

PCTU 

PCTU 

PCTU 


140 

















AIRCRAFT FIXES 


FIX 

T*.*e 

FIX 

FLT 

760TB 

oes 

mx-SFC- 

thi> 

nax-FLT-LVL*LWD 

ACCRY 

EYE 

EYE 0R1EN- 

EYE TEtt> <C> 

»1SN 

HO. 

<z> 

POSITION 

IVL 

HCT 

mtp 

VEL-'BRWRNG 

DlR/VEL/BftC/RNG NAV/TCT 

SHAPE 

DIAn/TATlON 

OUT/ IN/ DP/SST 

NC, 

1 

168525 

9.BN 

147.3E 

1588FT 


1886 

15 230 

25 




4 

5 






27 

1 

2 

162328 

12.6N 

143.9E 

1588FT 


1806 

20 060 

60 

090 

22 068 

60 

3 

3 




♦23 

♦24 *24 

27 

2 

3 

178738 

12.3N 

143.IE 

1588FT 


10C5 

15 348 

80 

028 

38 320 

128 

3 

30 




♦24 

*26 *24 

27 

2 

4 

171512 

12.8N 

141.1C 

706T8 

3107 

1884 



140 

31 070 

180 

5 

5 




♦ 12 

♦ 13 *■ 7 


3 

S 

171848 

12.0N 

149.3E 

780ffi 

3895 




178 

28 868 

25 

5 

10 







J 

6 

188837 

14. IN 

137.IE 

788T® 

3835 

991 

40 090 

;e 

188 

35 899 

18 

6 

2 





♦24 *24 

28 

4 

7 

182008 

14.3H 

133.7£ 

788fC 

2947 




146 

65 040 

10 

2 

2 







5 

8 

182289 

14. SN 

133.6£ 

780fB 

2936 

983 

58 330 

30 

848 

61 330 

20 

2 

2 

ELLIPTICAL 

28 IS 

098 

♦ 15 

♦15 *14 


5 

9 

198828 

15. IN 

138.9£ 

7CjrC 

2881 

974 

65 810 

10 

138 

74 870 

IS 

S 

5 

ELLIPTICAL 27 28 

018 

♦ 15 

♦16 «|6 


6 

18 

192219 

1S.6N 

127. ?£ 

rear© 

2741 

958 

60 248 

5 

168 

89 090 

IS 

6 

2 

ELLIPTICAL 28 18 

158 

♦ 13 

♦19 ^12 


7 

11 

2*0586 

i6.0h 

124.86 

7ecre 

2636 


55 ese 

8 

170 

108 090 

18 

2 

& 

ELLIPTICAL 

19 16 

158 




8 

12 

2“ 90 

16.2N 

124.26 

708T8 

2578 

940 

78 136 

8 

388 

73 220 

15 

10 

5 

CIRCULAR 

17 



♦28 +12 


6 

13 

a53 

18.2H 

118.2£ 

788re 

2915 

982 

50 120 

90 

190 

64 138 

128 

4 

5 




♦ 13 

♦14 *|1 


18 


RADAR FIXES 


FIX 

Tire 

FIX 


EYE 

EYE 

RAD08-C0DE 


RADAR 

SITE 

NO. 

(2) 

POSITION 

RADAR ACCRY 

SHAPE 

DIAn 

ASUW TDDFF 

COfttHTS 

POSITION 

UC HO, 

1 

201788 

17.8N 122.66 

LAND 




UALLACE AS 

I6.CN 120.36 


2 

282888 

17.4H 12I.7E 

LAND 




WALLACE AS 

16.6N 128.3E 


3 

218520 

17.4M 119.6£ 

LAND 

CIRCULAR 

34 



15.2N 128.6E 

96327 


SYNOPTIC FIXES 


fix Tire fix intensity nearest 

NO. <2) POS17ION ESTIfWTE DATA INK) COTTEnTS 


• I 141288 7 .*h 1SS.8E 15 188 

2 23I2DO 21.BN 182.CC 15 58 


NOTICE - THE ASTERISKS (•) INDICATE FIXES UNREPRESENTATIVE A«D NOT USED FOR BEST TRACK PURPOSES. 


141 




















TROPICAL DEPRESSION 10 
BEST TRACK DATA 


24 HOUR FORECAST 
ERRORS 


rO-'OA/HR 

0715102 

8716002 
07I6062 
0716123 
e?:6i83 
0717062 
0717062 
0717122 
0717182 
0716002 
0718062 
0718122 
0718182 
07198C2 
0719062 


U1HD DST UUO POSIT UIHP £»$T U1H9 


C. -0. 0. 0.0 


id.e 

123.9 

20 

0.0 0.0 

0. 

*0. 

0. 

0.0 

O.0 

14.2 

122.2 

20 

0.0 0.0 

0. 

•8. 

0. 

0.0 

0.0 

14.4 

128.6 

25 

0.0 0.0 

0. 

-0. 

3- 

b.9 

0.6 

14.7 

119.2 

25 

6.0 0.8 

0. 

-0. 

0. 

0.0 

0.0 

IS.2 

117.8 

3e 

0.0 8.8 

8. 

‘0. 

e. 

8.0 

0.0 

16.0 

116.3 

38 

0.0 8.8 

6. 

-0. 

0. 

8.0 

0.0 

17.2 

115.2 

30 

17.3 115.0 

30. 

13. 

0. 

21.1 

111.3 

19.3 

114.4 

30 

17.9 114.1 

30. 

29- 

0. 

21.9 

110.5 

19.1 

113.9 

20 

19.9 114.8 

2S. 

70. 

*5. 

3.0 

9.0 

19.9 

113.5 

30 

20.7 113.9 

25. 

53- 

•5. 

8.0 

0.0 

28.7 

113.P 

30 

21.8 113.2 

25- 

67. 

-5. 

0.0 

0.0 

21.3 

112.6 

30 

21.9 113.1 

28- 

40. 

-10. 

0.0 

0.0 

21.8 

112.5 

30 

22.0 112.2 

20. 

20- 

-10. 

0.0 

D 9 

22.6 

112.3 

20 

0.0 8.0 

0. 

-0. 

0. 

0.0 

3.0 


48 hour forecast 
ERRORS 

POSIT WIHt> I»>T UIND 


0 . - 0 . 0 . 

8- '0. 8. 

0 . - 0 . 0 . 


72 HOUR FORECAST 
POSIT WIND DST US* 


O.O 

0.0 

e. 

-0. 

a. 

e.e 

0.0 

0.0 

0.0 

e. 

-0. O. 

e.e 

8.0 

0.8 

0.0 

0. 

-0. 

0. 

e.o 

e.e 

0.0 

e.u 

e. 

-0. 0- 

8.0 

e.e 

8.0 

8.0 

e. 


8. 

8.C 

8.0 

0.0 

8.0 

8. 

-e. o. 

0.8 

0.8 

0.0 

0.0 

0. 

-0. 

0. 

e.e 

0.0 

0.6 

0.8 

0. 

-0. 0. 

o.c 

e.o 

0.0 

e.e 

0. 

-0. 

0. 

8.0 

0.0 

0.0 

8.0 

0. 

-0. 0. 

0.0 

0.0 

0.0 

0.8 

0. 

-0. 

0. 

8.0 

e.e 

0.0 

e.o 

0. 

-0. 0. 

0.0 

o.e 

0.0 

0.0 

6. 

•0. 

8. 

0.0 

o.e 

0.0 

0.8 

0. 

-0. 

0. 

0.0 

e.e 

0.0 

0.0 

0. 

-0. 

0. 

e.f* 

0.0 


AvG FORECAST POSIT ERROR 
AVG R1GMT ANGLE ERROR 
AVG INTENSir.' rt^HlTXJDE ERROR 
AVG INTENSITY BIAS 
NUTOER Of FORECASTS 


DISTANCE TRAVELED 8Y STORO IS 1007. NT1 
AVERAGE SPEED OF STORtl IS 12. WOTS 


ACL FORECASTS 

URHG 

24-HR 48-HR 

42. 

115. C. 

33. 

92. 0. 

s. 

13. P- 

-s. 

13. 0. 

7 

2 0 


TYPHOONS L^llC 0»ER TS KTS 
LPNG 24-»*? 43-Kft 72-H* 
0. 0. 0. 0- 

e. 0. 0. 0. 

0 . 0 . 0 . 0 . 

0 . 0 . 0 0 . 


TROPICA*. DEPRESSION TD-10 

FIX POSITIONS FOR C\TLDN£ M3. 10 


SATELLITE 


FIX TirC 
HO. <Z> 


FIX 

POSITION 


PCN 3 TI.6/1.C 
PCN 6 

PCM S TI.ftsi.0 


PCN 5 Tt.S'1.5 /D0.5^22 hRS MCAA6 
PC' 4 5 TI.5/1.S U&>1$ 

fcn o 01X R 


PCN 5 TI.P'1.5-' - L0.5 / '20®5 N0AA6 SECONDARY CTR AT I0.9N 114.26 
PCN 0 OTHER 

PCN S Tl.5/1.5 /S0.8/27H7S IMSP39 


SYNOPTIC Fl>ES 


FIX Tire 
HO. <2> 


FIX 

POSITION 


IHTEHSITY »€AR£ST 
CSTIrtVTE DATA <NM) 


1 161200 21.0H 113.0E 

2 100068 2t.5* 112.SC 

3 191280 23.SN 1I2.0C 


NOTICE - DC ASTERISKS <•) IHSlCATr FIXES umREPRESENTATI* at NOT USED EOS BEST TRACK FW-OSES. 


MtHW tM nMtatunu nMM iKA-amW i mvl A'iwimiauBii 

















SUPER TYPHOON KIM 
BEST TRACK DATA 



rc/Wt^s 

POSIT U*H9 

POSIT 

Ul*S 

DST uir® 

POSIT 

Ul*3 

DST 

UIHD 

POSIT 

LSlfO 

t$T UlhS 

POSIT 

UlHJ 

5ST 

Vito 

6719502 

7.5 

155.2 

15 

8.8 

8.8 

6. 

-8. 

0. 

8.0 

e.e 

8. 

—8. 

8. 

e.e 

e.s 

8. 

-6. 

8. 

8.0 

8.8 

0. 

-8. 

e. 

0/19©*^ 

7.6 

153.S 

2© 

0.8 

fc.U 

8. 

-8. 

0. 

8.8 

8.8 

8. 

-0. 

O. 

8.8 

6.8 

8. 

-0. 

0. 

c.c 

0.0 

0. 

-3. 


6719122 

8.1 

152.5 

2© 

8.6 

6.8 

8. 

-8. 

©- 

0.6 

8.0 

0. 

-6. 

0. 

6.8 

0.6 

e. 

-e. 

0. 

0.0 

o.e 

O. 

-0. 

8. 

0719182 

8.2 

151.1 

20 

e.e 

6.8 

0. 

-8. 

8. 

0.6 

6.8 

0. 

-6. 

6. 

6.0 

e.e 

0. 

-0. 

0. 

0.8 

0 .© 

0. 

-e. 

3. 

8720092 

6.3 

149.7 

h 

e.e 

8.8 

0. 

-0. 

8. 

3.0 

8.8 

e. 

-0. 

6. 

8.6 

e.e 

e. 

-0. 

0. 

e.a 

8.0 

8. 

-e. 

0. 

erivesr 

0.3 

143.5 

25 

o.e 

e.e 

0. 

‘8. 

8. 

0.8 

e.e 

8. 

-6. 

0. 

8.8 

8.8 

0. 

-0. 

0. 

e.e 

o.e 

0. 

—0- 

0. 

6725122 

8.5 

147.3 

33 

8.3 

147.4 

38. 

13. 

0. 

9.2 

141.7 

40. 

127. 

5. 

11.9 

135.8 

55. 

124. 

fc. 

14.5 

130.0 

69. 

!I2. 



5.1 

145.6 

33 

3.8 

145.6 

30. 

18. 

8. 

18.2 

139.4 

40. 

66. 

5. 

12.9 

132.7 

'4. 

48. 

5. 

15.7 

126. S 

78. 

II?. 

-10. 

©721003 

5.S 

143.9 

33 

9.S 

143.9 

38. 

5. 

5, 

12.8 

137.4 

58. 

72. 

15. 

14.2 

12©.'* 

60. 


0. 

16.3 

124.3 

79. 

154. 

-20. 

C7210S2 

18.0 

141.8 

J« 

9.9 

142.3 

38. 

30. 

0- 

12.4 

135.9 

50. 

60. 

:©. 

14.7 

129.S 

60. 

73 ! 

-5. 

16.C 

122.9 

79. 

187. 

*56. 

6721122 

ie.c 

139.7 

35 

ie .2 

140.1 

39. 

26. 

“5. 

12.2 

133.5 

60. 

22. 

18. 

14.8 

126.3 

65. 

136. 

-5. 

17.8 

121.7 

65. 

242. 

-55. 

©721182 

13.4 

138.3 

35 

ie.6 

138 . e 

30. 

32. 

-S. 

12.7 

132.6 

68. 

35. 

10. 

15.2 

126.3 

65. 

85. 

-15. 

17.S 

I'S.S 

65. 

16’. 

-65. 

C722CC2 

13.9 

136.9 

35 

11.0 

136-7 

42. 

13. 

5. 

13.3 

I38.S 

55. 

21. 

-5. 

15.6 

124.9 

• 5, 

100. 

-15. 

17.7 

*19.6 

65 

101* 

*35. 

©722662 

11.2 

135.3 

4© 

11.5 

I2S.3 

46. 

18. 

0. 

13.* 

129.2 

68. 

27. 

-5. 

16.3 

123.5 

75. 

141. 

-25. 

13.3 

lie.7 

65 

-75. 

-5. 

©722122 

II. C 

133.7 

S3 

11.3 

134.5 

48. 

5C. 

-ie. 

12.6 

120.7 

65. 

64. 

-5. 

14.4 

123.8 

75. 

110. 

*55. 

17.4 

1I7.C 

65. 

157. 

25. 

G722I22 

12.2 

132.2 

50 

12-2 

132.2 

45. 

6. 

-5. 

U.S 

125.3 

78. 

100. 

-18. 

16.5 

:19.5 

68. 

230. 

-70. 

19.A 

:i4.5 

70. 

293. 

:5. 

8/23002 

13.0 

130.8 

6© 

13.2 

138.6 

CO. 

17. 

C- 

16.2 

123.5 

75. 

154. 

-15. 

18.7 

113.1 

*0. 

233. 

-49. 

21.3 

112.0 

69. 

362. 

13. 

©723©€Z 

13.4 

129.4 

65 

14.1 

129.0 

65. 

43. 

8. 

16.9 

122. e 

60. 

222. 

•48. 

19.9 

116.3 

65. 

330. 

-5. 

25.1 

111.4 

25. 

4J4. 

-25. 

©723122 

• 3.6 

128.3 

7© 

• 3-7 

128.0 

78. 

18. 

C. 

15.5 

122.5 

58. 

121. 

-58. 

17.7 

117.2 

78. 

130. 

30. 

21.4 

113.1 

92. 

255. 

58. 

©723102 

14.3 

127.1 

CO 

14.3 

126.9 

70. 

12. 

-18. 

15.5 

122.2 

t». 

Cfc. 

-SO. 

17.3 

117.3 

70. 

125. 

•5- 

20.4 

115.9 

04. 

171. 

35. 

0/24002 

14.4 

126.1 

93 

14.4 

12S.9 

85. 

12. 

-5. 

15.3 

121.5 

78. 

03. 

-30. 

Ir.8 

117.S 

80. 

127. 

30. 

21.2 

115.2 

90. 

177. 

35. 

0?24fc»2 

14.8 

125.4 

10© 

14.9 

174.C 

90. 

35. 

-18. 

16.5 

120.2 

C5. 

93. 

-5. 

18.6 

115.6 

C5. 

156. 

25- 

22. I 

112.6 

65. 

ICO. 

15- 

©72-*: 22 

15.4 

124.6 

13© 

15.2 

124.5 

lie. 

13. 

-28. 

16.3 

121.8 

88. 

tee. 

43. 

17.8 

1X6.6 

05. 

160. 

jr,. 

21.8 

113.3 

92. 

203. 

60. 

©72411C 

16.2 

123.5 

13© 

15.9 

123.2 

120. 

25. 

-:e. 

10.© 

119.9 

85 

50. 

30. 

28.1 

114.4 

*6. 

152. 

45 . 

23-5 

111.I 

53. 

257. 

SC. 

©725002 

16.7 

122.6 

133 

16.9 

122.3 

98. 

21. 

-«8. 

19.3 

119.e 

?e. 

39. 

45. 

21.3 

112.5 

98. 

169. 

4S. 

e.e 

0.6 

0. 

-3. 

0. 

©725Cv2 

17.3 

121.6 

7© 

l?.l 

121.3 

65. 

21. 

-5. 

19.2 

t!".2 

CO. 

65. 

38. 

21.C 

112.3 

75. 

195. 

?ft. 

0.© 

0.0 

0. 

-3. 

3. 

©725122 

:?.«* 

:?a.5 

40 

17.6 

120.0 

75. 

34. 

35. 

19.6 

115.3 

ee. 

132- 

28. 

22.0 

111.6 

45. 

-25. 

15. 

P.0 

0.0 

0. 

-0. 

0. 

0725IC2 

:c.5 

119.6 

55 

16.3 

119.3 

55. 

21. 

0. 

20 4 

115.3 

75. 

99. 

30. 

22.7 

111.2 

3C. 

249. 

10- 

0.C 

0.0 

8. 

3. 

0. 

872S097 

19.3 

118.7 

5© 

19.3 

118.4 

55. 

17. 

5. 

21.3 

114.6 

75. 

133. 

20. 

6.6 

0.0 

0. 

-e. 

». 

8.© 

0.0 

9 . 


e. 

5/25552 

19.7 

• 19. * 

50 

19.5 

113.1 

«. 

16. 

38. 

21.3 

114.4 

75. 

354. 

28. 

e.e 

s.s 

0. 

- 0 . 

e. 

8.8 

0.0 

©.’ 


0 . 

©726X22 

20.4 

117.5 

5© 

29.2 

117.1 

50. 

25. 

8. 

23.0 

112.1 

SC. 

198. 

8. 

e.e 

0.0 

8. 

-e. 

0 . 

0-0 

0.0 

0 

—3. 

e. 

©726162 

21.3 

116.3 

45 

21.0 

115.5 

<5. 

75. 

0- 

e.e 

8.6 

C. 

-0. 

0. 

0.8 

0.8 

0. 

- 0 . 

0 . 

e.o 

6.0 

0. 

-0. 

0. 

©727002 

2J.9 

l'C.3 

45 

22-1 

1 IS.6 

45 • 

41. 

8. 

C.3 

8.0 

0. 

-C. 

0. 

0.0 

0.8 

0. 

- 0 . 

e. 

C.6 

0.0 


-0. 

3. 

0727662 

22.7 

U5.8 

45 

22.8 

::5.e 

45. 

6. 

0. 

0.9 

6.0 

6. 

-8. 

8. 

«.e 

5-3 

O. 

- 0 . 

©. 

o.e 

0.0 

*i_ 

-c. 

9. 

©727122 

23.6 

115.5 

33 

23.6 

115.3 

30. 

it. 

0. 

0.8 

C.ft 

0. 

-8. 

8. 

O.U 

o.e 

0. 

- 0 . 

0. 

0.0 

0.0 

0. 

-0. 

0 . 

372/182 

24.5 

liS.3 

28 

8.8 

8.9 

0. 

•8. 

e. 

0.8 

o.e 

8. 

-8. 

G. 

e.e 

e.e 

D. 

- 0 . 

0. 

e.o 

0.0 


-0. 

0. 


ALL r OUTCASTS 
LPJC 24-M» 43 

73. 95. 

16. 63. I< 

5. 21. 

-I. 4. 


r'PKOMS LMIL6 ?JZF 55 r TS 


five, FOKCAST POSIT EP^C* 
rwc F!i‘rr angle cppop 
avc intensity me*j tujc efk» 
avs ihtehsitv Cffi$ 

NurCft OF FOKChSTS 


MST«C£ TRavELC* 8/ STCPn IS 2v6l. Hn 
A'.^PACE SKEt OF St OF* IS 13. KNOTS 


2**-h» 

63-** 

72-« 

l**£ 

2-t-te 

43-fP 

72-HV 

95. 

!59. 

211. 

25. 

91. 

150. 

718. 

63. 

10?. 

123. 

xe. 

58. 

9S- 

112. 

21. 

24. 

29. 

6. 

22. 

25. 

27. 

4 . 

3. 

- 0 . 

8. 

4. 

2. 

-6. 

25 

22 

18 

24 

24 

20 

16 


Sukp tvpkxx rin 
fix POSITIONS *0* CYCLOK *0. II 


SATELLITE FIXES 


‘IX 

TinE 

FIX 




O. 

I2» 

POSITION 

ACCPY 

OVOM* CC36 satellite 

! 

182100 

5 . 5 © 

135.56 

PC* 0 


O.KP 

■* 

183342 

8.CN 

154.76 

PS* 5 

Ti.e^i.e 

**P39 

3 

198300 

7.2* 

154.26 

PC* 0 


OTHcP 

4 

i<€6ee 

7.2* 

153.8£ 

rc* 0 


0TM6P 

5 

191811 

8.5* 

151.2£ 

PC* 5 


I.04A6 

6 

230103 

8.5* 

147.36 

PC* 5 

Ti.e'i.o 

5T6P33 

7 

230612 

8.7H 

l4C.e€ 

PC* 3 


T1PCS* 

8 

23C940 

9.2* 

147.IE 

PC* 5 


14CWA6 

Q 

231600 

9.1* 

146.2E 

PCM 0 


OTKP 

1© 

232058 

9.3* 

144.56 

PC* 6 


t*SP39 

11 

282228 

9.5* 

144.8E 

PC* 3 


N0AA6 

12 

210044 

9.9* 

143 7£ 

rc* : 

TI.Vl.S /«.5/?-®*S 

t«P39 

12 

2! 0*544 

9.7* 

143.86 

»C* 5 

Tl.C'l-C 

5TCP39 

14 

2I830C 

10.1* 

U3.4C 

rc* 0 


UTKP 

15 

213926 

10.C* 

141.2c 

PC* 5 


W3AA6 

16 

211688 

10. «M 

139.36 

PC*? 0 


Oi«P 

17 

2.2206 

10.5* 

137.9c 

PC* 3 

12.5^2.5 '51.0/22*55 

NTAAfi 

IP 

220874 

11.8* 

I36.GE 

PC* 5 

T2.51.5 /5I.5/2**S 

WT3P29 

!9 

220300 

11.2* 

136.6E 

PC* © 


OTK© 

2© 

220SCC 

11.2* 

I34.6E 

PC* 0 


01*10 

21 

221045 

11.5* 

134.2C 

PC* 5 



22 

221680 

i 1.6* 

133.36 

PC* 0 


0T»C7 

25 

222148 

12.5* 

131.2£ 

K* 3 


1<«P37 

24 

222325 

12.7* 

130.76 

PC* 5 


H0AA6 

25 

230145 

13.3* 

130.21 

PC* 3 

T4.O/4.0 /5!.S/2$»*S 

TFSP39 

£0 

230145 

13.3* 

130..-E 

PCM 3 

T3.5/3.5 /51.6/I5WS 

HCP39 

27 

238980 

13.9* 

I28.6C 

PCM 0 


OT>«R 

28 

231025 

13.8* 

128.56 

PC* 5 


H0AA6 

29 

23166ft 

11.1* 

127.26 

K* 0 


OTKP 

38 

232382 

14.■» 

126.26 

PC* 3 


HCAA6 

31 

240125 

14.5* 

125.86 

PC* 6 

TS.C'5.e-/5l.8/2-/«?S 

K1SP39 

32 

24590? 

15.th 

124.76 

PC* 6 


OTKR 

32 

24i : 35 

IS. IH 

124.eE 

ft* 6 


N0AA6 

34 

241200 

15.6* 

124.36 

KH 6 


0TM6P 

35 

250000 

16.7* 

122.3E 

PCM C 


other 

25 

250021 

16.6* 

122.36 

PC* 3 

T5.0-5.© 


3? 

350247 

16.8* 

122.06 

K* 3 


5C6P39 

36 

250388 

17.e* 

121.86 

PC* C 


OTKP 


imit oes 

new L1KS 


P5H 6SP o* UL FEATURE! 
PS* 8S5 CH ULCC 


F5£L 6Y6 Fftrtc 















’«* 

25^ee 

17.3* 

121 .X 

•o* 3 


OTX* 


PSTV 

X 

25K5* 

!?.■*« 

121 .X 

P7* 3 

TS.8'5-e*'5e.8^<C 

TIROS* 


pcrj 

41 

258980 

i7.bp 

*28.n 

PC s 0 


OTXC 


PCTU 

42 

251119 

17.9* 

128.8£ 

re* 3 


fCMt 


PCTU 

43 

251128 

i7.es 

128.5E 

PC* 5 


HCAA6 


PCS* 

41 

252223 

is.-« 

J28.2C 

PC* 3 

T4.5x4.<* 

tr& 37 

IMT OSS 

kK SO 

43 

452J5? 

19. IN 

119.8E 

PC* 5 

H.O'S.e >Vi.342*«5 

M0OA6 


POSH 

45 

268227 

15.3* 

113.5* 

PC* 5 


t«SP3? 


PCS* 

4? 


l*. IN 

llA.SC 

PC* 3 

T3.V'4.5*/V1.5^21X5 

6«P38 


PCTU 

43 

2S864S 

28. •** 

U7.S 

PC* 5 


TIROS* 


PCTU 

43 

26898* 

28.2* 

U7.35 

PC* 0 


OTi*» 

ps* ess o* a*ts£*v f«h*es 

PCTU 

3 

2 £:es? 

28.3* 

\ ir.n 

PC* 5 




Peru 

51 

25i«e 

20.9* 

sit.ec 

PC* 3 


OTXft 


PCTU 

52 

2621C8 

21 .U* 

U6.7X 

PC* C 


OTXR 


PCTU 

S3 

262337 

22 .:* 

ut.fiC 

PC* 5 


H0AA6 


PCTU 

54 

2782C7 

22 .*; 

itk.ec 

PC* 1 

T4.844. V-4*. S^2©*S 

r**P39 


PtSO 

55 

228282 

22 .2* 

ilt.it 

PC* 5 

T3.5^3.5-^58.8^2^«5 

60SP39 


PCTU 

K 

278-ee 

23.5* 

us.tc 

PC* c 


OTX» 


PCTU 


AIRCRAFT FIXES 


f*X 

IIX 

fix 

n.T 

TterQ 

085 

7**X-SfC~UM> 

nw-n.7-tvc-«c 

ACCRY 

EVE 

EYE ORIE*' 

EYE TErt> <C> 

»v* 

*J. 

«2i 

POSITION 

tv. 

KST 

nstp 

VCL.-87C «n5 

?«'ML. 0 *C'P»C **v/rc. 

5H^£ 

31fln/TAT10* 

OUT.' !*✓ SPv^ST 

*3. 

. 

192185 

18 . 1 * 

J49.U 

iseeft 


182* 

25 328 

18 

113 

26 eee 

M 

28 

3 



♦26 

*24 +24 

2 

2 

2883*58 

8.3* 

ix.i? 

X5«3fT 


1881 

35 098 

18 

898 

38 368 

X* 

18 

1 



*23 

♦23 

23 

3 

5 

2I5*1P 

IB.fcl 

i42.es 

7887® 

>186 


38 ex 

58 

:3fi 

>4 J28 

ie 

5 

3 






5 

4 

218733 

9.9* 

141.3£ 

reer® 

3184 

1884 

25 148 

5 

123 

3: fee 

ee 

5 

3 



•12 

*12 

♦ 5 

5 

5 

21193? 

18.5* 

137.SE 

736ft: 

384* 




138 

61 Ut 

3C 

18 

1 






6 

6 

212254 

18.8* 

137.1- 

70S® 

3188 

:esi 

38 838 

16 

848 

34 2TT 

78 

10 

2 



♦13 

♦12 

* 7 

6 

7 

*2X127 

18.9* 

S34.7E 

rntru 

38>3 

992 



268 

58 188 

28 

18 

2 

circular 

15 

♦18 

♦ 14 

*18 

0 

8 

221938 

12.4* 

13S.?€ 

reera 

2999 




168 

59 C2S 

15 

5 

3 






9 

9 

222223 

12.9* 

l3l-2£ 

7837® 

2964 

982 

65 878 

28 

138 

IB «5 

15 

5 

2 



♦14 

♦16 

♦1* 

9 

18 

238783 

13.41 

129.21 

7987® 

2989 


S3 868 

1! 

158 

65 ©63 

24 

6 

2 

CiSCOL« 

38 




18 

11 

2382-44 

13.5* 

12t.9£ 

7»Cr® 

2897 

979 

W 878 

18 

•38 

65 389 

28 

4 

2 

ciecot<* 

25 

♦18 

*15 

*12 

18 

12 

231C28 

13.5* 

127.51 

788T® 

2825 

967 



298 

58 1*3 

5 

18 

5 

CIRCULAR 

2® 

*15 

♦17 


11 

13 

231938 

14.3* 

12S-3E 

78379 

2778 




198 

85 893 

18 

7 

5 

CIRCULAR 

15 




11 

14 

232284 

14.3* 

X26.SE 

7687® 

2723 

958 

85 368 

5 

ex 

83 338 

18 

ie 

2 

CIRCULAR 

15 

♦13 

♦19 


!1 

15 

24C885 

15.8* 

125.X£ 

7887® 

23>6 

916 

11C 278 

5 

268 

MS !68 

5 

5 

2 

circular 

7 

♦12 

♦28 

•13 

15 

It 

241183 

lS.3* 

123.71 

7887® 

2297 

989 



178 

123 iee 

15 

« 

1 

circular 

7 

•S3 

*22 

*15 

14 

17 

24194J 

16.3* 

121.11 

7887® 

232* 




218 

185 IX 

15 

5 

1 






14 

18 

2X158 

16.4* 

T22.71 

7X7® 

2377 

918 

928 

5 

89® 

7« «e 

15 

18 

2 

CIRCULAR 

6 

♦21 

*21 

•16 

14 

19 

251555 

It.2* 

119.71 

7557® 

2992 

998 



258 

43 ;?8 

47 

4 

4 



♦12 

*12 


15 

28 

251931 

10.9* 

119.51 

788T® 

29*5 




388 

X 238 

147 

> 

18 






15 

21 

252248 

19.1* 

118.51 

78er® 

2984 

9*9 

5« 828 

28 

we 

58 348 

59 

3 

5 




♦12 


15 

22 

248485 

19.7* 

iii.Jt 

7C^8 

2993 

989 

45 IX 

145 

28C 

58 IX 

iX 

5 

5 






16 

23 

248843 

28.8* 

ll?.?l 

78Cr® 

2982 

937 

35 298 

4* 

34® 

37 298 

« 

12 

6 



♦ 15 

♦16 

•ie 

!6 


WOTICt - TX ASTERISKS <»1 liCtCMt Fl>IS l*«ErttS£*TATi%€ «*3 »T USE3 FOR 5E57 tfe<l WOStS. 








t^phccx lex 

B£Sr TRACK DATA 


nQ4A^R 

*o5it was 

*C5 

IT 

WIND 

95 T we 

*0517 

UlfO 5$T UIK5 

*9S!T 

yiio S5T 

wo 

KS5XT 

u:*c 2 $t we 

*?2£6£2 

22.5 

152.8 

2t 

e.3 

e.e 

6. 

-5. 

8. 

*.6 

e.e 

8. -6. 

8. 

e.e e.e 

6. -6. 

6. 

8.8 6.3 

0. -8. 

6- 

372fil22 

22.5 

152.3 

2t 

e.e 

6.8 

6. 

-6. 

6. 

6.3 

6.8 

e. -6. 

6. 

6.6 6.8 

6. -5. 

6. 

6.s e.e 

8. -8. 

6. 

6725142 

22.5 

151.6 

2* 

e.a 

6.8 

6. 

-6. 

0. 

3.C 

6.8 

f. -6. 

6. 

e.e e.e 

6. -5. 

6. 

e.e e.e 

8. -6. 

6, 

6727t*2 

22.5 

151.3 

2C 

e.e 

6.6 

8. 

-8. 

6. 

e.e 

6.6 

e. 

6. 

3.9 e.e 

6. -e. 

9. 

e.e e.e 

S. -6. 

6. 

6727fe2 

22.5 

150.7 

26 

e-6 

e.e 

3. 

*#. 

6. 

t.s 

3.6 

3. -6. 

6, 

e.e e.e 

e. 

e. 

8-6 8.5 

8. -8. 

6. 

*727:22 

22.5 

150.1 

2* 

6.6 

6.6 


-e. 

6. 

e.e 


6. -8. 

6. 

e.s e.e 

e. -6. 

e. 

e.e e.e 

6. -6. 

8, 

6/27182 

22.* 

143.4 

26 

6.6 

e.e 


-8. 

a. 

*.e 

6.6 

8. -6. 

6. 

e.e e.e 

6. -6. 

e. 

£.8 6.6 

8. -8. 

6. 

ft/2V*2 

22.7 

145.0 

2* 

6.6 

e.e 


-8. 

e. 

e.e 

e.e 

6. -6. 

6. 

e.e e.e 

e. -e. 

6. 

e.e e.e 

6. -8. 

6. 

672*8*2 

27.8 

148.5 

2t 

**.6 

e.e 


-8. 

e. 

6.8 

6.6 

6. -6. 

6. 

e.e e.e 

6. -6. 

e. 

e.e e.e 

8. *8. 

9. 

*725122 

23.* 

148.6 

26 

C.8 

6.8 


-8. 

e. 

e.e 

3.6 

6. -8. 

6. 

e.e e.e 

e. -e. 

9. 

8.8 6.6 

9. -6. 

6. 

6728197 

23.4 

148.7 

25 

3.6 

6.6 


-8. 

6. 

e.j 

6,3 

6. -6. 

6. 

e.e e.e 

e. -e. 

6. 

e.e e.e 

•7. -8. 

e. 

*725*02 

23.7 

148.4 

25 

£.3 

e.e 

t. 

-6. 

0. 

8 8 

e.e 

8. -6. 

e. 

e.e 8.8 

e. -o. 

8. 

6.6 0.0 

8. -8. 

8. 

672Se£7 

2**.2 

143.4 

J* 

24.5 

1*9.5 

3C. 

13. 

6. 

25.5 

147.4 

43 . xes. 

-5- 

26.5 145.4 

58. 173. 

-15. 

23.5 143.8 

£8. 265. 

-5. 

*725122 

24.7 

143.3 

36 

24.6 

149.3 

36. 

6. 

f. 

26.5 

147.6 

58. 83. 

6. 

23.5 147.7 

55. 235. 

-15. 

31.3 149.9 

SI. 452. 

*3. 

6725JS2 

24.# 

143.8 

35 

24.8 

143.2 

35. 

33. 

6. 

26.8 

147.6 

55. 69. 

6. 

->».i 147.3 

33. 245. 

-15. 

31.5 156.2 

55. 5*£. 

= 5i 

*738667 

25.* 

145.5 

4* 

25.1 

I4J.3 

45. 

12. 

5. 

26.7 

156.1 

55. 123. 

-3. 

3.5 151-3 

53. 34?. 

-ie. 

36.? 152.6 

S3. &t£. 

—25. 

e?3**S7 

25.4 

145.4 

45 

23.6 

143.0 

56. 

22. 

5. 

27.$ 

158.5 

55. 283. 

•13. 

29.5 152.8 

59. 459. 

* 13. 

2l.S 153.4 

43. ££5. 

-2$. 

675*122 

25.4 

143.5 

5* 

25-3 

149.2 

55. 

17. 

5. 

27.4 

158.6 

55. 211. 

*ie. 

2?-5 151.2 

56. 443. 

-20. 

31.3 153.1 

45 . <r. 

-S3. 

673*1*2 

25.5 

148.4 

55 

25.7 

149.3 

55. 

4e. 

6. 

27.2 

149.6 

55. 294. 

-:e. 

29.3 151.1 

56. -«. 

-29. 

21.7 152.9 

45. 579. 

-S*. 

3721*62 

25.3 

143.3 

« 

25.2 

148.6 

66. 

17. 

6. 

25.9 

149.8 

76. 154. 

5, 

73.1 !«.6 

78. *33- 

-5, 

36.2 S-Q.7 

£5. V8. 

-15. 

673I8S2 

25.2 

143.* 

63 

25,2 

142.6 

66. 

6. 

-5. 

27.2 

146.9 

75. 179. 

16. 

33.2 146.2 

£5. yys. 

-16. 

22.6 J43.2 

59. 441. 

-25. 

*731172 

15.C 

!47.| 

65 

25.2 

147.7 

65. 

35. 

8. 

27.5 

144.7 

75. 215. 

5. 

33.4 144.2 

£3. »9. 

-16, 

32.8 145.9 

2? 34C. 

-23. 

37311*7 

24.7 

147.2 

65 

24.9 

14$.6 

65. 

35. 

8. 

25-7 

144.6 

75. 126. 


ZZ.9 143.1 

£3. 172. 

-I«. 

31.2 144.4 

59. 227. 

-26. 

**eie*2 

24.5 

144.4 

65 

24.5 

145.6 

65. 

5. 

6. 

25.2 

141.7 

56. 116. 

•15. 

27.2 141.2 

33. 2*2. 

-25. 

36.7 141.1 

J9. 24S. 

-3*. 

*5*iK2 

24.2 

144.1 

65 

24.6 

145.7 

65. 

32. 

0. 

25.9 

142.2 

S3. 173. 

-28. 

29.6 1-6.7 

59. 253. 

-25. 

22.2 141,5 

45. 

-25. 

£3*1122 

?4.* 

145.4 

79 

24.1 

145.6 

76- 

12. 

6. 

24-2 

S4'.8 

<3. 93. 

-18. 

26.1 1^.2 

£*. 226. 

-15. 

29.3 IS3.I 

35. 313. 

-sol 

n-3::*2 

23.8 

145.6 

79 

24.6 

145.6 

78. 

12. 

6. 

24.5 

147.2 

CS. 136. 

-16. 

26.3 I33.9 

£6. 24$. 

-18. 

2?-6 136.9 

50. 247. 

-16. 

€5*2t*2 

23.5 

144.5 

75 

23.5 

144.5 

75. 

8. 

0. 

22.6 

141.8 

». 213. 

9. 

21.6 138.5 

£5. 4~J. 

IS. 

21.1 135.2 

». S67. 

3*. 

es*2*£2 

23.8 

144.4 

75 

23-3 

!4>.9 

75. 

41. 

6. 

42.5 

141.2 

*5. 261. 

18. 

21.7 I3C.6 

96. 53. 

23. 

26.9 I54.< 

93. ■«. 

33. 

€3*2X22 

24.4 

144.5 

75 

23.8 

144.4 

75. 

36. 

0. 

23-6 

142.4 

85. 226. 

16. 

0.2 148.2 

99. ■*«. 

25. 

22.3 l*7.f 

99. 775. 

53. 

*5*2162 

25.4 

144.5 

75 

24.3 

144.9 

96. 

7|. 

5. 

24.4 

142.2 

*5. 199. 

IS. 

24.7 14J.S 

S3. 5*7. 

23. 

25.2 £39.5 

99. £93. 

36- 

*5*3*137 

25.4 

144.4 

m 

25-6 

144.6 

69. 

25. 

6. 

26.7 

141.8 

75. 1*6. 

5- 

73.5 I-SJ.I 

75. *59. 

15. 

3*-5 139.2 

7*. 324. 

18, 

cseisti 

24.2 

144.4 

73 

25 2 

144.4 

=3. 

0. 

5. 

29.7 

144.6 

<3. 73. 

6. 

34.8 I4>,I 

55. '■C7. 

-5. 

6.8 e.e 

9. -8. 

e. 

*863:27 

24. C 

144.4 

75 

2£~# 

144,6 

ec. 

IJ. 

5. 

36.3 

145.1 

63. U. 

e. 

34.3 147.7 

S3. 197. 

-5. 

e.e 6-8 

6. -8. 

6. 

*8631*2 

27.4 

144.4 

76 

27.6 

144.3 

75- 

13. 

5. 

31-2 

144.6 

60. 163. 

6. 

S3.1 147.9 

45. 213. 

-15. 

e.e t.5 

6. -e. 

6. 


27.5 

144.5 

79 

27.9 

144,4 

78. 

5. 

8. 

31.6 

145.6 

53. 62. 

*5. 

e.e e.e 

8. -0. 

e. 

8.8 «.£ 

9. -9. 

6. 

66*4552 

28.4 

141.7 

65 

23.3 

144.7 

65. 

12. 

0. 

39.S 

144.7 

55. 161. 

-j. 

e.e 6.6 

e. -a. 

e. 

e.e e.e 

0. -8. 

C. 

e**-:i?2 

29.2 

145.1 

65 

29.5 

144.9 

65. 

21. 

0. 

29-4 

144.9 

59. 176. 

-19. 

8.6 8.6 

6. -c. 

5. 

e.e e.e 

9. -6. 

e. 

***-*IS2 

25.7 

145.6 

6* 

30.9 

145.2 

66. 

27. 

0. 

33.5 

147.2 

43. XI9. 

-13. 

8.8 C.P 

6. -e. 

*_ 

6.8 6.0 

9. -8. 

*. 

isr^ 

>*-2 

145.3 

69 

36.2 

146.3 

69. 

8. 

c. 

8.* 

8.6 

6. -8. 

6. 

*.9 6.6 

6. -e. 

el 

6.8 e.9 

8. -8. 

8. 

C^5*i2 

3*.4 

147.0 

65 

36.3 

147.6 

68. 

12. 

6. 

32.? 

149.6 

55. 27. 

-5. 

35.8 152.3 

45. 135. 

5. 

6-8 *>.* 

8. -8. 

e. 

fKS!32 

31.6 

147.6 

69 

Si.6 

147.5 

68. 

IS. 

e. 

33-e 

158.6 

K. 37. 

-5. 

e.e e.e 

6. -8. 

6. 

6.6 9-e 

9. -8. 

e. 

c^:52 

31.5 

l-a.f 

6* 

51.4 

145.5 

66. 

C. 

6. 

33.2 

152.3 

59. 47. 

3. 

e.e e.e 

e. -e. 

6. 

e.e e.e 

a. -c. 

8. 

€£*se*7 

32.1 

145.3 

56 

32.2 

I4».3 

66. 

12. 

9. 

35.3 

153.3 

56. 62. 

8. 

e.e e.e 

e. -e. 

8. 

;.e e.e 

8. *«. 

6. 


17.4 

156.2 

v8 

32.7 

149.9 

66. 

16. 

6. 

36.2 

152.5 

45. 162. 

5. 

e.e e.e 

6. -c. 

6. 

6.6 e.e 

O. -6. 

8. 

*^4122 

33.2 

151.5 

35 

33.2 

151.3 

55. 

16. 

8. 

e.e 

9.* 

6. -6. 

6. 

e.6 5.6 

6. -e. 

6. 

e.e e.e 

8. -8. 

S. 

eSCSlC? 

33.6 

152.5 

59 

54.9 

153.6 

58. 

13. 

6. 

e.e 

e.e 

6. -8. 

6. 

e.e e.e 

e- -s. 

e. 

e.e e.e 

*3. ■*. 

9. 

8637862 

3-». t 

154.4 

50 

54.7 

154.5 

58. 

6. 

6. 

6.5 

e.3 

*- -9. 

C. 

e.e 6.6 

6. -e. 

e. 

e.e e.e 

0. -8. 

6. 

V6676C2 

35.6 

155.6 

« 

6.9 

6.6 

6. 

-8. 

6. 

9.3 

e.3 

6. *3. 

9. 

e.e 6.6 

6. -c. 

e. 

6.6 5.C 

6. -9- 

5- 


five FS«C«ST [»0S 

V4 e:>: *«3.l r »»» 

** maatTv ms«i?W€ £**3* 
^5 »n«!TT ei*s 
^ sc*tc*srs 


«.t *C*£C*S7S 
IK ?-*-♦« -=>-*« 
Ift. l«. ]U. 

XI. 57. 251. 

I. 7. $4. 

:. -2. -5. 

2* 22 24 


r.TXXXS CHIU M» 5% ers 

‘7JC 24^5? 4>*» 72M? 

is. t:s. <*». 

IS. 57. 251. <?i. 

x. 7. i*. 21. 

f. -2. *5. -12. 

34 22 2 * 28 


5ZST*K£ 9r STjen IS 1SI6. »cx 

S7«9 & STC6H IS *. OC7S 


MS T^t 
SO. «7. 


MS 

«5!Tl> 


M* ^5!TIS?5 W CVtLCfC "O. 12 


StTT- .iTl rihCS 


0T**» 

78.5.6.5 1*17 «S ru. J{?D€5 Cv 

S*S*J9 V£8TT tlftU Utv 2^t3« 

^.S-t.5 sS9.*s2*&% S^JJ C»5<K US *T 2?.#? ISJ.4 

act Kftinis* 

st*<» 

!;.«■*:.« ^.k«s a. n.e» :4?.^ 

TI*55» ucv 

;m* 

i^S4 a.CC 23.«rf *4*l£ 

^.w.i ^s?l? 

*4,*/4.« w#U s« 

sr-s* 


T3.S-3.S ’<^4 


44.5^^ 


...a..... 












27 

810027 

24.6N 

145.9E 

PCN 

5 

T4.p/4.0 

DMSP39 

IN1T DBS 

RODH 

28 

0I03O0 

2i.;i 

14S.SE 

PCM 

0 


OTHER 


PGTU 

29 

0IOe43 

24. IN 

145.3E 

PCN 

6 


H0AA6 


PGTU 

30 

011600 

24.ON 

145.2E 

PCN 

0 


OTHER 


FGTU 

31 

012304 

23.8N 

144.4E 

PCN 

5 


N0AA6 


PGTU 

32 

020088 

23.7N 

144 4£ 

PCN 

5 

T4.5/4.5 /D0.S/24HRS 

rt1SP39 


Peru 

33 

O203C0 

23.4N 

144.5E 

PCN 

0 


OTHER 


PSTU 

34 

021002 

23.8N 

144.3C 

PCN 

5 


NOAAS 


PGTU 

35 

021200 

23.8N 

144.If 

PCN 

0 


OTHER 


PGTU 

36 

021600 

24.3N 

144.IE 

PCN 

0 


OTHER 


PGTU 

3? 

022242 

25. ON 

144.5E 

PCN 

3 


N0nA6 

PSM BSD ON UELl DFND UCC 

PGTU 

38 

030129 

25.4N 

144.4E 

PCN 

3 

T5.O/5.0-/D0.S/25HRS 

DMSP39 

PSBL EYE FRM1G 

PGTU 

39 

03CI29 

25.5N 

144.5E 

PCN 

3 

T4.5/4.S 

DMSP39 

INIT 065 

RODH 

-J8 

030300 

25.9N 

144.4£ 

PCN 

E 


OTHER 


PGTU 

41 

030940 

26. TM 

144.3E 

PCN 

3 


NOAAG 


PGTU 

42 

031600 

27.3N 

144.2E 

PCN 

0 


OTHER 


PCTV 

43 

032056 

27.6N 

144.2E 

PCN 

6 


DM5P37 


PGTU 

44 

032219 

27.8N 

144.6E 

PCN 

3 


NOAAG 


PGTU 

45 

040199 

27.GN 

144.6E 

PCN 

3 

TS.0/5.0- 

0MSP39 

IH1T 08S 

RKSA 

46 

940109 

28. ON 

144.6E 

PCN 

3 

T3.5/4.5 /UI.5/24HRS 

DMSP39 


PGTU 

4? 

040300 

28.3N 

14-1.7E 

PCN 

C 


OTHER 


PGTU 

48 

040900 

29. IN 

144.9E 

PCN 

C 


01HER 


PGTU 

49 

048917 

29. ON 

144.8£ 

PCN 

3 


H0AA6 


PGTU 

58 

041600 

29. SN 

145.3E 

PIN 

0 


OTHER 


PGTU 

51 

042034 

29.8N 

146.2E 

PCN 

3 

T3.5/4.D-/U1.S/19HRS 

DMSP37 


RKSO 

52 

042035 

29.9N 

146.0E 

PCN 

5 


DMSP37 


PGTU 

53 

042J57 

30.0N 

146.2E 

PCN 

3 


NOAAS 


PGTU 

54 

050449 

39.2N 

146.3E 

PCN 

3 


DMSP39 


RKSO 

55 

05^49 

30.2N 

146.6E 

PCN 

3 

T3.5/3.5-/S0.8/24HRS 

DMSP39 


PGTU 

56 

050300 

30.4N 

146.BE 

PCN 

C 


OTHER 


PGTU 

57 

05O855 

30.8N 

147.4t 

PCN 

4 


N0AA6 


PGTU 

58 

050900 

30.9N 

147.7E 

PCN 

c 


OTHER 


PGTU 

59 

051200 

39.9N 

147 7E 

PCN 

E 


OTHER 


PGTU 

60 

051600 

31.2N 

148.3E 

PCH 

C 


OTHER 


PGTU 

61 

052013 

31.7N 

149.0E 

PCN 

3 

T3.S/3.5 /S0.0/24HRS 

DI1SP37 


RKSO 

62 

052O13 

31.8N 

148.9E 

PCN 

4 


DMSP37 


PGTU 

63 

052135 

31.9N 

149.IE 

PCN 

3 


M0AA6 


PGTU 

64 

068029 

?2. IN 

149.3E 

PCN 

3 

T4 OM.0-/D0.S/24HPS 

DMSP39 


PGTU 

65 

060029 

32.2N 

149.4E 

PCN 

1 

T4.0/4.0- 

DMSP39 

INIT OBS 

RODH 

66 

eso300 

32.3N 

149.6E 

PCN 

E 


OTHER 


PGTU 

67 

060933 

32.7M 

150.6E 

PCN 

4 


NOAAS 


PGTU 

68 

06O900 

32.911 

150.9E 

PCN 

C 


OTHER 


PGTU 

69 

061203 

33. IN 

151.5E 

PCN 

E 


OTHER 


PGTU 

70 

0^1600 

33.7N 

152.6E 

PCN 

C 


OTHER 


PGTU 

71 

061952 

34.0N 

153.3E 

PCN 

4 


DMSP37 


PGTU 

72 

070009 

34.9N 

154.4E 

PCN 

c 


OTHER 


PGTU 

73 

07090O 

36.6N 

155.2£ 

PCN 

c 


OTHER 


PGTU 


AIRCRAFT FIXES 


FIX Tire FIX FIT ?GJrfi CBS nAX-SFC-UHD MAVC-FLT-LVL-UND ACCRY EYE EYE ORIEN- EYE TEt© <C> MSN 

NO. (2) POSITION LVL MCT MSLP VEL/BRG/RNG D1R/VEL/8RG/1?HG NAV/MET SHAPE DIAH/TATION OUT/ IN/ DP/SST HO. 


l 

290138 

23.9N 

148.6E 

1500FT 


1002 

35 170 

30 

190 

29 130 

50 

4 

1 



+21 

♦■25 

♦25 

1 

«. 

292225 

24. BN 

149.3E 

7001© 

3015 

994 

35 250 

60 

230 

36 120 

15 

3 

4 



♦ 16 

+ 14 

♦ 10 

2 

3 

301004 

2S.3N 

149 05 

7001© 

2947 

904 



270 

50 190 

45 

5 

4 



♦ 11 

♦11 

♦ II 

4 

4 

301904 

25.4N 

148.6F 

7oene 

2910 




230 

53 140 

30 

5 

5 






5 

5 

302137 

25.3N 

148.6E 

7001© 

2y06 

926 

25 310 

120 

040 

45 330 

30 

5 

7 

CIRCUIAP 

30 



+ 10 

5 

6 

310602 

?5.2N 

148.0E 

7001© 

2858 


40 200 

60 

300 

60 200 

IS 

5 

3 






6 

7 

310838 

25. IN 

148.0E 

reoi© 

2856 

972 

65 280 

15 

360 

67 280 

15 

S 

5 

CIRCULAR 

30 

♦ 14 

♦ 15 

+12 

6 

8 

311922 

24.6N 

147.3E 

.001© 

2852 




210 

56 140 

88 

4 

3 






7 

9 

312149 

24.6N 

146.8E 

700MB 

2862 

971 

50 340 

30 

070 

60 360 

30 

5 

3 



♦ 15 

.17 

♦ 13 

7 

10 

010648 

24. IN 

146.2E 

7001© 



70 230 

20 

320 

64 230 

15 

8 

2 






8 

II 

010908 

24. IN 

145.8E 

7001© 


963 

70 260 

60 

350 

66 260 

30 

8 

3 



♦ 14 

+ 19 

M4 

8 

12 

01I91O 

23.8N 

144.9E 

7001© 

2853 




286 

50 20G 

60 

10 

2 






9 

13 

012130 

23.6t« 

144.7E 

700r© 

2835 

967 

£0 36C 

40 

100 

60 360 

25 

2 

2 



♦ 16 

♦ 18 

♦ 12 

9 

14 

020747 

24.0N 

144.5E 

700MB 

2817 


90 ‘.SO 

45 

290 

73 210 

78 

3 

3 






18 

15 

0209 IS 

24. IN 

144.6E 

7001© 

2812 

965 



070 

62 360 

85 

3 

3 



♦ 15 

♦ 15 

♦ 11 

10 

16 

021930 

25.4M 

144.4E 

70076 

2782 




270 

62 160 

60 

s 

3 






11 

17 

022150 

25.3N 

144.IE 

700MB 

2771 

962 

45 040 

160 

360 

48 280 

50 

lo 

4 



♦ ll 

♦ 15 

♦ 15 

11 

19 

030609 

26.2N 

144.4E 

7001© 

2765 


40 150 

130 

270 

6? 190 

25 

6 

3 






12 

19 

03OP50 

26.4M 

144.5E 

7001© 

2772 

963 

55 320 

20 

040 

55 320 

15 

8 

3 



+ 14 

♦ 15 

♦ 14 

12 

20 

e3!900 

27.5N 

144.3E 

780MB 

2809 




310 

52 240 

25 

2 

2 






13 

21 

032238 

27.6N 

144.5E 

7007© 

2824 

969 

50 3!0 

100 

020 

SI 310 

100 

2 

2 




♦ IS 

♦ 12 

13 


NOTICE - THE ASTERISKS <*> INDICATE FIXES UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES. 













TYPHOON MARGE 


BEST TRACK DATA 


I HOUR FORECAST 
ERROPS 


40 HOUR FOPEtAST 
ERRORS 


72 HOUR FORECAST 


0S07I27 

14.3 

159.1 

2u 

0.0 

0.0 

0. 

-a. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

•0. 

0. 

c.o 

0.0 

0. 

-0. 

0. 

0307102 

14.3 

158.5 

?S 

0.0 

8.0 

0. 

'0. 

0. 

e.o 

0.0 

0. 

-a 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

ocooon.- 

14.2 

150.0 

30 

0.0 

0.0 

O. 

-c. 

0 

0.0 

0 0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

OGQGOfZ 

14.2 

157.5 

35 

14.5 

157.2 

35 

25. 

0. 

14.C 

15S.0 

45. 

51. 

5. 

14.6 

153 3 

50. 

325 

-55. 

14 6 

150.8 

55. 

693 

-55. 

0803122 

14.1 

157.0 

35 

14.3 

156.0 

40. 

17. 

s. 

14.2 

154.4 

50. 

146. 

0. 

14.4 

151.9 

50. 

443. 

-60. 

14.8 

143 S 

5b. 

702. 

- 15. 

0808!02 

14.2 

156.5 

35 

14.2 

156.3 

40. 

12. 

5. 

14.4 

153.9 

50. 

189. 

-10. 

14.7 

151.b 

50. 

519. 

-GO. 

14.9 

143.2 

55. 

537. 

-45. 

(TOBKC 

14.0 

156.1 

49 

14.1 

155.C 

40. 

35. 

C. 

14.3 

153.4 

SO. 

261. 

-25. 

14.6 

150.0 

55. 

»'24. 

-55. 

15.0 

143.0 

6b. 

904. 

-30. 

0S090G2 

15.4 

156.1 

49 

14.7 

•-5 .* 

45. 

48. 

5. 

15.1 

153.4 

55. 

295. 

-50. 

15.4 

ISO.G 

60. 

654. 

“So. 

15. C 

147.0 

70. 

901. 

-25. 

0809122 

16.3 

155.7 

SO 

16.2 

1 >.C 

45. 

0. 

-5. 

10.2 

154.0 

95. 

186. 

-55. 

?0.0 

153.3 

60. 

412. 

-40. 

21.8 

151.8 

70. 

526. 

-25. 

0809182 

17.3 

155.2 

GO 

1C 7 

155.6 

45. 

43. 

-15. 

10.7 

154.3 

45. 

244. 

-5b. 

20.6 

152.0 

GO. 

443. 

-40. 

22.3 

151.2 

70 

542. 

-20. 

0010002 

18.4 

155.0 

75 

10.5 

154.9 

65. 

8. 

-10. 

22.8 

154 2 

CS. 

102. 

-25. 

25.9 

154 5 

85. 

159. 

-10. 

20.2 

irs.3 

rfl. 

172. 

-15. 

0810062 

19.0 

155.A 

IL5 

15.9 

155.0 

?0. 

6. 

-35. 

25.0 

155.4 

90. 

21. 

-20. 

70.G 

157.2 

80. 

ro 

-15. 

30.9 

159.8 

JO. 

181. 

-10. 

0810122 

2 .3 

155.0 

110 

21.3 

155.0 

110. 

0. 

O. 

26.7 

155.5 

120. 

20. 

20. 

30.1 

157.6 

85. 

90. 

-10. 

J2.0 

160.6 

65. 

"03. 

-15. 

opioiez 

2. .7 

155.2 

ue 

22.7 

155.3 

no. 

6. 

0. 

27.2 

156.3 

110. 

32. 

10. 

30.6 

150.7 

80. 

140. 

-10. 

32.5 

161.8 

60. 

232. 

-15. 

0C1I00Z 

24.1 

135.4 

110 

24.0 

155.5 

no. 

8. 

0. 

20.2 

156.7 

100. 

40. 

5. 

31.2 

*58.0 

70. 

9C. 

-15. 

34.2 

159-2 

SO. 

93. 

-20. 

ocitur.z 

25.3 

155.6 

no 

25.4 

155.6 

no. 

6. 

0. 

30.5 

156.8 

90. 

106. 

-5. 

33.5 

157.0 

65. 

146. 

-is. 

0.0 

0.0 

0. 

-0. 

0. 

001112c 

2F.S 

155.8 

ICO 

26.7 

155.7 

108. 

13. 

0. 

31.a 

156.3 

CO. 

92. 

-15. 

34.7 

157.9 

hO. 

179. 

-20. 

0.0 

0.0 

0. 

-0. 

0. 

ooi ncz 

27.5 

155.0 

100 

27.8 

155.9 

55. 

13. 

-5. 

31.9 

156.7 

75. 

102. 

-IS. 

35.0 

IV*. 2 

55. 

1C9. 

-20. 

0.0 

0.0 

0. 

-0. 

0. 

0812U0Z 

20 3 

155.8 

95 

28.7 

15G.1 

95. 

29. 

a. 

32.1 

15G.7 

70. 

72. 

-15. 

35.3 

15G.G 

50. 

155. 

-20. 

0.0 

0.0 

0 

-0. 

0. 

0812062 

28.9 

155.9 

95 

29.0 

155.4 

95. 

27. 

0. 

31.7 

156.3 

65. 

10. 

5. 

34. 1 

157.3 

70. 

135. 

5. 

0.0 

e.o 

0. 

-o. 

c. 

081212? 

29. A 

155.9 

95 

29.e 

1%6.1 

95. 

10. 

0. 

32.7 

15G.G 

75. 

48. 

-5. 

5.9 

150.6 

6C. 

202. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0812102 

30.3 

I56.0 

90 

30.6 

156.2 

80. 

21. 

-10. 

33.5 

156.8 

CO. 

74. 

-25. 

-G.7 

153 6 

•"5. 

.MO. 

-IS. 

0.0 

0.0 

0. 

-0. 

0. 

081300c 

31.0 

156.1 

05 

31.1 

15S.9 

80. 

12. 

-5. 

33.7 

15G.4 

50. 

116. 

-20. 

36.2 

lbO.? 

40. 

306. 

-15. 

o.u 

0.0 

0. 

-0. 

0. 

081306’ 

31.4 

156.3 

80 

31.8 

156.1 

75. 

26. 

-5. 

34.7 

156 9 

50. 

172. 

-lb. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0813122 

31.9 

156.6 

CO 

32.1 

156 3 

70. 

19. 

-10. 

34.7 

157.4 

50. 

190. 

-10. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0813182 

32.3 

157.2 

75 

32.7 

15G.7 

05. 

35. 

-10. 

34.7 

150.2 

45. 

215. 

-15. 

0.0 

5.0 

6. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

n 

0314002 

32.7 

150.4 

70 

32.H 

107 9 

G5. 

31. 

-5. 

34.11 

162.3 

45. 

G7. 

• 10. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0814062 

32.9 

159. C 

65 

32.9 

159.3 

65. 

ij, 

0. 

34.1 

165.2 

45. 

10. 

-10. 

0.0 

0.0 

O. 

-0. 

0. 

0.0 

0.0 

o. 

-0. 

p. 

0314122 

33.1 

If 0.9 

CO 

33.2 

IFO.O 

GO. 

0. 

0. 

34.2 

ICO.7 

.JO. 

60. 

-10. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

II. 

*0. 

0. 

0814102 

■*3.3 

162.2 

60 

33.4 

16? 2 

55. 

6. 

-5. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

II. 

0815002 

33 5 

163.5 

55 

3i.4 

163.0 

58. 

26. 

-5. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

c.o 

0. 

-o. 

0. 

0815062 

33.8 

JF5.2 

55 

7i. ? 

1G4.3 


43 

-S. 

0.0 

0.0 

n. 

-0. 

0. 

0.0 

O.o 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0315122 

34.4 

167.5 

50 

34.0 

166.7 

50. 

46. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0 0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0815182 35.3 170.0 45 .>5.3 

hvg forecast posit eprop 

AVf, PIG'IT angle error 
avg intensity wgnitude error 

AVG INTENSITY BIAS 

HUMBER OF FORECASTS 

Mstance travelcu ey storm is 

170 P 45. 0. 0. 0.0 0.0 

ALL FORECASTS 

URNG 24-MR 10-MP ’"'-HR 

20. ||4. 276. 506. 

11, 58. ISA- 371. 

5. 10. 27. 27. 

-4. -14. -26. -27 

31 26 20 12 

I960. Ml 

0. 

-0. 0. 0.0 0.0 0. -0. 

T>TH00N3 MULE OVtft 35 » TS 
URNG 24-HR 4J-HR 72-MR 

20. 114. 276. S06. 

II. 50. 100. 371. 

5. 1C. 27. 27. 

0. -II. -26. -27. 

31 26 ?0 12 

0. 

0.0 

0.0 

0. 

-0. 

0. 


AVERAGE SPEFD OF STORM IS 10. KNOTS 


TYPHOON MARGE 

FIX POSITIONS FOR C7CL0NE NO. 13 


SATELLITE FIXES 


FIX TIME 
NO. <Z> 


T2.5/2.S /O2.0/24HRS 


T3.5^3.5 sDI.0/??tRS 


TS.5/S.5 sD2.0'24HRS 


TS.S/S.S-/S0.0/22HRS 


T4.S/S.S-/U1.0/24HRS 


T3.S/4.5-/U1.0/26HRS 


- - \ 























41 

140857 

33- IN 

160.IE 

PCN 3 

N0AA6 

PGTU 

42 

U1600 

33.3N 

I6I.7C 

PCN 0 

OTHER 

PGTU 

43 

142100 

33.3N 

162.2E 

PCN 0 

OTHER 

PGTU 

44 

150300 

33.8N 

163.6E 

PCN 0 

T3.5<'3.5--'S0.C/'29HRS OTHER 

PGTU 

45 

150600 

34.0N 

164.4E 

PCN 0 

other 

PGTU 

46 

150834 

33.9N 

165.8E 

PCN 6 

N0AA6 

PGTU 

4? 

151600 

35.2N 

169.9E 

PCN 0 

OTHER 

PGTU 


AIRCRAFT FJJ€S 


FIX 

Tirt 

FIX 

FIT 

2 C01C 

OBS 

MAX-*FC-UND 

nAX-FLT-lVL-UHD ACCRY 

EYE 

EYE ORIEN- 

EYE TEMP (C) 

M5N 

NO. 

<Z) 

POSITION 

LVt 

HGT 

MS IP 

VEL/URGING 

DlRA^t/BRG/RNG NAV/MET 

SHAPE 

DlAfV'TATION 

OUT/ IN/' DP/SST 

NO. 


; 

080533 

14.3N 

157.6E 

150OFT 


998 

35 

040 

50 

190 

45 070 

40 

5 

1 




+26 

28 

1 

2 

090035 

14.7M 

156.2E 

700MB 

3825 

992 

35 

250 

24 

368 

24 250 

24 

7 

3 

CIRCULAR 

22 

+ 10 

♦ 15 

♦ 12 

2 

3 

090615 

15.5N 

156.IE 

708MB 

3015 


40 

030 

15 

320 

35 230 

15 

6 

4 






3 

4 

090834 

15.8N 

156.OE 

700TO 

3019 

S90 

40 

100 

90 

160 

57 09O 

15 

5 

2 

CIRCULAR 

IS 

♦11 

♦ 15 

♦ 11 

3 

5 

091982 

17.5H 

154.9E 

76pm 

2869 





270 

64 220 

45 

10 

3 






4 

6 

092215 

i8.2N 

155.IE 

?oorti 

2841 





120 

77 3G0 

25 

S 

2 

CIRCULAR 

20 

+ 9 

+ 18 

♦ 13 

4 

7 

100642 

20. IN 

155.IE 

?O0f® 

2666 


106 

180 

5 

30D 

00 180 

10 

5 

1 






5 

8 

100835 

20 .7N 

155.OE 

700M1 

2624 

944 

120 

050 

10 

156 

114 010 

15 

5 

1 

CIRCULAR 

15 

♦12 

♦23 

♦ 8 

5 

9 

110437 

25. IN 

155.6E 

’001B 

2637 

946 

110 290 

5 

290 

110 250 

10 

5 

1 

CIRCULAR 

12 

♦ 16 

+ 17 

♦ 15 

7 


NOTICE - THE ASTERISKS (*> INDICATE FIXES UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES, 















TROPICAL DEPRESSION M 
BEST TRACK DATA 



BEST TRACK 


WARNING 


24 HOUR FORECAST 

TO/DA/HR 

POSIT UIND 

FOSIT 

UIND 

ERRORS 
DST UIND 

POSIT UIHD 

ERRORS 
DST UIHD 

0814182 

14.6 125.3 20 

0.0 0.0 

0 . 

-0. 0. 

0.0 

0.0 0. 

-0. 0. 

0815802 

15.3 123.4 2C 

15.5 1?3.8 

30. 

26. 10. 

0.0 

0.0 0. 

-A. 0. 

08IS3S2 

16.0 121.6 15 

!6.5 125.5 

30. 

226. 15. 

0.0 

0.0 0. 

-a. e. 


48 HOUR FORECAST 
ERRORS 

POSIT UIHD DST UIHD 
e.e o.e e. -o. e. 
0.8 e.e e. -e. e. 
e.e e.e e. -e. e. 


72 HOUR FORECAST 


POSIT yjNtf DST UIHD 

8.0 0.0 O * " 0 . 0 - 

0.0 0.0 0 . - 0 - 0 . 

0.0 8.0 0 . - 0 . 0 . 



ALL 

FORECASTS 



TYPHOONS LHILE 

OVER 

35 KTS 


LRNG 

24-HR 40-HR 

72-HR 

LRNG 

24-HR 

48-HR 

72-HR 

AVG FORECAST POSIT ERROR 

126. 

a. 

0. 

0. 

0. 

0. 

e. 

0. 

A*; RIGHT ANGLE ERROR 

6 ?. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

AVG INTENSITY MAGNITUDE ERROR 

13. 

0. 

0. 

0 . 

0. 

0. 

e. 

0. 

AVG INTENSITY BIAS 

13. 

0. 

8 . 

0 . 

0. 

0. 

0. 

0. 

NUrBEP OF FORECASTS 

2 

0 

0 

0 

0 

0 

0 

0 


DISTANCE TRAVELED 8Y STORM IS 229. NM 


AVERAGE SPEED OF STORM IS 19. KNOTS 


TROPICAL DEPRESSION TD-14 
FIX POSITIONS FOR CYCLONE NO. 14 


SATELLITE F1>£S 


FIX 

TIME 

FIX 






NO. 

<Z> 

POSITION 

ACCRY 

DVORAK CODE 

SATELLITE 

COrrtNTS 

SITE 

* 1 

122221 

8 . IN 

137.5E 

PCN 5 

T0.0/8.0 

N0AA6 

IN IT 08S 

PGTU 

2 

141600 

13.8N 

126.8E 

PCN 0 


other 


pcrj 

3 

141800 

14.4N 

125.4E 

PCN 0 


OTHER 

BSD ON UL F LOU 

PGTU 

4 

142180 

14.9N 

124.4E 

PCN 0 


OTHER 

PSN BSD ON CONTINUITY 

PGTU 

5 

142206 

1S.4M 

124.3E 

PCN 5 


DMSP37 

PSN BSD ON UL FEATURES 

PGTU 

6 

142317 

15.9N 

123. ^ 

PCM 5 

T2.0/2.6 

N0AA6 

INIT OBS 

PGTU 

7 

150300 

16.ON 

122.7E 

PCN 0 


OTHER 


PGTU 

* 8 

150900 

16.0N 

I7I.8E 

PCN 0 


OTHER 


PGTU 

9 

151157 

16.8H 

121.9E 

PCN 5 


N0AA6 


RODM 

18 

1S1660 

I/.3N 

12P.8E 

PCN 0 


OTHER 

CONTINUITY FROM KADENA 

PGTU 

11 

151904 

17.6N 

I20.9E 

PCH 6 


T1R0SN 

POOR LONGITUDINAL PSN 

RPtr 

12 

1S1984 

17.6N 

120.8E 

PCH 5 


TIPOSH 

LLCC PSN AT 15.IN 128.7£ 

pc.ru 

13 

152100 

18.6N 

119.4E 

PCN 0 


OTHER 

PSN OSD ON ULCC AND CONTINUITY 

PGTU 

* 14 

152IO0 

14.6N 

126.IE 

PCN 0 


OTHER 

PSN BSD ON LLCC 

PGTU 

15 

160800 

18.8N 

118.4E 

PCH 0 


OTHER 

PSN BSD ON CONTINUITY 

PGTU 

16 

160035 

19.7 ?i 

120 .2E 

PCN 5 

Tl.5/1.5 

H0AA6 

INIT OBS 

RODN 

17 

160380 

19.9N 

119.IE 

PCN 0 


OTrER 


PGTU 

18 

160749 

20. IN 

1I6.2E 

PCN 5 

Tl.0/1.0 

TIROSN 

IN IT OBS 

RPt* 

19 

160900 

19.8N 

117.0E 

PCN 0 


OTHER 


PGTU 


AIRCRAFT FIXES 


FIX 

NO. 

TIME 

(Z> 

FIX 

POSITION 

FLT 

LVL 

700fB 

KGT 

OBS 

M31P 

max-sfc-und 

VEL/8RG/RMG 

MAX-FLT-LVL-UND ACCRY 
DlR/VEL/BRG/RNC NAV/TCT 

EVt 

SHAPE 

EYE ORIEN- 
Dl AM/TAT JON 

EYE TEFP (C) 
OUT/ IN/ DP/SST 

1 

150442 

IC.2N 127.IE 

1508FT 


1004 

20 240 40 

290 19 240 40 85 



+24 +25 +24 27 


NOTICE - THE ASTERISKS <*> INDICATE FIXES UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES. 




































TYPHOON NORRIS 
BEST TRACK DATA 


nvpA/HP 

BEST TRACK 

POSIT UIMD 

POSIT 

darning 

CRRORS 

UIMD DST UifiD 

24 HOUR FORCCA^r 
Cf'PCRS 

POSIT DIMS DST UIND 

40 HOUR FCPECAST 
EFPOPS 

OOSIT UIMD DST UIND 

77 HOUR FORECAST 

POSIT UIND PST UIMD 

0823002 

15.2 

143.6 

20 

0.0 

0.0 

0 . 

-0. 

0 . 

0 0 

0.0 

0 . 

-0. 

£*. 

0 . A 

0.(1 

P. -0. 

0 . 

0.0 

0.0 

0 . 

-o. 

0 . 

0323062 

15.8 

142.? 

20 

0.0 

0.0 

0 . 

-0. 

0 . 

0.0 

0.0 

0 . 

A. 

0 . 

0.0 

o.o 

O. -0. 

0 . 

0.0 

4.0 

0 . 

-0. 

0 . 

C02312Z 

16.I 

140.7 

20 

0 0 

0.0 

0 . 

-0. 

0 . 

0.0 

0.0 

0 . 

-J. 

0 . 

C.O 

o.o 

0 . -o. 

0 . 

0.0 

0.0 

0 . 

-0. 

0 . 

082310c 

16.4 

133.4 

25 

0.0 

0.0 

0 . 

-0. 

0 . 

0.0 

0.0 

o. 

-0. 

8 . 

0.0 

0.0 

0 . -9. 

u. 

0.0 

0.0 

0 . 

-0. 

0 . 

082480’ 

16.8 

138.3 

30 

16.8 

130.3 

30. 

0 . 

0 . 

IC.3 

133 S 

40. 

77. 

5. 

13.7 

IPG.6 

50. i4. 

0 . 

21. C 

124.5 

60. 

01 . 

-20. 

0824062 

17.2 

137.4 

30 

17.1 

137.2 

30. 

13. 

0 . 

16.7 

137.2 

45. 

74. 

10 . 

20 .r 

127.9 

55. 11. 

c. 

22.9 

124.1 

65. 

37. 

-20. 

0824122 

17.5 

136.6 

30 

17.2 

134 9 

30. 

S3. 

0 . 

16.3 

133.0 

45. 

7U. 

5. 

19.0 

129.2 

55. 117. 

-5. 

21.0 

125.7 

65. 

218. 

-25. 

0824182 

17.9 

135.7 

30 

10.1 

13S.3 

30. 

26. 

0 . 

20.1 

131. C 

45. 

30. 

0 . 

22.4 

120.2 

55. 111. 

-IS. 

25.3 

125.3 

65. 

217. 

5. 

0325802 

18.2 

134.8 

35 

15.1 

134.0 

30. 

54. 

-5. 

22.0 

131.0 

45. 

155. 

-5. 

24.2 

•27.9 

60. 177. 

-20. 

26.0 

124. C 

65. 

226. 

10 . 

0325062 

18.7 

133.5 

35 

18.8 

133.5 

35. 

6 . 

0 . 

28.2 

129.2 

50. 

45. 

-5. 

?4.8 

125.3 

69. 109. 

-25. 

26.3 

123.1 

65. 

169. 

20 . 

0825122 

19.3 

132.1 

40 

19.2 

132.3 

40. 

13. 

0 . 

20.6 

120.3 

50. 

77. 

-10. 

23.3 

125.0 

r.o. 134. 

-30. 

26.5 

122.9 

65. 

226. 

30. 

0825182 

19.8 

131.0 

45 

19.7 

131.0 

40. 

6 . 

-5. 

21.9 

• 26.2 

55. 

».|. 

-15. 

25.6 

123.** 

65. 131. 

5. 

29.4 

122.2 

65. 

303. 

4j. 

0826002 

20.2 

129.8 

50 

IS.9 

129 6 

45. 

21 . 

■5. 

22.4 

124.0 

65. 

42. 

-15 

25.0 

122.5 

70 39. 

15. 

29.C 

124.5 

60. 

434. 

43 

0826062 

20 7 

128.6 

55 

20.8 

123 5 

55. 

3. 

0 

23.2 

124.2 

35- 

24. 

0 . 

26.0 

122.3 

75. 137. 

30. 

0.0 

0.0 

0 . 

-0. 

0 . 

0826122 

21 .S 

127.3 

60 

21.2 

127.3 

60. 

18 

0 . 

21.0 

122.2 

80. 

20 . 

-10. 

27.7 

122.6 

70. 229. 

35 

C.O 

0.3 

3. 

-U. 

0 . 

0826182 

22.3 

526.2 

70 

22.3 

126.1 

65. 

6 , 

-5. 

26.3 

123.C 

6 S. 

138. 

25. 

29.0 

124.C 

70. 424. 

50. 

0.0 

0.0 

0 . 

-0. 

0 . 

0827002 

23.1 

124.9 

oe 

23.4 

125.C 

75. 

19. 

-5. 

PO.O 

123.3 

05. 

220 . 

30. 

31.5 

126.5 

70. 5C4. 

55. 

0.0 

0.0 

A. 

-0. 

ft. 

0827062 

23.S 

123.9 

85 

23.9 

123.? 

85. 

21 . 

0 . 

27.8 

121.9 

05. 

157. 

■10. 

0.0 

0.0 

0 . -0. 

0 . 

0.0 

0.0 

0 . 

-O. 

0 . 

0827122 

24.3 

122.8 

90 

24.6 

!?3.0 

05. 

21 . 

-5. 

70.2 

122.1 

05. 

220 . 

50. 

O.G 

0.0 

0 . -0. 

0 . 

0.0 

0.0 

0 . 

-0. 

0 . 

0827182 

24.5 

121.4 

60 

24.8 

122.0 

80. 

37. 

20 . 

20.2 

120.4 

60. 

IOC. 

40. 

0.0 

e.n 

0 . -0. 

0 . 

0.0 

0.0 

0 . 

-9. 

0 . 

0828002 

25.0 

520.9 

55 

25.5 

120.3 

55. 

44. 

0 . 

20.6 

119.5 

30. 

IC4. 

15. 

0.0 

0.0 

O. -0. 

0 . 

0.0 

0.0 

0 . 

-0. 

0 . 

082806Z 

25.8 

120 0 

45 

25.7 

iro.3 

55. 

17. 

10 . 

0.0 

0.0 

0 . 

-0. 

0 . 

0.0 

0.0 

0 . -0. 

0 . 

0.0 

0.0 

0 . 

-0. 

0 . 

0828122 

26.1 

118.7 

35 

2 C.8 

118.8 

40. 

42. 

5. 

0.0 

0.0 

0 . 

-0. 

0 . 

0.0 

0.0 

0 . -0. 

0 . 

0.0 

0.0 

0 . 

-0. 

0 . 

0828132 

26.6 

117.4 

20 

27.4 

117.0 

30. 

52. 

10 . 

n.o 

0.0 

0 . 

-0. 

0 . 

0.0 

0.0 

0 . -0 

0 . 

0.0 

0.0 

0 . 

-0. 

U. 

082SOOZ 

27.6 

116.6 

15 

0.0 

O.O 

0 . 

-0. 

0 

0.0 

0.0 

0 . 

-0. 

u. 

0.0 

0.0 

0 . -0 

0 . 

0.0 

0.0 

0 

-0. 

0 . 


ALL FORECASTS TYPHOONS UHlLE OVER 35 KTS 



UPNG 

24* HR 

48-HR 

72-HP 

DRUG 

24-NR 

43-HR 

72-HR 

HVG FORECAST POSIT ERROR 

26. 

103. 

183. 

212 . 

22 . 

93. 

126. 

ICO. 

AVG RIGHT ANCLE ERROR 

19. 

78. 

134. 

144. 

17. 

69. 

04. 

102 . 

AVC INTENSITY MAGNITUDE ERROR 

4. 

16. 

22 . 

24. 

**. 

!5. 

16. 

19. 

AVC INTENSITY BIAS 

1 . 

9. 

7. 

10 . 

0 . 

7. 

-1. 

0 . 

NUfBER OF FORECASTS 

20 

17 

13 

9 

15 

IS 

11 

7 


DISTANCE TRAVELED BY STORM IS 1710. Ntt 
AVERAGE SPEED OF STORM IS 12. KNOTS 

TYPHOON NORRIS 

FIX POSITIONS FOR CYCLONE NO. 15 


SATELLITE FIXES 


FIX 

Tlrt 

FIX 






NO. 

<Z> 

POSITION 

PCCRY 

DVORAK CODE SATELLITE 

COrrtNTs 

SITE 

1 

222200 

15.6M 

144.4£ 

PCN 5 

TO.0/0.0 

NGAA6 

1NIT OSS 

PGYU 

2 

230300 

IS.4M 

143.IE 

PtN 0 


OTHER 


PGTU 

- 

230900 

16. IN 

141.2E 

PCN 0 


OTHER 


PGTU 

4 

231039 

16.5N 

140.9E 

PCN S 


N0AA6 


PGTU 

5 

231200 

16.5N 

140.9E 

PCN 0 


OTHER 


PGTU 

6 

232100 

16.5N 

139.2E 

PCN 0 


OTHER 


PG1U 

7 

232319 

1C.7N 

138.5E 

PCN 5 

Tl.0/1.0 /D1.0/25HRS 

N0AA6 


PGTU 

8 

240300 

16.8N 

138.IE 

PCN 0 


OTHER 


PGTU 

9 

24et>17 

17. IN 

137.7E 

PCN 5 


TIROSN 


PGTU 

10 

240500 

17.3N 

137.8E 

PCM 0 


OTHER 


PGTU 

11 

241017 

17. IN 

137.8E 

PCN 5 


N0AA6 


PGTU 

12 

241902 

18.3N 

135.7E 

PCN 5 


TIROSN 


PGTU 

13 

24190? 

ie.9N 

135.9E 

PCN 5 


TIROSN 


RPrtC 

14 

242100 

18.4N 

135.3f 

PCN 0 


OTHER 


PGTU 

15 

242257 

18.3N 

135.IE 

PCN 5 

T2.5/2.S /DI.5/24HRS 

NCAA6 


PGTU 

16 

256600 

19.ON 

133.5E 

PCN 5 

T3.0/3.0 

TIROSN 

INIT CBS 

RODH 

17 

25e606 

19.0N 

133.5E 

PCN 3 


TIROSN 


PGTU 

IB 

250900 

19.2N 

132.9E 

PCN 0 


OTHER 


PGTU 

19 

2509S5 

19.2N 

132.8£ 

PC.N 5 


N0AA6 


PGTU 

20 

251600 

S9.5N 

131.2E 

PCN 0 


0* <ER 


PGTU 

21 

252160 

20. IN 

130.2E 

PCN 0 


OTHER 


PGTU 

22 

252124 

19.6N 

130.2E 

PCN 6 

T4.0/4.0 

:«s°37 

INIT 08S 

RPtt< 

23 

252134 

19.9N 

130.CE 

PCN 6 


DMSP37 


PGTU 

24 

252234 

19.6N 

130.0E 

PCN 5 

T3.5/3.5 /D1.0/24HRS 

N0AA6 


PGTU 

25 

260100 

20 .2N 

129.7E 

PCN 0 


OTHER 


PGTU 

26 

260SS4 

20 .4N 

128.5E 

PCM 3 


TIROSN 


PGTU 

27 

268554 

20.5N 

128.8E 

PCN 5 

T4.0/4.0 /DI.0/24HRS 

TIROSN 

INIT 08S 

RODH 

28 

268900 

20 .7M 

128.0E 

PCN 0 


OTHER 


PGTU 

29 

261114 

21. IN 

127.6E 

PCN 5 


N0AA6 


PGTU 

30 

261114 

21.8N 

128.CE 

PCN 6 


N0AA6 


RPT* 

31 

261114 

21.3N 

127.9E 

PCN 5 


N0AA6 


RODH 

32 

262100 

23.ON 

125.7E 

PCN 0 


OTHER 


PGTU 

33 

262353 

23.2N 

125.0£ 

PCN 1 

T4.S/4.5 /DI.0/2S8RS 

H3AA6 


PGTU 

34 

270724 

23.5N 

I73.6E 

P'N 1 

T4.0/4.0 

TIROSN 

INIT 08S 

RKSO 

35 

27090C 

24.0N 

1?3.3E 

PCN C 


OTHER 


PGTU 

36 

271851 

24.3N 

123.IE 

PCN 2 


N0AA6 


PGTU 

37 

271280 

24,SN 

122 .9£ 

PCN E 


OTHER 


PGTU 

36 

271600 

24.8N 

122 .0E 

PCN 0 


OTHER 


PGTU 

39 

272010 

24.4N 

120 .7E 

PCN 3 


TIROSN 


RKSO 

40 

272010 

24.3N 

121.OE 

PCN 3 


TIROSN 


RODH 

41 

272339 

24.9N 

121.0E 

PCN 3 

T3.S/3.S /U1.0S24HRS 

NCAA6 


PGTU 

42 

280300 

25.6N 

128.5£ 

PCN 0 


OTHER 


PGTU 

43 

288713 

25.6M 

118.6E 

PCN 3 

T3.S/3.S- 

TIROSN 

INIT 08S 

RPltt 

44 

288713 

24.7N 

119.BE 

PCN 5 

T3.0/3.0- 

TIROSN 

INIT OSS 

RODH 

45 

288908 

26. IN 

118 .46 

PCN 0 


OTHER 


PGTU 

46 

281029 

25.4N 

1I7.9E 

PCN 5 


N0AA6 

FIX DSD ON UL FEATURES 

PGTU 

4? 

281280 

26. IN 

1I7.2E 

PCN 0 


OTHER 


PGTU 

48 

281600 

26.7N 

116.9E 

PCN 0 


OTHER 


PGTU 

49 

202103 

26.4N 

I15.8E 

PCN 0 


OTHER 


PGTU 



150 













FIX TIME FIX 

HO* <Z> POSITION 


aircraft fites 


70OMB CBS MAX-SFC-UND f®X-FLT-LVL-UND ACCRf 
HGT MSLP VEL/8KG/RNG DIR/VEL/BRC/RNG NAV/T® T 


£YE OR!EH* ETt TEf® <C) MSN 
DIAM/TATION OUT/* IN/ DP/SST NO. 


1 

24OI80 

16.9ft 

I3P.1E 

I580FT 


1005 

35 030 

10 

0*0 

25 030 

15 

6 

5 

+25 

♦26 

<26 28 

1 

2 

241215 

17.8M 

136.4E 

7O0f® 

3131 




130 

30 130 

69 

2 

3 




2 

3 

241520 

18.3H 

135.8E 

700f® 

3115 

1002 



270 

25 210 

120 

5 

5 

♦ 12 

♦ 12 

♦ 8 

2 

4 

2SUC08 

18.2N 

134.7E 

?00f« 

3064 


35 36C 

30 

230 

18 050 

20 

5 

5 




3 

5 

250307 

18.6N 

133.9E 

700f® 

3034 


35 350 

23 

240 

34 160 

15 

8 

10 

+11 

♦ 13 

♦ 12 

3 

6 

260424 

20.6H 

120.9E 

7081® 

2962 

983 

35 240 

35 

290 

42 240 

35 

5 

5 

♦ 11 

♦ 16 

+ 12 

6 

7 

261220 

21.6N 

127.IE 

700MB 

2898 




220 

70 140 

40 

2 

4 




7 

8 

261445 

21 8M 

126.8E 

7001® 

2873 

973 



050 

55 308 

50 

2 

3 

♦ 12 

♦ 17 

♦ 10 

7 

9 

262030 

22 6H 

125.7E 

700MB 

2796 












e 

10 

2621C9 

22.9N 

125.5E 

7001® 

2790 

962 



330 

42 240 

17 

4 

3 

♦ 13 

♦ 18 

♦ 11 

8 

11 

270008 

23. IN 

124.8E 

reei® 

2764 


55 310 

4S 

030 

72 310 

20 

4 

2 




8 

12 

270250 

23.4H 

124.2E 

roof® 

2714 

954 

65 810 

35 

140 

94 070 

30 

4 

3 

♦ 16 

♦ IB 

♦ 15 

8 


FIX TII^ 
NO. (2) 


FIX 

POSITION 


RADOB-CODC 
ASUAR TDDFF 


RADAR 

POSITION 


1 

262100 

22.6N 125.6E 

LAND 

55/53011 

24.3N 124.2E 

47918 

2 

262IOO 

2?.7h 125.SE 

LAMP 

22913 53114 

24.8ft 125.3E 

47927 

3 

270000 

23.IN 124.9C 

LAND 

S5*V4 73118 

24.311 I24.2E 

47919 

4 

270103 

23.3N 124.7E 

LAND 

5S//4 73116 

24.3N 124.2E 

47918 

S 

270100 

23.4f« 124.6£ 

LAND 

51913 

24.8N 125.3E 

47927 

6 

270200 

23.3t« 124.SE 

LAND 

50913 73014 

24.3N 124.2£ 

47918 

7 

270200 

23.4N 124.5E 

LAND 

11914 53012 

24.8N 125.3E 

47927 

e 

27O30O 

23 3N !?4.2E 

LAND 

51S13 72914 

24.3N 124.2E 

47918 

9 

27O30O 

23.4H 124.2E 

land 

11813 52714 

24.8N 125.3E 

47927 

10 

270400 

23.5N 124.IE 

LAND 

5B0I3 72912 

24.3N I24.2E 

47918 

ii 

270400 

23.SN 123.9E 

LAND 

21914 52816 

24.8*1 125.3E 

47927 

12 

270500 

23.5f! I23.9E 

LAND 

55/73 72911 

24.3N 124.2E 

47918 

13 

27O5O0 

23.4N 123.8E 

LAND 

21843 52611 

24.8N 125.3E 

47927 

14 

270500 

23.5N 123.8E 

LAND 

5//// /2714 

24.ON 121.6E 

46699 

15 

2705O0 

23. Sh 

LAND 

5//// /26I? RCKK 



16 

270600 

23.6N 123.7E 

LAND 

///// /3106 

24.ON 121.6E 

46699 

17 

270703 

23.6ft 123.6E 

LAND 

10812 52907 

24.ON 121.6E 

46699 

18 

2707OO 

23.6ft 123.6E 

LAND 

S5//3 73009 

24.3ft I24.2E 

47918 

19 

270700 

23.5ft 123. bE 

LAND 

12814 53205 

24.8N 12S.3E 

47927 

2d 

270800 

23.6N i23.6E 

LAND 

12814 53205 

24.8N 125.3C 

47927 

21 

27CCO0 

23.7N J23.5E 

LAND 

5//// 73506 

24.ON I21.6C 

46699 

22 

27O800 

23.6N 123.5E 

LAND 

50913 72908 

24.3N 124.2E 

47919 

23 

270900 

2?.eN 123.4C 

land 

50913 73210 

24.3H I24.2E 

47918 

24 

270900 

23. SN 123.4E 

LAND 

11973 53114 

24.0ft 125.3E 

47927 

?S 

271000 

23.9ft 123-3E 

LAftD 

57777 73506 

24.0ft 121.6E 

46699 

26 

271000 

23.8N 123.4E 

1 AND 

57777 73506 

24.ON I2I.6E 

46699 

27 

271090 

23.9*1 123.3E 

LAND 

50912 73207 

24.3ft 124.26 

47918 

2e 

271003 

23.9M 123.3E 

LAND 

10622 53308 

24.8N 125.3E 

47927 

29 

271100 

24.IN 123.2£ 

LAND 

108I2 73312 

24.3H 124.2E 

47918 

3D 

271100 

24 IN 123.IE 

LAND 

12832 53216 

24.8N 125.3E 

47927 

31 

271IC0 

24. IN 123.0E 

LAND 

577 // 73113 

24.0.1 121.6E 

46699 

32 

271200 

24 2ft 122.8E 

LAND 

21932 53019 

24.6N 125.3E 

47927 

33 

271280 

24 3ft I22.9E 

LAND 

45772 73214 

24. SN 124.2E 

47918 

34 

271700 

24.3ft 122.5£ 

LAND 

21842 52916 

24.8M 125.3E 

47927 

35 

271300 

24.4ft 122.5E 

LAND 

4S/73 r 3010 

24.3M 124.2£ 

47918 

36 

271400 

24.5N 122.4£ 

LAND 

55773 73016 

24.3*t 124.2E 

47910 

37 

27150O 

24.6M 122.OE 

LAND 

55773 73016 

24.3N I24.2E 

47918 

38 

271500 

24.5K 122.8E 

LAND 

77/73 52919 

24.3ft I24.2E 

47910 

39 

2716CQ 

24.5N 121.8E 

LAND 

55773 72814 

24.311 124.2E 

47918 

40 

271700 

24. SN 121.5E 

LAND 

65772 72718 

24.3H 124.2E 

47918 

4! 

2718C0 

24.5N 121.3E 

LAND 

6S772 72612 

24.3N I24.2E 

47918 


NOTICE - THE ASTERISKS <*> INDICATE FIXES UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES. 


151 




















TROPICAL DEPRESSION 16 
BEST TRACK DATA 



BEST TRACK UARH1NG 24 HOUR FORECAST 49 HOUR FO **CAST ?2 HOUR -ORCCAST 

ERRORS ERRORS L.1PORS 


lO'DA/HR 

POSIT UltD 

d CS!T 

UIND 

DST UIND 

POSIT 

UIND 

DST 

UIND 

POSIT 

UIKD 

DST UIND 

POSIT 

UIND 

DST 

UIND 

050!132 

4.9 

159.0 

IS 

6.0 

0.0 

O. 

-8. 

0. 

8.0 

0.0 

0. 

-0. 

0. 

0.U 

0.0 

0. 

-0. 

0. 

0.3 

O.C 

.) 

-0. 

0. 

0302002 

5.5 

1S0.I 

IS 

e.6 

0.0 

O. 

-0. 

0. 

O.O 

0.0 

0 . 

-A. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

1. 

-0. 

»*. 

0902067 

6.2 

149.6 

15 

0.0 

0.0 

0. 

-0. 

0 

8.0 

n.o 

O. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0 

0.0 

0.0 

0. 

*0. 

0. 

0902I22 

6.9 

149.1 

15 

0.0 

0.0 

0. 

-0. 

0. 

8.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

•1. 

-0. 

0. 

0902102 

7.5 

1 10.5 

20 

3.8 

0.0 

0 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

(1.0 

>). 

-0. 

ft. 

O9O3O02 

7.8 

140.0 

20 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-O. 

0. 

0.(1 

0.0 

0. 

-0. 

0. 

0.0 

o.o 

. 1 , 

-0. 

3 

0303062 

7.9 

147.5 

20 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

O. 

“0. 

0. 

0.0 

0.0 

0. 

*u. 

0. 

0.»1 

0 o 

l(. 

-0. 

0. 

0303122 

0.2 

147.2 

20 

8.0 

0.0 

0. 

-0. 

O. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0 

0... 

0.0 

1. 

-0. 

u. 

0593132 

9.4 

147.1 

20 

0.0 

0.0 

0. 

-0. 

0. 

O.U 

O.O 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

n.O 

*1. 

-0. 

0. 

0904002 

8.9 

146.9 

25 

O.C 

0.0 

9. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

6. 

-0. 

0. 

0,0 

0.0 

< 

-0. 

0. 

CS04OGZ 

9.4 

146.5 

25 

9.2 

1^6.5 

25. 

12. 

0. 

10.4 

14-1.7 

SO. 

241. 

35. 

0.0 

0.0 

0. 

-t). 

0. 

u.o 

U.O 

» 

-0. 

U. 

0904122 

9.6 

145.5 

25 

9.5 

146.2 

30. 

42. 

S. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

O.O 

0. 

•0. 

0. 

0.0 

I'.o 

3. 

-0. 

*J. 

0S64182 

10.3 

144.0 

25 

10.0 

145.5 

30. 

99. 

5. 

0.0 

C.O 

0. 

-0. 

0. 

0.0 

0.0 

8. 

-0. 

0. 

0.0 

o.o 

J. 

'0. 

b. 

0905002 

II.6 

142.6 

20 

10.7 

1-3.2 

30. 

64. 

10. 

0.0 

0.0 

8. 

-e. 

0. 

0.0 

0.0 

0. 

“9. 

0. 

0.0 

0.0 

). 

-0. 

0. 

0905862 

13.6 

142.2 

15 

11.2 

141.9 

40. 

144. 

15. 

0.0 

O.O 

0. 

- 0 . 

0 . 

e.o 

-.0 

0 . 

-0. 

0 . 

0.0 

o.o 

1 

-0. 

0. 


ALL FORECASTS TYPHOONS tHILE OVER 35 KTS 

URHG 24-HR 40-KR 72-HR LRHG 24-HR 43-hR 72-HP 

FVG FORECAST POSIT ERROR 70. 241. 0. «. 0. 0. 0. 0. 

AVG RIGHT ANCLE ERROR 20. 28. 0. 0. 0. 0. O. 0. 

avg imtl*i$:ty IWGHITUDE ERROR 7. 35. 0. O. 0. 0. U. 0. 

AVG INTfcHSllY BIAS 7. 35. 0. 0. 0. 0. 3. 6- 

HUMBER OF FORECASTS 5 16 0 0 0 0 0 

DISTANCE TRAVELED BY STORM IS 776. N» 

AVERAGE SPEED OF STORM IS 9. KNOTS 


TROPICAL DEPRESSION TD-I6 
FIX POSITIONS FOR CYCLONE HO. 16 


SATELLITE FI>£S 


FIX TIME FIX 


NO. 

sZ) 

POSITION 

ACCRY 

DVORAK CODE SATELLITE 

COUNTS 

SITE 

1 

012139 

5.3N 

150.3E 

PCN 5 

TO.S/0.5 

H0AA6 

INIT O0S 

PGTU 

2 

020300 

5.8N 

149.6E 

PCN 0 


OTHER 


PGTU 

3 

021013 

6.4H 

149.4C 

PCN 5 


N0AA6 


PGTU 

4 

022025 

7.8N 

148.5E 

PCN S 


D1CP37 


PGTU 

5 

022216 

7.9N 

148.5E 

PCN 6 

TI.S/I.S /Dl.0^24HRS 

N0AA6 


PGTU 

6 

030008 

7.9N 

147.5E 

PCN 0 


OTHER 


PGTU 

7 

030604 

e. 0 N 

147.06 

PCN 5 


TIROSH 


PGTU 

8 

0389S6 

8.6N 

147.36 

PCN 5 


N0AA6 


PGTU 

9 

032235 

8.ON 

140.8E 

PCN 5 

T2.0/2.8 ✓D0.5/'24HRS 

H0AA6 

UL 10.2N 145.BE 

PGTU 

10 

040390 

9.5N 

147.3E 

PCN 0 


OTHER 


PGTU 

11 

046900 

9.6N 

146.6E 

PCN 0 


OTHER 


PGTU 

12 

048534 

9.5N 

146.5E 

PCN 5 


N0AA6 


PGTU 

13 

041200 

9.6N 

146.16 

PCN 0 


OTHER 


PG1U 

14 

041837 

10.3N 

144.3E 

PCN 6 


TIROSN 


PGTU 

IS 

041037 

10.2N 

144.$£ 

PCN 6 


TIROSN 


RPtK 

16 

042100 

10.3N 

143.66 

PCN 0 


OTHER 


PGTU 

17 

042213 

18.2N 

143.6E 

PCN 5 

T2.S'2.5 /D0.S/24HRS 

N0AA6 


PGTU 

18 

8S0911 

12.2N 

142.66 

PCN 5 


N0AA6 


PGTU 

19 

OS16B0 

14.2H 

142.7E 

PCN 0 


OTHER 


PGTU 


AIRCRAFT FIXES 


FIX 

Tire 

FIX 

flt 

708T8 

03S 

nriX-SFC-UND 

mx-FLT-LVL-LHD 

ACCRY 

EYE 

EYE ORIEN- 

EYE TEff> <C> 

MSN 

NO. 

<2> 

POSITION 

LVL 

kg r 

M5LP 

VEL/^RG/RNC 

DIR/'VEL'BRG'RNG NAV/TET 

SHAPE 

DIAM'TATION 

OUT' IN' DP'SST 

NO. 

1 

040155 

8.9N 146.8E 

1S00FT 


1002 

25 030 30 

338 25 300 S0 

5 10 



♦22 +22 +22 29 

3 

2 

041451 

10.0H 144.76 

7eere 

3122 

1010 


050 17 038 80 

5 15 



♦10 +10 +10 

4 

3 

050844 

12.IN |42.5E 

70OTC 

3889 

1001 

25 330 135 

040 19 330 135 

5 5 



♦12 +10 

S 


NOTICE - THE ASTERISKS <*) INDICATE FllCS UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES. 












TYPHOON ORCHID 
BEST TRACK DATA 


BEST TRACK UARHiHG 24 HOUR FORECAST 40 HOUR FORECAST 72 HOUR FORECAST 

CRPOPS ERRORS ERRORS 


MO/'DA/HR 

POSIT HI HD 

POSIT 

UIHD 

DST 

UIHD 

POSIT 

UIHD 

DST UIHD 

POSIT 

UIHD 

Hi. 7 

UIHD 

POSIT 

UIHD 

DST 

UIHD 

0906002 

14.7 

145.2 

25 

e.o 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

C. 

0.0 

0.0 

0. 

-1*. 

0. 

0.0 

e.c 

0. 

-0. 

G. 

0906062 

IS.2 

145. 1 

30 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

— O . 

0. 

0.0 

0.0 

0. 

-U. 

e. 

0.0 

0.0 

0. 

-0. 

0 . 

0906122 

16. 1 

144.8 

35 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

e 0 

0 . 

-0. 

2 

C.O 

0.0 

0. 

-u. 

0. 

O.O 

0.0 

0. 

-0. 

P. 

0906182 

17.1 

143.? 

40 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

e.o 

2, 

-0. 

0. 

2 0 

O.U 

0. 

-0. 

0. 

0.8 

0.0 

0. 

-0. 

0. 

0902007 

13.0 

142.8 

45 

18.0 

142.8 

40. 

0. 

-5. 

21.2 

138.5 

65. 

CO. 

5. 

23.8 

i2 r *.3 

75. 

77. 

10. 

26.9 

134.7 

60. 

172. 

5. 

0907062 

10.7 

141.9 

50 

19.4 

1 12.0 

45 . 

42. 

“5. 

23.2 

138.1 

70. 

147. 

10. 

2-.0 

136.4 

«0. 

26G. 

10. 

29.3 

135.5 

75. 

279. 

-5. 

0907127 

19.3 

140.8 

55 

19.8 

140.7 

55. 

30. 

0 . 

23.5 

136.7 

80. 

114. 

20. 

26.7 

i2-* 5 

85. 

243. 

1U. 

29.6 

134.0 

?S. 

231. 

-5. 

8907187 

19.7 

139.7 

55 

IS.4 

130.6 

55. 

64. 

O. 

22.3 

134.5 

R0. 

56. 

20. 

25.9 

132.8 

65. 

79. 

10. 

28.8 

133.0 

75. 

174. 

-10. 

0908002 

28.2 

138.6 

60 

19.9 

137.0 

55. 

92. 

-5. 

22.7 

132.7 

75. 

94. 

10. 

26.3 

131.3 

05. 

70. 

10. 

R9.6 

132.0 

75. 

122. 

1U . 

6908052 

2e.8 

137.5 

60 

20.7 

137.5 

60. 

6. 

e. 

23.0 

134.2 

76. 

07. 

0. 

26.1 

132.2 

00. 

119. 

0. 

TO T 

132.5 

75. 

308. 

20. 

0908122 

21.6 

136.5 

SO 

21.2 

136.6 

SO 

25. 

e. 

23.8 

133.5 

80. 

00. 

5. 

26.2 

132.0 

85. 

112. 

5. 

29.5 

li- . 

75. 

478. 

35. 

09081C2 

22.2 

135.5 

60 

22.J 

135.3 

60. 

lb. 

0. 

25.5 

132.5 

85. 

59. 

10. 

29.8 

132.9 

09. 

I/O. 

-5. 

32.1 

13/.4 

/C 

517. 

40. 

0909002 

22.8 

134.4 

65 

22.9 

134.6 

60. 

13. 

-5. 

20.2 

132.2 

88. 

07. 

5. 

29.7 

132.7 

05. 

137. 

20. 

0.0 

0.0 

0. 

-0 

n _ 

O90SO6? 

23.5 

133.1 

70 

23.4 

133.6 

65. 

28. 

“5* 

20.7 

131.2 

7S. 

57. 

-5. 

39.9 

132.4 

70. 

205. 

15. 

6.0 

0.0 

0. 

-0. 

0 

O909I27 

23.2 

132.2 

75 

24.2 

132.9 

65. 

71. 

-10. 

20.6 

129.9 

75. 

71 . 

-5. 

32.S 

132.0 

70. 

207. 

30. 

8.0 

0.0 

0. 

-0. 

0. 

0909182 

25.5 

131.4 

75 

24.9 

131.5 

70. 

3 C. 

-5. 

29.2 

129.7 

75. 

76. 

-10. 

34.7 

131.0 

55. 

330. 

25. 

0.0 

o.u 

0. 

-0. 

0 . 

0910002 

25.0 

131.3 

75 

25.4 

130.0 

70. 

74. 

-5. 

29.7 

127.9 

75. 

105. 

10. 

0.0 

0.0 

0. 

-0. 

0. 

8.8 

0.8 

0 . 

-0. 

0 . 

0910062 

27. S 

138.6 

00 

27.2 

131.2 

75. 

37. 

5. 

44.2 

132.6 

65. 

50. 

10. 

6.0 

0.0 

U. 

-0. 

0. 

8.0 

0.0 

0. 

-0. 

0 . 

0910122 

27.8 

130.9 

CO 

2S.C 

120.7 

75. 

61. 

-5. 

35.C 

133.8 

SO. 

112 . 

10. 

0.8 

0.0 

0 . 

- 0 . 

O . 

C.O 

O.U 

8 . 

- 8 . 

c. 

0910192 

30.4 

130.2 

85 

30.0 

130.5 

88. 

28. 

"5. 

37 8 

136.2 

50. 

198. 

20. 

8.6 

0.0 

0 . 

- 0 . 

8 . 

0.0 

e.o 

0 . 

-e. 

0 . 

091100Z 

31.4 

130.9 

65 

31.2 

130.3 

GO . 

33. 

~5. 

0.0 

C.O 

0 . 

-0. 

0. 

c.a 

e.o 

O. 

- 0 . 

0 . 

6.0 

o.u 

0 . 

- 0 . 

0 . 

0911O62 

24.3 

131.6 

55 

34.2 

131.6 

50. 

6. 

-5. 

0.0 

0.0 

u . 

- 0 . 

0 . 

0.0 

0.0 

0 . 

- 0 . 

0 . 

8.0 

0.0 

8 . 

-c. 

0 - 

091i122 

37.3 

132.4 

40 

37.3 

132.7 

45. 

14. 

5. 

0.0 

8.0 

0 . 

- 0 . 

C. 

0.0 

0.0 

0. 

- 0 . 

0 . 

0.0 

0.0 

0 . 

- 3 . 

0 . 

0911182 

43.0 

133.0 

30 

0.0 

0.0 

0. 

-0. 

0 . 

0.0 

8.8 

0. 

-0. 

e. 

0.6 

0.0 

0. 

-c. 

0. 

e.o 

6.0 

0. 

-0. 

0 . 


ALE FORECASTS TVPhGOnS UllLE 9VEP 35 r TS 



URKG 

24-NR 

40-HR 

72-HR 

LRItC 

24-HR 

40- 

HR 72-HR 

AVC FORECAST POSIT ERROR 

36. 

95. 

|75. 

284. 

36. 

88. 

161. 

251. 

AVG RIGHT ANGLE ERROR 

22. 

62. 

98. 

179. 

22. 

55. 

103. 

ISA- 

AVG INTENSITY nlCNjTVDE ERROR 

4. 

10. 

13. 

16. 

4. 

9. 

11. 

13. 

AVC INTENSITY BIAS 

-3. 

7. 

12. 

It. 

0. 

6. 

16. 

7. 

NUMBER 9F FORECASTS 

19 

16 

12 

8 

19 

15 

Jl 

7 


DISTANCE TRAVELED BY STORM IS 2043. Nfl 


AVERAGE SPEED 0* STORM IS 15. KNOTS 

TYPHOON ORCHID 

FIX POSITIONS FOR CYCLONE NO. I? 


SATELLITE FIXES 


FIX Tirt FIX 


HO. 


POSITION 

ACCRY 

DVOSflK COIlt SHTEU.JTE 

COtttHTS 

SITE 

1 

052151 

14.6H 

145.2E 

PCN 5 


M0AA6 


PCTU 

2 

068390 

14.8H 

145.IE 

KH 0 


OTHER 


PGTU 

3 

060529 

14.5N 

145.2E 

PT.I4 5 

TI.S'I.S 

7IR0SH 

IHIT OfiS 

PCTU 

4 

060388 

11.41 

345.04 

PCM 9 


OTHER 


PCTU 

5 

061038 

15.714 

144.7F 

PC** 5 


M0AA6 


PCTU 

6 

061200 

lb.ON 

144.6E 

PCh 0 


OTHER 


PCTU 

7 

062128 

17.0H 

143.9E 

PCH 5 

T2.5/2.5 XD1.0724MRS 

M0AA6 


PCTU 

8 

0703CQ 

19. Ill 

142.7E 

PCN 0 


OTHER 


PCTU 

9 

0709e0 

19.4N 

I41.SE 

PCM 0 


OTHER 


perj 

10 

071008 

19.7h 

141.3E 

PCM 5 


MCAA6 


PGTU 

11 

071200 

19.7H 

141.8F 

PCH 0 


OTKft 


PGTU 

12 

oriseo 

20. Vi 

139.6E 

PCH 0 


OTHER 


PGTU 

13 

071802 

19.8N 

133.4£ 

KM 6 


T1R0SM 


FGtU 

14 

072:ec 

I3.8N 

130.2E 

PCH 0 


PThEp 


PGTU 

15 

072247 

19.9H 

137.9F. 

KM 5 

T3.S'3.5 ✓Di.e^SMRS 

H3AA6 


PGTU 

16 

080300 

20. IN 

137.2E 

KM 0 


OTHER 


PGTU 

17 

000648 

20.9N 

137.3E 

KH 5 


T1PGSM 


PGTU 

18 

080648 

21.214 

136.9E 

PCM 5 

T4.0'4.0 

T1PCSH 

init ces 

PPJ* 

19 

000900 

21.*4 

136.BE 

KM 0 


OTHER 


PGTU 

20 

008945 

21.?P 

136.8E 

KH 5 


MCAA6 


PGTU 

21 

081288 

21.8N 

136.4£ 

PCH 0 


OTHER 


PCTU 

22 

081600 

22. CM 

125.2E 

PCH 0 


OTHER 


PGTU 

23 

082108 

22.6N 

> 3$.0E 

KM 0 


OTHER 


PGTU 

24 

082225 

22. 6N 

134.7E 

KM 5 

T4.0^4.0 ✓D0.5/'24HRS 

H0AA6 


PGTU 

25 

032225 

22.2H 

134.7E 

KM 6 

T4.0< / 4.9 

N0PA6 

IHIT 08$ 

RODN 

26 

090380 

23.3N 

I33.9E 

KM n 


OTHER 


PGTU 

27 

090636 

23.6N 

I32.7E 

KH 5 

T3.e^4.0 /U1.0/24HRS 

TIROSM 


RRt* 

28 

T90636 

23.4M 

132.RE 

KH S 


TIROS* 


PGTU 

29 

096908 

23.7N 

*32.3E 

KH 0 


OT»*R 


FGTU 

38 

091104 

23.4M 

132.0E 

KM 5 


H0AA6 


PGTU 

31 

091206 

23.6M 

132.IE 

KH 0 


OTHER 


PGTU 

32 

09160S 

25.3M 

132.CE 

KM 0 


OTHER 


PGTU 

33 

092119 

25.Xh 

138.3E 

KM 6 


D1CR37 


PCTU 

34 

092344 

24.7N 

I38.6E 

KM 5 

•*4.0'4.0 xS0.0/'24HRS 

N0AA6 


PGTU 

35 

100300 

25.0M 

130.5E 

KM 0 


other 


PGTU 

36 

160625 

27.4M 

l30.eE 

KH I 

T4.8' , 4.0 

TIROSM 

ihit oes 

CKSO 

37 

100625 

27.3H 

I36.7E 

KM 3 


TIROSM 


PGTU 

30 

100980 

27.5m 

130.4E 

KK 0 


OTHER 


PCTU 

39 

101280 

27.3M 

138.3F 

KM 0 


OTHER 


PGTU 

48 

102108 

30.5N 

129.82 

KM 0 


OTHER 


PGTU 

41 

102321 

31.3m 

130.?E 

KH 3 

T4.0/4.0->^0.0/24HRS 

N0AA6 


PGTU 

42 

102321 

30.9m 

I30.4E 

KH 5 

T3.0^3.8 

K0AA6 

IHIT DBS 

RPrtC 

43 

110613 

34.4N 

I33.7E 

KH 3 

13.0^4.0 /3J1.0/24HRS 

TIROSM 


RKSO 

44 

116613 

34.4M 

J3I.7E 

KH 5 


TIROSM 


PCTU 


153 


















filPCkAFT flVES 


Fix tire 

fix 

FuT 

700?fi 

035 

IHX-$FC-U*D 

HAX-FLT-LVL-L»«D 

ACCPY 

ErE 

EYE OPIEJI* 

EYE TErf <C) 

r&n 

HQ (2> 

POSITION 

LVt 

HGT 

T^LP 

VEt^BPn-ftHC 

&1P/VEL'8RG/PHC 

HAV/TCT 

shape 

DIAft/TATlOH 

OUT' W* DP/SST 

hQ, 


j 

070005 

18.ON 

142.7E 

iseaF T 


992 

45 C60 

45 

160 

46 030 

28 

3 

1 


♦24 

♦26 

♦26 27 

1 

2 

971300 

18.9H 

139.3E 

/ocn: 

30*6 




268 

36 080 

39 

8 

S 


+ 12 

♦ 16 

♦11 

2 

3 

8*0547 

20. ON 

:3?.5£ 

?0ft*« 

2928 

950 

40 340 

20 

220 

37 148 

90 

3 

10 


♦ 14 

♦ 14 

♦14 

3 

.1 

03:335 

?i.en 

ssc.sr 

7C«$ 

2872 




210 

31 140 

90 

5 

5 





4 

5 

03J4S2 

21.9** 

I35.9E 

70073 

2801 

Q ?1 



210 

31 140 

90 

5 

5 


♦15 

*16 

+:2 

4 

6 

0?S2O4 

23.Oil 

134.It 

790M8 

2870 

974 

35 140 

210 

220 

37 140 

140 

5 

5 


♦!3 

♦ 14 

♦n 

5 

7 

031210 

23. IN 

132.BE 

S&&H 

2797 




188 

67 07O 

75 

2 

2 





6 

0 

09 ISOS 

i I.3N 

132.7E 

700? E* 

2814 

996 



280 

67 210 

130 

2 

5 


♦11 

♦ 16 

♦16 

5 

9 

0*1938 

».2M 

:30.7c 

70*1*3 

2724 




090 

55 360 

5 

10 

2 





7 

,? 

032139 

24.9f* 

130.2E 

7oe?« 

274? 

9G4 

bO 060 

45 

060 

59 880 

40 

5 

19 


♦16 

♦ 17 

♦12 


1! 

1*^'* *»i 

20.21* 

13i.4E 

?oc. , e 

2744 


60 !40 

90 

22C 

70 140 

105 

5 

10 





8 

12 

100253 

«.* 4?l 

131.&E 

7001 fc 

27C0 

960 

70 060 

5 

748 

40 ->40 

103 

5 

10 CIRCULAR 

12 



♦15 

8 

13 

teieto 

2?. S». 

.3«.5E 

70*4 o 

2?89 

965 



160 

88 060 

190 

2 

2 


♦12 

♦ 17 

♦17 

9 


PADftt F I*£S 


FIX Tilt 

FI< 


EYt 

EYE 

PADO0-CODE 


PADAP 

SITE 

•IU. *2) 

POSITION 

CADAP ACCF 1 

ShA»E 

DIA11 

AVJ-V TDWF 

COfPENTS 

°0SITI0M 

UEJ MO. 


1 

ICO’03 

26.4M 

131.4E 

LAND 


28.4* 129.5E 

47979 

2 

180500 

27.21* 

130.8E 

LAND 


28-4?* 129.5E 

47509 

3 

I007C6 

2/.51* 

130.8E 

LAND 


20.1H 129.5E 

47909 

4 

100909 

27.11* 

129.9£ 

t AND 


20.-S* 129.5C 

47909 

5 

•ft1coo 

27. IN 

I30.3E 

LAND 


28.4m 129.51 

47903 

6 

101!0v 

P7.3** 

130-6E 

LAND 


20.4m 129.SE 

47909 

7 

101200 

27.0n 

•TQ.9L 

lwd 


28.AH 129.5E 

4799? 

8 

101260 

27.8*1 

130.9t 

• AND 

52953 58327 

28. *5* 129.5E 

479A3 

9 

101400 

28.8H 

131.3E 

LAND 

55943 53632 

2P.4N 129.5E 

4/?09 

10 

101500 

29.2** 

I30.TC 

LAI**) 

52663 53232 

28.-SI I29.SC 

479«9 

I! 

’01600 

29.61* 

I39.5E 

LAND 

52813 5342? 

29.41* 129.5E 

47903 

12 

;oit>6« 

29.7H 

:30.5E 

la?*:* 

225'0 S- ' 

30.6*1 131.OF 

47369 

13 

ICI7C0 

S'* 0*< 

130.3E 

land 

54-4? 53^32 

28.4M I29.5C 

47909 

14 

101860 

3C.3?i 

*.’4.2E 

LAND 

226 0 5s 

30.6J* isi.ee 

4706? 

|C 

I01860 

30. SM 

130.2 C 

LAND 

55953 S3527 

28.41* 129.5E 

47050 

16 

101960 

30.6U 

133.IE 

l.*N» 

6S-43 53313 

2S-4M 129-SE 

47093 

17 

l*i 1900 

30.5N 

130.2E 

laud 

Sss,Q 536!1 

30.61* 131.0E 

47063 

• 8 

132000 

30. ?N 

ISO.IE 

LA?*D 

65?3 50203 

20.*CI 129-5E 

47909 

19 

182000 

30.711 

130.lE 

i AND 

3490' 4/ -/ 

Si. r? 130.2C 

47806 

20 

1O21O0 

30.81* 

130.?E 

LAND 

34' /■ **4)305 

ii.st* 130.2E 

47A06 

21 

102100 

30.6** 

I30.2E 

LAND 

10370 50309 

30.6m 131.OC 

4/CC? 

22 

102200 

30. ON 

130.3E 

LhHD 

2083' 40IC8 

33.4M 130.2E 

47806 

23 

102200 

30. SU 

133.4E 

LAND 

203:0 50316 

30.6*1 13I.CC 

47069 

24 

182300 

31. IN 

I30.7E 

LAND 

2014' 45316 

33.4!* i:*j.2E 

47806 

25 

102300 

31.2N 

I3C.8E 

LA**& 

5 ss't 50432 

3C.6M 13! .OE 

47969 

26 

118000 

31.61* 

130.9* 

LAND 

5'"’! 53627 

30.CM 131.Ot 

47869 

27 

110100 

31.71* 

I3I.CE 

L«*& 

20'J - 59419 

33.-S* 130.2£ 

4< 80b 

?3 

110 ICO 

3I.8N 

I30.9E 

land 

6" l 53616 

33.CM 131.OE 

47?69 

29 

110200 

32.3m 

131*9£ 

IW? 

6vOI 5" s 

14.5* 132.6C 

477*2 

30 

11O200 

32.1M 

132.IE 

LA?*D 

20 si 50122 

33.4m 130.21 

47036 

3! 

110203 

32.5?i 

131.2E 

LAND 

6 502«1 

39.6M 131.0E 

47CC? 

32 

110380 

32.71* 

131.?F 

LAND 

55"! 50227 

34.3H 132.6C 

47792 

33 

110300 

32.711 

131.IC 

LAND 

2011' 53632 

33--?* 130.2E 

47806 

34 

1I0300 

32.61* 

131.IE 

LhHD 

1060' ' '// 

33.311 134.2E 

47899 

JS 

110430 

33.2N 

131.2E 

LAND 

5'"! 5162? 

3*?. 3ll 132.6t 

4779? 

36 

11C40O 

33.6h 

13».1E 

LAND 

65 53649 

33.4M I30.2C 

47006 

17 

11C40O 

3.0*1 

131.3t 

lAl.D 

3035- 50324 

33.3m 134.2E 

47899 

30 

I1C500 

?.7M 

131.2E 

land 

55' *. 5362? 

34.3N 132.6E 

47792 

39 

1105CO 

43.011 

I3i.3E 

LAND 

35' " 50419 

33.41* 130.2E 

47006 

48 

110660 

34.41 

I3S.6E 

LAND 

552 5' '/ 

35.5M 133.1E 

47791 

41 

110700 

35.ft* 

13:.5C 

LAND 

2249! »v035 

35.5N 133-IE 

47?? 1 

42 

1107C0 

35. W* 

131.IE 

LAND 

55 s/2 53522 

34.311 132.6E 

47792 

43 

I107CC 

34.0?* 

131.7E 

LAND 

30 50135 

33.41* I3C.2E 

47806 

44 

l109C0 

35.0m 

531.7E 

LAND 

' - 36*24 

35.5N 133.IE 

4T9' 

45 

110960 

35.6m 

131.3E 

LAND 

55' 2 r 0l30 

31.3M I32.6C 

477 ' 

46 

111060 

35.4N 

131.?E 

Lft*D 

65' : 01024 

3S.5M 133.IE 

47 91 

47 

11IWC 

?5.11* 

131.2E 

land 

55 2 53630 

34.3M I32.6E 

47 92 

40 

11*000 

35.4?i 

I3I.7E 

land 

6' ' 53632 

33.40 130.2E 

4.806 

49 

111100 

35.611 

>32.IE 

LAND 

65'" 02035 

35.5H 133.IE 

4779! 

50 

1112*0 

37.3m 

132.3E 

LAME 

b5" 03033 

35.5#* 133. IE 

J779I 

51 

111200 

37.3m 

132.3E 

LAND 

65'" 50338 

35.5N I73.lt 

47791 


NOTICE - THE ASTE»IS?S <*> INDICATE ?p£S UH^tfPESE hTmTIvE AHD NOT USED FO» BEST TPftf' PURPOSES. 


154 














TYPHOON RUTH 
BEST TRACK DATA 


40 *(9US FOPfTfiCT 


MQ/-5A/HC* 

POSIT UlHft 

POSIT 

UlHD 

CPROPS 
P5T WIND 

POSIT 

J»*D 

LPOOPS 
ln»T UMD 

POSIT 

WIND 

LiVUPS 

In. I U1MD 

P05 

IT 

UIHD 

0?13002 

i?.e 

113.S 

30 

0.0 

O.0 

0. 

~o. 

0. 

0.0 

C.O 

8. 

-0. 

0. 

O.n 3.8 

e. 

-•1. 

u. 

0.0 

0.0 

8. 

091 3067 

ie.6 

113.8 

30 

18.0 

113,8 

30. 

! 2. 

0. 

19.2 

112.7 

3*i. 

2b. 

-10. 

15.9 11!.! 

45, 

124. 

0. 

21.4 

109 S 

50. 

0913122 

13.3 

113.7 

30 

18.2 

113.6 

30. 

8. 

0. 

17.3 

i 12.U 

40. 

126. 

e. 

17.I siC.0 

5e. 

2C9. 

-10. 

0.0 

0.0 

0. 

0913182 

IS. 1 

113.4 

35 

18.0 

113.0 

30. 

23. 

•5, 

17.6 

111.4 

45. 

124. 

e. 

I7.7 109.5 

50. 

7,12. 

-15. 

6.P 

0.3 

«. 

0914002 

18.3 

113.C 

40 

18.4 

113.6 

30. 

35. 

-10. 

18.1 

112.5 

50. 

I7i. 

15. 

18.C I10.3 

55. 

2ftO. 

0. 

0.6 

0.C 

■J. 

091**062 

18.8 

112.5 

40 

18.4 

113.3 

40. 

51. 

c. 

19.1 

112.2 

58. 

212. 

G. 

17.E Ul.u 

55. 

303. 

25. 

0.6 

P.O 

0. 

0914122 

19.4 

m.e 

40 

19.3 

112.3 

40. 

2*». 

0. 

20.6 

109.7 

30. 

1M. 

-30. 

0.8 C.O 

0. 

-O. 

0. 

0.0 

0.0 


0014182 

10.6 

110.8 

45 

20.2 

110.7 

40. 

36. 

-5. 

21.5 

I06.C 

28. 

109. 

-45. 

0.6 O.O 

0. 

-0. 

8. 

6.0 

0.0 

0. 

0915.002 

19.7 

I09.9 

35 

19.6 

109.8 

35. 

8. 

8. 

19.9 

106.5 

45. 

59. 

-10. 

0.0 0.0 

0. 

-0. 

0. 

8.6 

0.8 

0. 

"515862 

19.8 

109.9 

45 

19.0 

I0A.9 

45. 

0. 

0. 

20.3 

105.0 

0. 

74. 

-30. 

0.0 3.0 

0. 


U. 

0.0 

0.0 

8. 

09IS 127 

19.9 

107.8 

60 

19.9 

107.9 

50. 

6. 

-lO. 

6.0 

0.0 

8. 

-0. 

O. 

0.6 0.(1 

«. 

-0. 

0. 

0.0 

0.0 

0. 

C915182 

19.8 

106.7 

65 

78.2 

106.2 

50. 

37. 

-15. 

0.0 

w.e 

8. 

0. 

O. 

0.0 O.O 

0. 

-0. 

>1. 

0.0 

0.? 

0. 

09160O2 

IS.6 

185.5 

55 

19.4 

J05.5 

55. 

12. 

0. 

o.»* 

0.0 

O. 

-0. 

0. 

6.0 0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

OSS6662 

*9.2 

104.4 

3 0 

19.1 

104.5 

30. 

0. 

8. 

0.6 

0.0 

0. 

-0. 

0. 

0.0 0.0 

0. 

-o. 

c. 

0.0 

U.0 

u. 


'2 HOUR FORECAST 


AvG c OFFCAST POSIT [PPCf 
AvG RIGHT ANGLE ERRCP 
AVG IHIIWSITY mGNITUDC tRROR 
AVC INTENSITY 8 IAS 
MUTEER 0? FORECASTS 


ALL FORECASTS 
LPhG 24-*1? 4J 

?e. ns. 2. 

ii. 6?. i; 

3. io. : 


24-#l£ U8-HK 72-HP 
s15- 241. 314. 

60. 128. 131- 

16. 10. 20. 

- 12 . 6 . 20 . 

9 5 1 


DISTANCE TRAVELED PY S 7 CPtt is 008 . f*n 
AVERAGE SPEED OF ST0Pr» IS 8. KNOTS 


TY^rtOCMS UHILE OVEP 35 CIS 
LFNG 24-HR 45-HR 72 -HP 
24. 110. .%J6. 0. 


FIX Tift 
MO. <2> 


TYPHOON RUTH 

FIN POSITIONS FOR CYCLONE HO. 18 


SATELLITE FI»SS 


1 

122 ICO 

18. BN 

113.6£ 

PCN 0 


OTHER 


2 

:303tt> 

18.711 

113.9E 

PCM c 


other 


3 

13C608 

16.7N 

ii3.ee 

PCM 0 

T2.C>2.e 

DThE» 

IN. 

4 

13090O 

I8.*R« 

113./£ 

PCN C 


OTHER 


5 

131116 

16. IN 

113.7E 

PCM 5 


N0AA6 


6 

131116 

13.4N 

113.3E 

PSH s 


N0AA6 


7 

131600 

18. IH 

113.CE 

PCN C 


OTHER 


C 

132017 

18.0N 

112.2C 

PCn 6 


TIROS* 


9 

132012 

1° 4M 

:i3.6E 

FCN 5 


TIPOSH 


.? 

132355 

18.3N 

I13.3E 

PCN 3 

T3.0'3.O 

N0AA6 

init oes 

11 

140300 

58. 

S13.3f 

PCN 0 


Other 


12 

14072! 

:e.^* 

112.6E 

PCN 5 

T3.8'3.0 

T1P0SN 

INIT CSS 

13 

140*500 

19-21 

112.6E 

PCN o 


OTHER 


14 

141200 

19.3N 

111.9E 

PCN o 


OTHER 


15 

141600 

70.SH 

111.8E 

PCN 0 


OTHER 


16 

I42O06 

1N.SN 

110.5E 

PCN 5 


TJRCSh 


17 

14>CC6 

19.7H 

189.5£ 

PCN 5 


TIRCSN 


18 

150114 

13.ON 

J09.SC 

“CN S 

T4.0x4.0-/0I 

.e/:8*«s N0AA6 


:** 

150300 

19.6m 

509.3E 

PCN C 


OT*«0 


20 

*5e°00 

19.SN 

108.5E 

PCN 0 


OTh£R 


21 

15.713 

J^.TM 

187.81 

PCM 4 


N0AAS 

RAGGED EVE 

22 

JSibCe 

29.2N 

107.OE 

r*CM E 


OTHER 


23 

152150 

!5.W 

1C6.2E 

PCN F 


OTHER 


?4 

150052 

19.21 

'•65.6E 

PCN 3 


HQA46 

*0 Dvorak 

25 

160052 

15.SN 

105.3E 

PCN 3 

T4.5-4.5- 

N0AA6 

MIT 095 


Fix Tire FIX 

f-0. (2) POSITION PADAR A? t 


1 140603 I8.Cn IS2.SE LAND 


EVE raoCS-CCDE 
DJA.1 ASLttP T55FF 


**p*r SITE 

POSITION UE> NO. 


22.3a II4.2T 4S005 


SYNOPTIC FIJ-ES 


FIX Tire 
NC. <21 


INTENSITY SCARES 7 
ESTIMATE DATA l*n 


1 1/CCC3 I8.0N 108.SE 16 

2 180000 17.8H 98.5C 18 


Th£ ASTERISKS <•> INDICATE FJ>«S UNREPRESENTATIVE AfO NOT USED FOP BEST T&ACK PURPOSES. 





















TYPHOON PERCY 


BEST TRACK DATA 


eesr track warning 24 hour forecast 43 hour forecast ?2 hour forecast 

ERRORS ERRORS ERRORS 


MO/DA/HR 

POSIT UJND 

POSIT 

WIND 

DST WIND 

POSIT 

UIHD 

DST WIND 

POSIT 

LMND 

DST UIHD 

P05IT 

UIHD 

DST UIHD 

0913I2Z 

16.4 

131. S 

39 

O.O 

0.0 

0. 

-0. 

e. 

6.0 

0.0 

0- 

-0. 

C. 

e.c 

0.0 

0. 

-0. 

8. 

8.0 

0.0 

0. 

-0. 

0. 

0913182 

17.1 

131.3 

35 

5.0 

0.0 

0. 

-0. 

0. 

8.6 

0.8 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0914082 

17.7 

131.5 

40 

0 0 

0.9 

0. 

-9. 

0. 

0.0 

8.0 

0. 

-0. 

O. 

e.p 

0.0 

0. 

-0. 

C. 

).0 

0.0 

0. 

-O. 

0. 

0914862 

18.7 

131.3 

40 

18.S 

131.6 

45. 

21. 

5. 

21.7 

131.0 

65. 

293. 

IS. 

24.9 

129.6 

75. 

397. 

5. 

25.2 

125 » 

70. 

344. 

-43. 

0914122 

18.7 

133.0 

4S 

19.2 

131.3 

45. 

79. 

8. 

22.2 

138.7 

bS. 

302. 

15. 

25.4 

128.1 

75. 

373. 

8. 

26.2 

125.0 

78. 

460. 

-55. 

0914102 

19.8 

128.8 

**5 

18.7 

128.8 

45. 

6. 

0. 

19.5 

124.1 

66. 

1S6. 

5. 

21.7 

121.8 

65. 

219. 

-28. 

26.6 

123.3 

70. 

287. 

-50. 

0915002 

19.3 

128.1 

45 

19.0 

127.9 

50. 

21. 

S. 

20.6 

122.8 

65. 

234. 

0. 

25.4 

119.2 

70. 

447. 

-25. 

30.7 

122.0 

40. 

534. 

-75- 

091586; 

19.2 

127.2 

SO 

19.5 

126.8 

58. 

29. 

0. 

21.4 

122.2 

55. 

258. 

-15. 

24.3 

119.5 

65. 

337. 

-45. 

8.0 

8.0 

U. 

-0. 

0. 

09IS122 

18.8 

126.7 

50 

19.9 

126.2 

50. 

71. 

0. 

21.6 

122.8 

65. 

214. 

-10. 

24.5 

119.9 

40. 

287. 

-85. 

27.8 

119.S 

49. 

393. 

-30. 

0915182 

18.4 

126.6 

55 

18.7 

126.1 

55. 

34. 

0. 

19. i 

123.1 

70. 

128. 

-15. 

22.8 

120.3 

id. 

113. 

-58. 

76.0 

119.3 

45. 

101. 

-10. 

0916002 

18.8 

126.5 

65 

18.7 

126.2 

55. 

10. 

-10. 

19.3 

124.1 

70. 

49. 

-25. 

22.0 

120.3 

70. 

46. 

-45. 

26.0 

119.3 

45. 

173. 

10. 

0916662 

19.1 

126.1 

70 

19.8 

125.8 

78. 

10. 

0. 

20.3 

122. t 

85. 

102. 

-25. 

23.2 

119.5 

60. 

42. 

3e. 

27.0 

118.4 

35. 

188. 

5. 

091612Z 

19.5 

125.9 

75 

19.4 

S25.7 

75. 

13. 

0. 

20.9 

123.1 

90. 

12. 

-35. 

24.0 

128.4 

45. 

126. 

-25. 

27.8 

120.2 

40. 

309. 

28. 

0916182 

28.0 

125.1 

85 

19.7 

125.6 

88. 

33. 

-5. 

21.6 

123.8 

108. 

91. 

-28. 

24.3 

121.4 

CO. 

res. 

5. 

8.0 

0.0 

0. 

-O. 

0. 

09170O2 

13.9 

124.7 

95 

28.2 

124.9 

80. 

21. 

-IS. 

22.0 

122.2 

ICO. 

62. 

-15. 

25.0 

128.6 

55. 

712. 

70, 

0.0 

0.0 

8. 

-0. 

0. 

0917062 

23.6 

124.1 

MO 

28.5 

124.2 

100. 

?. 

-10. 

23.0 

122.! 

115. 

152. 

25. 

26.0 

121.1 

120. 

2V3. 

90. 

8.0 

0.0 

0. 

-0. 

8. 

0917122 

23-7 

123.1 

125 

21.1 

123.6 

110. 

37. 

-15. 

23.8 

121.7 

119. 

185. 

^e. 

26.9 

I2I.2 

60. 

345. 

48. 

0.0 

0.0 

0. 

-0. 

0. 

6917187 

21.3 

122.2 

120 

21.2 

122.4 

129. 

13. 

0. 

24.2 

120.0 

70. 

132. 

IS. 

e.8 

0.0 

0. 

-e. 

0. 

0.0 

6.0 

0. 

-8. 

0. 

C918062 

21.9 

121.1 

115 

21.8 

121.3 

125. 

1 ! . 

10. 

26.1 

119.1 

60. 

166. 

25. 

C.0 

0.0 

Q, 

-0. 

e. 

0.0 

0.0 

0. 

-0. 

0. 

0910062 

22.5 

119.4 

90 

23.0 

119.8 

106. 

37. 

10. 

27.6 

119.3 

65. 

247. 

35. 

0.0 

0.0 

0. 

c. 

e. 

0.0 

0.0 

0. 

-0. 

0. 

0916122 

22.8 

118.5 

71 

23.2 

118.5 

00. 

24. 

20. 

o.e 

6.8 

0. 

-8. 

e. 

8.0 

0.0 

n. 

-0. 

0. 

9.0 

0.0 

o! 

-0. 

0. 

O9I0182 

23.3 

M7.8 

55 

73.5 

117.8 

55. 

17. 

0. 

0.0 

0.0 

0. 

-0. 

c. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

P. 

-0. 

0. 

0919C82 

24.2 

1 IE .8 

35 

24.2 

117.2 

30. 

22. 

-5. 

0.0 

0.0 

0. 

-C. 

0. 

0.0 

0.0 

0. 

-0. 

0 

0.0 

0.0 

9. 

-0. 

0. 

0919062 

24.9 

115.C 

30 

O.0 

0.0 

0. 

-0. 

0. 

0.0 

6.0 

8. 

-8. 

0. 

0.0 

0.0 

0. 

-0. 

e. 

0.0 

0.0 

0. 

'0. 

0. 

0919122 

25.7 

114.9 

2D 

O.O 

0.0 

0. 

-0. 

0. 

6.0 

0.0 

8. 

-0. 

0. 

e.o 

0.0 

0. 

-0. 

e. 

0.0 

6.0 

0. 

-c. 

0. 


AVG FORECAST POSIT EPRCR 
AVC RIGHT ANCLE £FPOP 

INTENSITY 1V.GMITUDE ERROR 
A/G ji’TENSlTY 8 IAS 
NUTTER 0? FORECASTS 


ALL 

FORECASTS 


URlfG 

24*HR 

43-HR 

72-liP 

26. 

164. 

245. 

305. 

:o. 

113. 

172. 

231. 

6. 

20. 

35. 

33. 

-I. 

I. 

-12. 

-25. 

20 

17 

14 

9 


TYPHOONS IHlLE OVER 35 KTS 


Lf'NG 

24-MP 

48-HR 

72-1* 

?A. 

158. 

233. 

326. 

18. 

185. 

150. 

307. 

6. 

19, 

38. 

39. 

0 . 

- i . 

-25. 

-30. 

20 

16 

12 

7 


DISTANCE TRAVELED CY STORM IS 1260. **M 
AVERAGE SPEED OF STORM IS 9. KNOTS 


TYPHOON PEPCY 

FIX POSITIONS FOP C.TICNE NO. I? 


SATELLITE FI2"£S 


FIX 

t:;e 

Fiv 






NO. 

• 2* 

=*osit:on 

ACC-v 

DV0»Ar CODE SATELLITE 

COKCHTS 

SITE 

I 

1*1200 

!6.9fl 

131.4£ 

PCN 0 


OTHER 


RGTJ 

7 

I31C30 

17.2M 

130.7E 

rc** o 


QT*CP 


Pf.TU 


132356 

17.711 

131.3E 

PC’* 6 


liO*A6 


PCTU 


*.40308 

18. TN 

IS1.SC 

pt*; c 


OThEP 


P6TU 

5 

14072: 

10.8#* 

I3I.7E 

PC'. 5 


TIROS-*. 


PGTU 

6 

: s=.“2: 

17.CM 

ii0.ee 

PEN 5 

T3.0/3.0 

T!*»OSM 

In;t css 

Pt-TV 

7 

1-1054 

• 9.21* 

130.7E 

PC‘* 5 


iOAi*, 


PCTW 

8 

1478 13 

n. 2 »« 

528.7E 

PCN 5 


W5«- 37 


POTu 

9 

142333 

19.3H 

*28-35 

PCN 3 

13.0/3.0 


INIT COS 

P^TJ 

ie 

158709 

!<*.bN 

127.3F 

PCN 5 


TIFOSM 


•*STy 


!5:C3S 

:s.tn 

12S.CE 

PCM 5 



UL PSCL E*E FPTC 

ps.y 

12 

I5IC00 

18.9** 

126.a 

PC** c 


OTHER 


PGUI 

13 

:5:?S4 

IA.7N 

127. IE 

r c** s 


*:posn 

LPS CVCST HO DEFINITION 

Ft $o 

14 

152:90 

53.3N 

*26.rc 

PCI* 0 


OTK.P 


F*,TU 

15 

1573:1 

;ft.?f* 

126.IE 

3 

14.0/4.0 /DI.0/24H»$ 



H.IU 

Jfi 

15-311 

ic.e** 

175.7E 

rc** 5 




W-s© 

17 

160*57 

I5.1M 

:2C.rt 

rc*« 1 


TI CCS?* 


PGTW 

10 


13.CM 

126.2C 

PCM ! 


TIPOSJI 


PitU 

19 

I £0653 

19.Cl. 

126.PE 

PC** ! 

T5.0/5.0 

t :ivSf* 

INI* DCS 

RSS*i 

20 

150900 

19.3** 

»26.oC 

PC-» E 


OT»<P 


P&TJ 

2* 

161889 

:*».3. 

125.T-. 

PC-f 1 




P--.1U 

22 

I6!60U 

20.13* 

125.2£ 

PC-* = 


other 


per.* 

23 

161543 

20. d* 

125.C* 

PCH I 


TI POSH 



24 

!62S0O 


I24.9C 

Pc ! E 


oncp 


PSTU 

75 


:? si- 

125.IE 

PC?* 4 


WCI»37 


Rf?f 

26 


20. IN 

174.9E 

pcn : 

T5.C/5.0 /Dl.C/2*«S 

i ¥> r ***6 


K.rw 

27 

178000 


174.7E 

• E 


0T*€ & 


PCTU 

29 

170830 

19.7N 

124.9E 

PC** 5 




PPT* 

29 

170?46 

70.V* 

:?4.2l 

PCN I 

T6.0/C.C /DI.C/24^5 

TITOS.’* 


P5D*« 

38 

178646 

20.711 

124. **€ 

rc * ; 


T! Wl 


PSTU 

31 

1 .-0900 

20.-H 

S23.CC 

PC’* E 


OTICP 


PSIU 

32 

17:93: 

21.61* 

12!.9E 

PCN 5 


7IF»*aM 


W1! 

33 

: 72:08 

21.5** 

121.5E 

PC** E 


OThEP 


PSIW 

Y4 

17715! 

21.6*1 

121. '€ 

PC’* 3 


KSTJ7 

HO D”C«* 

Psrw 

35 

isoco-r 

21.CM 

ir:.:t 

rc*. ; 

T6.C/6.C 

?ev.K- 

IN | T CDS 

pprr 


♦ ^ .(V! 

22.2** 

I'P-TE 

0 


0T*S.R 


PUTU 


5*50634 

2 , .?t* 

TI't.SE 

PCN 3 


TilSS;. 

HO CH7 rc*? TV 

PO^t 

32 

15.3654 

22.5*1 

:i?.4f 

PCN * 


TifftSH 


PGiy 

39 

10C*H» 

22.SN 

11C.*1 

PC** G 


onev 


ft.ni 

48 

n;:es 

’7.5** 

118.5E 

PC’* s 


1S>V«6 


Peru 

41 

klTSS 

22. b** 

I10.3E 

PC« 0 


OTHTP 


^,TU 


121508 

23.31* 

i:s.rc 

PC!. O 


n?‘CH 


f'jiv 

43 

:32100 

23.7H 

517.7C 

PC*‘ 0 




PS?U 


IS2345 

24. »N 

i:c.6£ 

PCN 3 

T3.C^3.0 

NO*W*S 

INIT CCS 


45 

I3C9CO 

25. JM 

!15.4£ 

-0 C 


other 


PCty 


156 




















AIRLRA*T Fl»ES 


FIX 

Tift 

F! 

!X 

FLT 

700TB 

OSS 

n*X-SFC- 

•LMD 

n&*-FLT-LVt- 

UlD 

ACCPY 

E 

EYE 0»i£N- 

EYE TETB «C> 

IBM 

HO. 

(2) 

POSITION 

LVE 

HGT 

TBLP 

VEL/BPG/PMC 

DIPxVEE'BPG'ftNG 

HAV/TtT 

SHAPE 

DIATVTrtTION 

CJTx IHx I-SVSST 

MO. 

1 

140244 

18. *H 

131.66 

158CTT 


592 

50 

ISO 

5 

SCO 

35 

320 

53 

1 

I 



♦20 

♦26 

♦23 2? 

1 

2 

141207 

18. ?f 

12S.2C 

700TB 

3003 





170 

45 

U30 

30 

5 

2 






2 

3 

141S24 

18.7N 

129.31 

70W *3 

3003 





028 

42 

280 

25 

? 

3 



♦ 11 

♦ 14 

♦ 14 

2 

A 

150352 

19.3« 

127.4f 

700f« 

2991 

985 

40 

130 

60 

030 

39 

339 

16 

5 

5 



♦ 16 

♦ 19 

♦ 12 

3 

5 

151237 

I8.7N 

irc.PE 

reoTB 

30! 1 





138 

59 

199 

45 

1 

3 






4 

C 

151435 

18.7M 

126.5E 

700*8 

2991 

987 




040 

35 

280 

20 

1 

2 



♦ 19 

♦21 

♦ 8 

4 

7 

160011 

10.7M 

126.4f 

700TB 

2879 


65 

160 

15 

230 

62 

ISO 

15 

2 

5 






S 

3 

160243 

I8.8M 

126.2 £ 

7O0T8 

2857 

970 

65 

330 

20 

020 

69 

339 

18 

6 

2 

CIPCW.W? 

22 

♦12 

♦16 

♦ 12 

5 

9 

161316 

19.43 

125.9E 

780TB 

2803 





340 

55 

260 

35 

S 

2 

CIRCULAR 

25 




6 

ie 

170110 

20. CH 

I24.5F 

700TB 

2644 


BP 

tea 

7 

270 

52 

170 

35 

3 

1 

C IRCULAR 

28 




? 

n 

170 302 

20.3N 

124.SE 

7001C 

258? 


100 

310 

8 

180 

73 

100 

45 

5 

1 

CIRCULAR 

20 

*»4 

♦ 18 

♦ 11 

7 

12 

171306 

20.8P 

123.OF 

700TB 

238? 





240 

180 

160 

8 

4 

2 

CIRCULAR 

15 


♦25 

♦ *2 

8 

13 

171616 

21.OH 

••22.4£ 

700TB 

2467 





070 

126 

340 

10 

4 

5 

CIRCULAR 

15 

♦ 12 

♦24 

*12 

8 


RADAR FIXES 


Fix 

Ti**. 

FIX 


EYE 

EYE 

RADG6*C0Dt 


FADAP 

SITE 

N0. 

<Z> 

POSITION 

RADAR ACCRY 

SHARE 

Dl«1 

«SU~P 7DDFF 

COfTtNTS 

position 

UB HO. 

1 

175180 

20.?N 123.3E 

LAND 



28?/5 3.'/,x 


24.OH 121.6£ 

46699 

2 

171280 

20.7M 123.IE 

LAND 



20715 52908 


24.OH 121.6E 

46699 

3 

17S3C0 

20.8N 123.8c 

LAND 



23624 53I09 


24.OH l2i.&£ 

46699 

4 

I71490 

28.8N 122.SE 

LAND 



10614 52708 


24.CM 121.6E 

45699 

0 

171500 

20.9N 122.6E 

land 



10674 5280? 


24.OH 121.6t 

466*9 

6 

17I6O0 

20.9N 124.EE 

land 



20734 S3105 


24.OH I21.6E 

46699 

7 

171700 

20.9H 122.4£ 

LAND 



assss S3106 


22.6M 120.3E 

46744 

3 

171700 

21.UN 122.4£ 

LAND 



29734 53109 


24.CM 121.66 

4669? 

9 

171800 

21. er* 122.3E 

LAND 



4/xxj 53209 


22.6M 128.3E 

46744 

10 

171800 

21.2n 122.3E 

LAND 



ie?13 S3212 


24.ON 121.6£ 

46699 

11 

S71900 

21.2N 122.2E 

LAND 



A'ss l 53111 


22.6*1 120.3E 

46744 

12 

171900 

21.3N I22.3E 

LAND 



10654 532xx 


24.CM 121.6E 

46699 

13 

172000 

21.3h 12!.9E 

land 



2x^x3 53218 


22.6« 120.3C 

46744 

14 

172CO0 

21.SH l22.CE 

LAND 



10733 S321S 


24.OH 121.6E 

46699 

15 

172100 

21.5n 121.?E 

LAND 



ieS03 53016 


22.SM 120.3£ 

46744 

16 

I72100 

21.5N 121.7E 

LAND 



ie503 52916 


24.OH 121.6E 

46699 

17 

172208 

21.6H 121.4£ 

land 



ie5!2 52916 


22.CM 120.3E 

46744 

18 

172200 

21.7N I21.SE 

LAND 



10304 53110 


24.en 121.6E 

46599 

19 

172200 

21.8M 121.2E 

LAN? 



10423 530I6 


22.6M 120.3c 

46744 

20 

172300 

21.8H I21.2E 

land 



33664 52914 


24.OH 121.6E 

46699 

21 

leoeeo 

21.OH 120.9C 

LAND 



10123 53018 


22.6H I20.-E 

46744 

22 

i-woee 

21.9H 121.IE 

LAND 



55/xt S33,(, 


24.en 121.6E 

465 Q 9 

23 

139100 

22.On 12C.7E 

LAIT 



ISxxx 53014 


22.6M 17C.7E 

46744 

24 

180100 

? 2 .en :2i.e€ 

LAND 



55/x4 52909 


24.Of* I21.6E 

46699 

25 

189209 

22.IN 120.5E 

land 



15/xx 53012 


22.6M 120.3E 

46744 

26 

1803CC 

22.3N 120.?£ 

land 



10C82 53823 


22.EM 120.3E 

46744 

27 

ieo4co 

22.3M 119*9E 

LAND 



2Sx$3 52716 


22.6M I20.3E 

46744 

23 

189500 

22.4N I19.5C 

LAND 



15/63 52719 


22.CM 1IC.3E 

46744 

29 

180600 

22.4»l 119.SE 

LAND 



25^63 SCCC0 


22.6M 120.3S 

46744 

30 

1SO70O 

22.4M ::9.3E 

LAND 



25x63 52718 


22.6M 120.3E 

46744 

31 

189869 

22.4m 113.2E 

LAND 



25/v 3 5270? 


22.6M 120.3€ 

46744 

32 

ieo9oo 

22.4N I19.IE 

LAND 



25/xS 52705 


22.Cn 120.36 

46744 

33 

131000 

22.4N J19.0£ 

LAND 



25/.'3 52704 


22.6H 129.3E 

46744 

34 

lenco 

22.5H IIA.9E 

land 



25/X3 53105 


22.0* I20.3E 

46744 

35 

10:200 

22.6m 118.6E 

land 



25x^/ 53113 


22 .cn 120.3£ 

46744 

36 

181380 

22.?N 118.6E 

land 



2Sxx/ 53109 


22 .cn 120.3E 

46744 

37 

181400 

22.8M II8.5E 

land 



25/xx S3!II 


22.Cn 120.3E 

46744 

38 

101500 

23.OH U8.3E 

LAND 



2S/xx 53118 


22.0* I20.3E 

46744 

39 

131600 

23.in 110.2E 

LAND 



25xxx 53112 


22.6H 129.3£ 

46744 

40 

181700 

25.Jn 118.0E 

LAND 



25/xx 53114 


22.Cn I20.3E 

46744 

4! 

181800 

23.5N I17.8E 

LAND 



2$xxx 53113 


22.6M I28.3E 

46744 

42 

181900 

23.7M I17.7E 

LAND 



2030/ 53116 


22.0* 120.3E 

46744 

43 

182080 

23.6N I17.6E 

LAND 



25/xx 532J2 


22 .cn 128.3E 

46744 


NOTICE - THE ASTERISKS (•) INDICATE FIXES IW?£PRESEN7ATIVE AND NOT USED f&t BEST TRACK PURPOSES. 
12296441 KHPN CY 4$ 


157 




















a o « A ci » o o u iv o K 




























































if>;®e 

.^.e* 145.fc 

*C*» 0 

er»<* 

l“2?41 

3®.«s 

*0- 5 

?3.e>4.® 4v.*e*«s ?o*-s 

ZWW 

:®.r« 542 . 2 c 

K--i 0 

0?*<f 


3c.** S-S.3 

K« 5 

KV**i 


i.'.^ :-■>.« 

6 

Xj£-*v 


r I* 

eOSSTSSf 


-i>cs 


.*»S 3i5 mx-yc-v*J5 rK*-?iT- v A-'Jv iK^f 
K5F fS? «ttcCT 


'^43# 

2®.3» 144.^ 

2?®rs 

3«J 


45 92® 

15 

tie 

4? 52® 


22.Cs !4®Is* 


3®?C 

.33 

4S 15® 

35 

22® 

3t 15® 


2-s.rN 

2f**t 

3®!* 

??: 



-2® 

35 31® 

2®3®> 

2^-4-; 


3W3 

99® 

ie « 

3C 

:« 

42 

«y 

2*.2* 13%.i? 

’C^“fc 

3J4 

932 



J:« 

49 :5® 

Zjj fe® 

3f.CN iif.ee 


3f4J 

9s9 

®5 12® 

ct 

25C 

55 2JS 


29.5* 13®-®€ 

.■ve 

3®25 


45 22® 

25 

e-'f 

5 3Ci 

»*li 

>e.9*i i3f.“ 

rvr% 

3®:4 


55 <:■; 


:e? 

5® ill 


3®.5* iSf.fC 

2®®re 

3®®* 

9>C 

-> 23® 

4® 

25® 

54 25® 


m ec!£s- tit Ttrr <c> 

5 :^VTrT ;>i Sst- l!t/ ^/S5T 


*14 «il *19 
*12 *;* *ii 
*1® *13 
*IS *U *il 
•;< *;i *;> 

*13 *S4 *12 

*1? •!( • » 


f;x 

Krill;*®* 


«2*3 34.«K 

:>-.n 

i®5®® !}?.« 

file® 3®.**- 139,%* 

»!«*^i rs.i* :-s*.:£ 

fllff 3-f.** lii.;- 
3®.v** 

31-2-» 14J.®« 
^s; J:.u*i.s 
^eiese 3:.2?* 14J.4 


I'T 5A3C£-<f§€ 
rjfff 


35 J 5K 
3^-1 W 



uc «, 

35 

:3f.?t 

42 m 

35.£* 

S3*.2t 

-tm 

35.SK 

IT..?* 

42 m 

35.3s 

lJ5..t 

42433 

35.3s 

sJt.rc 

42*J* 

J5.3S 

139.21 

42m 

C.JS 

J3S.7T 

42m 

35.3« 

m.Tt 

42 m 

35.2s 

m.n. 

42 m 

35.3* 

iic.n 

•c-m 


^■:ci - t* c S5^*:yf *«i :^3 ic*ti n n ^ «t «st> ?s» es: 


159 










































TROPICAL STORM THELMA 
BEST TRACK DATA 


MO''DA/HR 

BEST TRACK 

POSIT WIND 

UARNING 

FRRQRS 

PCSIT U1ND DST UIND 

24 HOUR FORECAST 
ERRORS 

POSIT UIND DST UIND 

48 HOUR FORECAST 
ERRORS 

POSIT UIND DST UIND 

72 HOUR FORECAST 

POST UIND DST UIND 

092S60Z 

13.5 

I47.0 

1C 

0.0 

0.8 

0 . -0. 

0 . 

8.0 

0.0 

0 . 

-0. 

N. 

0.0 

0.0 

0 . -0. 

0 . 

0.0 

0.0 

0 . 

•0. 

0 . 

0925062 

15.6 

146.C 

IS 

0.0 

C.0 

0 . *0. 

0 . 

0.0 

0.0 

0 . 

>0. 

0 . 

0.0 

0.0 

0 . -0. 

0 . 

0.0 

0.0 

0 . 

-0. 

0 

0925122 

IS 8 

146.6 

15 

0.0 

O.0 

0 . *0. 

0 . 

0.0 

8.0 

0 . 

-0. 

0 . 

0.0 

0.0 

0 . -0. 

0 

0.0 

0.0 

0 . 

-e. 

0 . 

0925182 

16.1 

146.3 

15 

0.0 

0.0 

0 . >0. 

0 

0.0 

0.0 

0 . 

*0. 

0 . 

0.0 

0.0 

0 . -0. 

0 . 

0.0 

8 0 

0 . 

-0. 

0 . 

0926802 

16.3 

146.1 

28 

6.0 

0.0 

0 . *0. 

0 . 

0.0 

0.0 

0 . 

“8. 

0 . 

0.0 

0.0 

0 . -0. 

8 . 

0.6 

0.0 

0 . 

-a. 

0 . 

092606Z 

16.7 

145. S 

25 

0.0 

8.0 

0 . *0. 

0 . 

0.0 

0.0 

6 . 

>0. 

0 . 

0.0 

0.0 

0 . -0. 

0 . 

0.0 

0.0 

0. 

-0. 

0 . 

0926122 

17.3 

145.1 

25 

0.0 

0 e 

0 . >0. 

0 . 

0.0 

0 O 

0. 

•0. 

0 . 

0.0 

0.0 

0 -0. 

0 

3.0 

0.0 

0. 

-0. 

0. 

C92618Z 

17.8 

144.7 

25 

17.2 

143.6 

30. 103. 

5. 

19.1 

139.7 

50. 

187. 

15. 

21.1 

135.5 

65. 493 

20 . 

22.6 

130.0 

7b. 

1000 . 

28. 

09278O2 

18.3 

144.3 

25 

17.7 

142.9 

30. 07 

5. 

19.0 

140.3 

50. 

193. 

15. 

‘0.7 

13/.5 

65. 490. 

15. 

23.2 

135.5 

70. 

850. 

25. 

092/Q6Z 

19.2 

143.6 

30 

18.0 

142.4 

30. 99 

O. 

19.1 

146.2 

50. 

265. 

15. 

26 9 

137.5 

65. 559. 

10 

23.5 

135.5 

70. 

1093. 

25. 

092/122 

20.0 

143.0 

30 

20.5 

143.9 

38. 59. 

0 . 

23.9 

143.0 

45. 

49. 

. 

26.0 

140.5 

60. 309 

b. 

28.3 

139.7 

60. 

969. 

15. 

B927I8Z 

20.8 

142.5 

35 

22.8 

141.9 

45. 124. 

10 . 

27.6 

139. b 

45. 

286. 

0. 

33.9 

139.3 

65. 344. 

1C. 

0.0 

0 O 

0 . 

-0. 

0 . 

09^8002 

21.7 

142.2 

35 

21.8 

142.6 

35. 13. 

0 

26.0 

142.8 

30. 

61. 

-20. 

31.S 

143.1 

20. 49. - 

25. 

0.0 

0.0 

0 . 

-0. 

0 . 

0926862 

23.2 

142.0 

35 

22.4 

142.1 

35. 48. 

0 . 

26.1 

143.5 

30. 

119. 

-25. 

31.7 

148.4 

2e. 266. - 

2 b. 

0.0 

0.0 

0. 

-0. 

0 . 

8920122 

24.5 

142.4 

40 

24.4 

142.0 

33. 23. 

-10. 

28.7 

144.9 

30. 

4?. 

-25. 

0.0 

0.0 

0 . -0. 

0 . 

0.0 

C.0 

0. 

-0. 

0 . 

0928102 

25.8 

142.9 

45 

25.8 

142.0 

40. S. 

-5. 

30.1 

146.: 

30. 

44. 

-25. 

0.0 

0 0 

0 . -0. 

0. 

0.0 

o.e 

0 . 

-0. 

0. 

6929002 

26.8 

143.5 

50 

26.8 

143.5 

50. 6. 

O. 

30. J 

14/ .9 

50 

103. 

5. 

0.0 

0.0 

0 . -0. 

0. 

0.0 

0.0 

0. 

-O. 

0. 

0929862 

28.8 

144.2 

55 

26.3 

143.5 

55. 100. 

0 . 

31.2 

14/. 3 

40. 

325. 

-5. 

0.0 

O.d 

8. -0. 

0. 

0.8 

0.0 

0 . 

-0. 

0 . 

0S2912Z 

29.4 

144 9 

55 

28.0 

144.2 

55. 91. 

0 . 

e.e 

0.0 

0 . 

-0. 

U. 

0.0 

0.0 

0. -0. 

0. 

0.0 

8.0 

0. 

-0. 

0 . 

0S29182 

30.7 

146.0 

55 

30.8 

150.8 

55. 205. 

0 . 

0.0 

0.0 

P 

-0. 

0 . 

0.0 

0.0 

0 . -0. 

I, 

0.0 

O.0 

P. 

-0. 

0 . 

0‘. 100CZ 

32.3 

147.9 

45 

32.0 

140.2 

S5. 88. 

10 . 

0.0 

e.n 

L. 

■0. 

0 . 

0.8 

0.0 

0 . -0. 

0. 

0.0 

0.0 

0 . 

-0. 

0. 

09J0062 

35.2 

151.7 

45 

33.9 

147.9 

50. 202. 

5. 

0.0 

0.0 

0. 

-8. 

e. 

0 0 

0.0 

0. -0. 

8. 

0.0 

0.0 

0 . 

*8. 

0. 

093J122 

37.3 

155.8 

45 

37.8 

155.S 

45. 33. 

A. 

0.0 

0.0 

0 . 

-0. 

0 . 

0.0 

0.0 

2 -0. 

0 . 

0.0 

0.0 

0 . 

-0. 

0 . 

AVG FORECAST POSIT ERX0R 

AVG RIGHT ANGLE ERROR 

AS”3 INTENSITY MAGNITUDE ERROR 
AVG INTENSITY BIAS 

NUMBER OF FORECASTS 

ALL FORECAS 
•J?hG 24*HR 

01. 145. 

43. 33. 

3. ... 

1 -4. 

16 11 

rs 

48*HR 72-HR 

358. 973. 

218. 57.*. 

16. 21 

1 21. 

7 4 


TYPHOONS CHILE OVER 35 XTS 
DRUG 24-HR 40-HR 72-HR 

a. 0. 8. 0. 

A. 8. 0. 0. 

0 . 0. 0. 0. 

0. 0. 0. 0. 

0 0 0 0 








DISTANCE TRAVELED BY storm IS ibBI. NM 


AVERAGE SPEED OF STORM IS 13. KNOTS 

TROPICAL STORM THELMA 
FIX POSITIONS FOR CYCLONE NO. 21 


satellite FIXES 


FIX THt FIX 


•»o. 

<2> 

POSITION 

ACCRY 

DVORAK CODE SATELLITE 

COMMENTS 

SITE 

* 1 

272200 

23.?N 

143.IE 

*>CN 5 

T3.0/3.0 /D1.0/24M 

NOAAS 


PGTU 

2 

252249 

IS.7N 

147.3C 

PCH 5 

T0.5/0.5 

MCAA6 

IhIT 08S 

PGTU 

3 

2C00O0 

lb.6N 

145. ■'E 

plm n 


OTHER 


PGTU 

* X 

260903 

16.511 

144.0E 

PCH 0 


OTHER 


PGTU 

* 5 

2612O0 

17.ON 

144.0£ 

PCH 0 


OTHER 


PGTU 

6 

262227 

18. IN 

144 $t 

PwH 6 

T2.0/2.0 /D1.S/24HPS 

N0AA6 


PGTU 

7 

2703O0 

17.7N 

142 ?E 

PCM 0 


OTHER 


PGTU 

0 

270632 

19.3N 

*43 6E 

PCN 5 


TIROSN 


PGTU 

9 

270900 

19. IN 

144.3C 

PCH 0 


OTHER 


PGTU 

10 

27092S 

20. IN 

144.?E 

PCN 5 


N0AA6 


PGTU 

* 11 

2712C0 

21.Ill 

144.IE 

PCH 0 


OTHER 


PGTU 

* 12 

271600 

22.6N 

143.2E 

PCN 0 


OTHER 


PGTU 

* 13 

2^2100 

23.4N 

142.SE 

PCN 0 


OTHER 


PGTU 

14 

2C0330 

22. IN 

142.?E 

PCH 0 


OTHER 

ULCC 24.3 142.6 

PGTU 

15 

280bOO 

23.7M 

14i.5E 

PCN C 


OTHER 

PSN BSD OM E'tf'SD ILCC 

PGTU 

16 

208621 

23-41* 

141 3E 

PCH 3 


TIROSN 


PGTU 

17 

230621 

23 /H 

141. .’E 

PCN 3 

T2.0/2.0 

TIROSN 

INJT CBS 

RPfK 

18 

280900 

23.21* 

141 56 

PC** 0 


OTHER 

ULCCS AT 23.2 143.4 25.0 143.4 

PGTU 

19 

28A903 

23.1*1 

141.3E 

Pen 6 


N0AA6 

ULCCS AT 23.1 143.3 25.8 143 .£ 

PGTU 

20 

28I20O 

24.9H 

143 6E 

PCN 0 


OTHER 


PGTU 

2i 

281600 

25. IN 

143.2E 

PC.i o 


OTHER 


"'.TU 

22 

291946 

26. ON 

143.7F 

PCN 6 


TIROSN 


PGTU 

23 

201906 

25. SN 

145.CE 

PCN 5 


TIROSN 


RP*K 

24 

282100 

26. IN 

143.3E 

PCN 0 


O f HER 


°GTU 

25 

282:43 

26.5N 

143 5t 

PCN S 

T2.5/3 0 'U0.5/24MRS 

N0AA6 

PSBL UCC 26.1 142.3 

PGTU 

26 

240330 

27.6*. 

143.bE 

PCM C 


OTHER 


PGTU 

27 

290600 

20.2N 

144 IC 

PCN 0 


OTHER 


PGTU 

26 

290609 

20.2H 

143.5E 

PCH 5 


TIROSN 

PSB*. LLCC 26.4 143 7 

PGTU 

2° 

2 Q QGC9 

20. ON 

144.y£ 

PCN S 

T3.0/5.6 

TIROSN 

1NI7 005 

ROfctl 

30 

290900 

29.2*1 

144 4E 

PCN 0 


CP‘SR 


PGTU 

31 

291022 

20.6** 

144.0E 

PCN 5 


•I00A6 


PGTU 

32 

291200 

29 9H 

141.PE 

FCN 0 


OTHER 


PGTU 

* 33 

291600 

3I.6N 

145 lfc 

PC** 0 


other 


pcm 

54 

291hj4 

3U. bt: 

146 bE 

PLM 5 


TIROSN 


PGTU 

?5 

232100 

30.7M 

147.0E 

PCN 0 


OTHER 

°S8L L'-VL 31.9146,4 

PGTU 

36 

232301 

31.5H 

143.3E 

PCN 5 

TI.0/2.5 AJI.5/25HRS 

HOMS 

PS8L LvCC ULCC 32.6 146.5 

PGTU 

37 

3QCCA0 

35.3N 

1*1 8E 

PCN 0 


OTHER 

ULCC 

PGTU 

38 

320900 

25.3N 

153.0£ 

PCN 0 


OTHER 

ULCC 

PGTU 


AIRCRAFT FIXfcS 


FIX FIX FLT 70 )W OSS MAX-SFC-WtD (8X-FLT-LVL-EJND ACCRY EYE EYE OR JEN* EYt TEPP <C> MSN 

HO. O POSITION LVL KCT I1SLP VEL/BRG-'RHG DIR/V6L/8RC/RNG NAV/TtT SHAPE DIAM/TATION OUT/ IN/ D» 'SST NO. 


1 

271530 

22. IN 

142.3E 

700*8 

3014 

993 



176 

33 

too 

136 

4 

10 


♦ 12 

♦ 11 

3 

2 

2C9IU8 

21.9N 

141 SE 

7P0*8 

3007 


25 020 

170 

100 

27 

020 

150 

4 

3 




4 

3 

2C03C8 

22 l*i 

142.2E 

700*8 

2993 


30 3O0 

95 

360 

23 

320 

IIP 

4 

4 

♦ 15 

♦ 14 

♦ 12 

4 

4 

>il104 

25.7H 

143.lfc 

700*8 

2981 




340 

44 

200 

40 

2 

5 




J 

S 

231410 

25 2H 

143.HE 

700*8 

29ft I 

S87 



320 

27 

24G 

40 

2 

s 

♦w 

♦ 12 

♦ 10 

5 

6 

290015 

27.0m 

143.IE 

?nO*8 

2964 


40 180 

60 

310 

23 

170 

139 

5 

3 




6 

7 

290258 

S6.9H 

14a.0E 

700*8 

2931 

982 

55 O60 

42 

090 

36 

350 

110 

5 

4 

♦ 10 

♦ 14 

♦ 12 

6 

8 

291500 

30.2N 

144.4t 

7Q0MB 

2925 




290 

SO 

120 

150 

5 

2 

+13 

M3 

♦13 

7 


160 









TYPHOON VERNON 
BEST TRACK DATA 


BEST TRACK JARNING 24 HOUR FORECAST 48 HOUP FOPECAST 72 HOUR FORECAST 

ERRORS ERPORS tPPORS 


MO/'DA/HR 

POSIT UIHD 

POSIT 

UIND 

DST UIND 

POSIT 

UIND DST UIND 

POSIT 

UIND 

DST UIND 

POSIT 

UIND 

DST UIND 

0927002 

12.2 

161.2 

28 

0.0 

0.0 

0. 

“0. 

0. 

0.0 

0.0 

0. -8. 

0. 

0.0 

0.8 

0 . 

-0. 

0 . 

0.0 

0.0 

O. 

-0. 

0. 

092706Z 

12.2 

160.4 

25 

0.0 

0.0 

0. 

-8. 

0. 

0.0 

8.0 

0. -0. 

0. 

6.6 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0 . 

-0. 

0. 

0927122 

12.3 

159.8 

25 

0.0 

0.0 

0 . 

-0. 

0. 

0.0 

0.0 

0. =0. 

0. 

6.8 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-8. 

0 . 

0927182 

12.4 

159.1 

25 

12.6 

158.9 

30. 

17. 

5. 

14.0 

154.7 

45. 81. 

5. 

16.0 

150.0 

55. 

283. 

-5. 

18.8 

144.4 

65. 

479. 

-15. 

0928002 

12.6 

158.4 

25 

13.0 

157.8 

30. 

42. 

5. 

14.6 

152.9 

50. 163 

10. 

17.e 

148.1 

65. 

369. 

0. 

19.3 

144.8 

75. 

427. 

-15. 

0928062 

13.2 

157.4 

30 

13.0 

157,5 

30. 

13. 

0 . 

14.0 

154.0 

50. 133. 

5. 

16.6 

149.5 

65. 

308. 

-10. 

18.8 

145.5 

75. 

415. 

-20. 

0928122 

13.0 

156.7 

35 

13.1 

156.7 

30. 

42. 

-5. 

14.5 

153.1 

58. 166. 

0. 

16.5 

148.5 

65. 

334. 

- 10 . 

19.7 

144.7 

75. 

422. 

-25. 

092Q182 

14.5 

156.0 

40 

14.4 

155.0 

40. 

59. 

0 . 

16.6 

158.1 

65. 278. 

5. 

19.6 

145.9 

75. 

382. 

-5. 

24.1 

143.0 

83. 

306. 

-20. 

0929002 

15.0 

155.7 

40 

14.8 

154.5 

50. 

70. 

10. 

17.9 

150.9 

65. 285. 

0 . 

22.2 

148.8 

GO. 

161. 

-10. 

26.7 

140.4 

80. 

24. 

-25. 

0929062 

15.7 

15S.5 

45 

IS.5 

155.5 

55. 

12. 

10. 

17.6 

153.5 

70. 87. 

-5. 

21.e 

1SI.4 

90. 

151. 

-5. 

25.5 

ISO. 3 

90. 

244. 

-15. 

0929122 

16.4 

155.2 

50 

16.4 

155.3 

60. 

6. 

10. 

19.5 

153.0 

75. 49. 

0. 

23.1 

150. J 

85. 

90. 

-15 

27.1 

149.1 

90. 

8 ?. 

-10. 

0929182 

17.1 

154.8 

60 

17.3 

9 

65. 

13. 

5 

28.6 

152.7 

75. 94. 

-5. 

24.4 

149.G 

85. 

79. 

-20. 

28.6 

149.3 

G5. 

75. 

-15. 

0930002 

10.0 

154.5 

65 

18.1 

154.4 

65. 

0 . 

0. 

21.2 

152.1 

75 75. 

-15. 

25.5 

149.7 

85. 

76. 

-28. 

29.7 

149.5 

05 

98. 

-10. 

0930062 

19.0 

153.9 

75 

19.0 

154.1 

75. 

11 . 

0. 

22.3 

151.3 

0. 74. 

-95. 

26 5 

•49.5 

0. 

72. 

-105. 

31.1 

ISO. 1 

0. 

136. 

-00. 

0930122 

20.0 

153 1 

75 

20.2 

153.5 

75. 

25. 

0 . 

23.8 

IS1.6 

90. 90. 

-10. 

26.0 

. ,.e 

100. 

151. 

8 . 

31.5 

153.3 

9C. 

276. 

30. 

0930182 

22.1 

152.2 

00 

21.1 

152.2 

80. 

60. 

0. 

25.3 

149.9 

210. 40. 

5. 

30.4 

153.2 

80. 

225. 

-20. 

33.5 

161.2 

55. 

347. 

0. 

1001002 

22.4 

151.7 

90 

22.3 

152.3 

05. 

34. 

-5. 

26.8 

151.3 

110. 141. 

5. 

31.7 

155.3 

75. 

287. 

-20. 

0.0 

0.0 

0 . 

-8. 

0. 

1001062 

23.5 

151.0 

95 

23.3 

151.2 

100. 

16. 

5. 

26.9 

150.S 

110. 109. 

5. 

31.2 

154.6 

75. 

193. 

-5. 

0.0 

0.0 

0. 

-0. 

0. 

1001122 

24.6 

150.2 

100 

24.7 

150.4 

100. 

12. 

0. 

29.6 

149.6 

110. 89. 

10. 

34.2 

156. S 

75. 

147. 

15. 

0.0 

0.0 

0 . 

-0. 

0. 

IO01182 

25.6 

149.2 

105 

26.5 

143.S 

10S. 

56. 

0. 

33.7 

152.0 

90. 306 

-10. 

35.2 

165.3 

60. 

3G0. 

5. 

0.0 

0.0 

0 . 

-0. 

0 . 

1002002 

26.4 

148.7 

105 

27.3 

148.5 

1 10. 

55. 

5. 

32.7 

158.4 

90. 96. 

-5. 

8.0 

0.0 

6 . 

- 0 . 

0. 

0.0 

0.0 

0 . 

-0. 

0 . 

1002062 

27.3 

148 5 

105 

27.0 

148.4 

110. 

19. 

5. 

32.0 

149.0 

05 IVi 

5. 

0.0 

0.0 

0. 

-8. 

0 . 

0.0 

0.0 

0. 

-0. 

0. 

1002122 

23.4 

148.6 

100 

28.7 

148.6 

110. 

18. 

10 . 

33.3 

150.3 

80. 266. 

28. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-e. 

0. 

1002187 

29.8 

148.9 

100 

29.7 

1-18.7 

105. 

12. 

5. 

34.8 

153.7 

75. 371. 

20. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

- 0 . 

O. 

1003002 

31.2 

149.7 

95 

31.1 

149.7 

100. 

6. 

5. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-o. 

0. 

1603062 

33.1 

151.4 

80 

32.0 

151.3 

90. 

19. 

10 

0.0 

0.0 

0 -0. 

0. 

0.0 

e.o 

0. 

-0. 

0 . 

0.0 

0.0 

0 . 

-0. 

0. 

1003122 

36.0 

154.6 

69 

34.7 

153.0 

80. 

37. 

ze 

0.0 

0.0 

0. -0. 

0 . 

0.0 

0.0 

6 . 

-0. 

0. 

0.0 

0.0 

G. 

-0. 

0 . 

1003182 

39.1 

159.3 

55 

39.0 

160.8 

50. 

33. 

-5. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

8.0 

0.0 

0 . 

-0. 

0 . 


AVG FORECAST POSIT ERROR 
AVG RIGHT ANGLC ERROR 
AVG INTENSITY MAGNITUDE ERROR 
AVG INTENSITY BIAS 
NUfBEft OF FORECASTS 


ALL FORECASTS 


URNG 

24-HR 

48-HR 

72-HR 

30. 

145. 

216. 

248. 

18. 

77. 

185. 

203. 

5. 

11 . 

16. 

22 . 

4. 

-2. 

-14. 

-17. 

"*5 

21 

17 

13 


TYPHOONS t«ILE OVER 35 KTS 


URNG 

24-HR 

40-HR 

72-1 

31. 

145. 

216. 

24C. 

19. 

77. 

185. 

203. 

S. 

M. 

16. 

22. 

0. 

-2. 

-14. 

-17. 

22 

21 

17 

13 


DISTANCE TRAVELED BY STORM lb . NM 
AVERAGE SPEED OF STORM IS 13. KNOTS 


TYPHOON VERNON 

FIX POSITIONS FOR CYCLONE NO. 22 


SATELLITE FIXES 


FIX 

Tilt 

FIX 






NO. 

(2) 

POSITION 

RCCRY 

DVORAK CODE SATELLITE 

COirENTC 

SITE 

1 

252108 

12.5N 

165.8E 

PCM 5 

Tl.0/1.0 

N0AA6 

IN IT OBS 

PGTU 

2 

2600C-J 

13.ON 

164.9E 

PCM 0 


OTHER 


PGTU 

3 

260502 

13.311 

163.7E 

PCM 3 


TIROSM 


Pr.TU 

4 

261200 

12.8M 

164.4£ 

f'CN 0 


OTHER 


PGttJ 

5 

270300 

I2.4N 

160.5E 

PCM 0 

Tl.5/1.5 /D8.5/3eHRS 

OTHER 


PGTU 

6 

270900 

12.211 

160.4E 

"CN 0 


OTHER 


PGTU 

7 

2' 0925 

12.3N 

160.IE 

PCH 5 


OTHER 


PGTU 

8 

271200 

17. IH 

159.8E 

PCM 0 


OTHER 


rr.Tu 

9 

27I60U 

13.211 

159.3E 

PCM 0 


OTHER 


PGTU 

.0 

27195ft 

12 brt 

138.5E 

PCM 6 


DMSP37 


prru 

11 

272100 

12 BN 

158.bE 

PCM 0 


OTHER 


PGTU 

12 

230000 

12 8N 

i57.SE 

PCM 0 

T2.S/2.5 /D1.0/21HRS 

OTHEP 


PGTU 

13 

2GU300 

13.0N 

157.8E 

TCN 0 


OTHER 


PGTU 

14 

280600 

13.711 

157.5F 

PCH C 


OTHER 


PGTU 

15 

2*0990 

13.4M 

158.0E 

PCM 0 


OTHER 


PGTU 

16 

290903 

13.3N 

1S7 0E 

PCM 6 


N0AA6 


PGIU 

17 

231200 

13.311 

157.6E 

PCM 0 


OTHER 


PGTU 

18 

2816CC 

1 4. IN 

156.6E 

PCM 0 


OTHER 


PGTU 

19 

231937 

14.3N 

155.5E 

PCM 6 


D!t$P3? 


PGTU 

20 

2J2143 

14.7N 

155.IE 

PCH 5 

13.0/3.0 /D0.S/2IHRS 

NOAAG 


PGTU 

21 

290300 

15. 4N 

154.6E 

PCN J 


OTHER 

SECONDARY LLCC 15.3 155.4 

PGTU 

22 

230600 

S5.5M 

156.UE 

PCN 9 


OTHEP 


PGTU 

23 

Z3CC4C 

15.9H 

155.4E 

PCN 6 


II0AA6 


PGTU 

24 

200900 

16.111 

155.5E 

PCH 0 


OTHER 


PGTU 

25 

29I200 

Il> .6M 

155.2E 

PCM 0 


OTHER 


PGTU 

26 

291600 

16.9M 

155.IE 

PCN 0 


OTHEP 


PGTU 

27 

291712 

17.3N 

154./E 

PCN 4 


TIPOSM 


PGTU 

78 

292100 

17.?N 

1S4.4E 

PCH C 


OTHFR 


PGTU 

23 

2921ZA 

17 CN 

154.7E 

PCH 3 

T3.S/3.S /D0.5/24HRS 

H0AA6 


PGTU 

30 

300818 

19.7H 

153 6E 

PCH 2 


NOAAG 


PGTU 

31 

302100 

21 5H 

152.5E 

PfN E 


OTHER 


PGTU 

32 

307157 

71.8N 

152.6E 

PCN l 

T4.S/4.5 /D1.0/24HRS 

N0AA6 


PGTU 

33 

302239 

22. BN 

IS2.0E 

PC!! I 


NOAAG 


PGTU 

34 

01093? 

23.5N 

IS0.5E 

PCN 2 


N0AA6 


PGTU 

35 

01093? 

24. IN 

IS1.0E 

PCN 1 


MO0A6 


PQDH 

36 

011200 

24.6N 

158.3E 

PCN E 


OTHER 


Peru 

37 

011600 

23 III 

149.3E 

PCM E 


OTHER 


PGTU 

38 

012014 

25 9N 

148.7E 

PC!! 2 


DMSP37 


PGTU 

39 

012100 

25.8N 

149.IE 

PC?! E 


OTHER 


PGTU 

40 

012216 

2G. IN 

143.9E 

PCN 1 

T4.0/4.S /D0.5/25HRS 

M0AA6 


PGTU 

41 

020915 

27.9N 

148.6E 

PCN 1 


IIQAA6 


PGTU 

42 

020915 

23.0H 

14G.5E 

PCH 1 


N0AA6 


PQDH 

43 

0“’200 

25.4N 

148.6E 

PCN E 


O^HEP 


PGTU 

44 

021953 

30.3M 

148.8E 

pch e 


WfcPv/ 

CNTR OBSCURED BY SHADOW 

P6TM 

45 

022100 

30.2?! 

149.IE 

PCN £ 


OTHFT 


ro „ 

46 

022154 

30. AN 

149.4E 

PCN 1 

T4.S/4.5-/SO.0/24HRS 

H0AA3 


PGTU 


161 






























*17 

030000 

31.2N 

149.66 

PCH 6 

OTHER 

PGTU 

48 

030400 

32.5H 

150.76 

PCM 6 

OTHER 

PGTU 

49 

030900 

34.5N 

152. 7k 

PCM 0 

OTHER 

PGTU 

50 

030952 

34.3N 

152.4£ 

FLU 6 

M0AA6 

PGTU 

51 

03I600 

30.3N 

158.06 

PCM 0 

OTHtR 

PGTU 








AIRCRAFT Fl*ES 






FIX 

TIME 

FIX 

FLT 

7egrt3 

005 

mox-gfc-uid 

M8X-FtT-LV\.-EHD 

ACCRY 

636 

EYE ORIEN- 

EYE TErP CC> 

MSN 

NO. 

<2) 

J OGITIOH 

tVL 

HGT 

ttSLP 

VEL/ORG/RHG 

l> IR/VEL/SRC/RHG 

HfiV/ttT 

SHAPE 

DIAM/TATION 

CUT'' IN/ DP'SST 

NO. 


t 

2G0310 

12.b*. 

157.9E 

ISOOFT 


997 

25 

280 

105 

320 

30 

280 

55 

5 

10 





♦26 

+26 

♦23 27 

■? 

2 

281610 

14.SN 

156.IE 

70010 

3010 





320 

54 

230 

140 

15 

5 





♦ 10 

♦13 

♦ 7 

3 

3 

201934 

14.5M 

156 OE 

70010 

3009 





180 

48 

120 

50 

10 

5 








3 

4 

290507 

15.SN 

155.56 

700MB 

2947 

982 

40 

290 

60 

350 

47 

290 

90 

5 

5 








4 

5 

290726 

15.8N 

155.4E 

70010 

2954 


55 

130 

its 

210 

60 

130 

105 

5 

5 








4 

6 

290908 

16. IN 

155.4E 

70010 

2962 

9 84 




OSO 

73 

280 

60 

5 

5 





♦ 10 

♦ 14 

♦ 10 

4 

7 

2*1538 

16.9N 

155.0£ 

700MB 

2891 

9/5 




330 

62 

230 

38 

4 

8 





♦ 14 

♦20 

♦ 7 

5 

8 

300229 

18.4M 

1S4.3E 

70010 

2821 


50 

200 

120 

270 

78 

200 

52 

5 

5 

CIRCULAR 

40 






6 

9 

300410 

10.CM 

154.2E 

70010 

2803 

964 

50 

270 

15 

150 

81 

070 

85 

5 

3 

CIRCULAR 

40 



♦ 13 

♦ 19 

♦ S 

C 

10 

301319 

20.3N 

152.8E 

70010 

2752 





320 

56 

230 

SO 

2 

4 








x 

1! 

301621 

2Q.9N 

152 4£ 

700MB 

2697 

952 




100 

60 

060 

30 

2 

4 

CIRCULAR 

45 



+ 15 

♦20 

♦ 9 

7 

12 

010028 

22.4N 

151.7E 

70010 

2663 


40 

210 

70 

300 

7b 

180 

25 

5 

5 

CIRCULAR 







8 

13 

010323 

22.9N 

tS!.3E 

70010 

26ll 

944 

80 

180 

5 

020 

75 

310 

30 

6 

3 

CIRCULAR 

35 



♦ 13 

♦19 

♦ 9 

8 

14 

011704 

25.4N 

149.3E 

70010 

2544 

937 




260 

97 

170 

18 

1 

2 

CIRCULAR 

30 



♦ 13 

♦19 

♦ 14 

9 

IS 

020001 

26.4N 

148.66 

70010 

2580 


80 

210 

30 

380 

BO 

200 

20 

4 

3 








10 

16 

020251 

26.7M 

148.56 

7001© 

2553 


80 

320 

to 

030 

74 

320 

15 

4 

2 

elliptical 

22 

15 

120 

+ !5 

♦19 

♦13 

10 

17 

02114S 

28.3N 

148.5E 

70010 

2564 





250 

92 

160 

15 

2 

2 








it 

18 

021420 

29. ON 

148.CE 

70010 

2570 

940 




350 

68 

280 

30 

2 

2 

ELLIPTICAL 

40 

2S 

060 

♦ 14 

' 18 

♦ 14 

ii 


NOTICE - THE ASTERISKS <«) INDICATE FINIS UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES. 



M 


162 





















SUPER TYPHOON WYNNE 
BEST TRACK DATA 


BEST TRACK 


.MO/DA/HR 

POSIT WIND 

I002I 2Z 

3.4 

156.5 

20 

1002182 

0.4 

155.7 

20 

1083002 

7.6 

155.0 

25 

IG0306Z 

7.0 

154.2 

35 

I0O312Z 

6.6 

153.7 

50 

•OO3102 

6.2 

152.9 

60 

1004002 

6.0 

152.2 

70 

ten w&z 

6.2 

151.1 

bO 

1004*22 

6.7 

150.3 

50 

1004UB2 

7.3 

143.0 

45 

100S802 

0.0 

149.5 

40 

1005062 

8.0 

149.1 

6* 

10O512Z 

9.0 

1.18.4 

45 

I0O51UZ 

10.6 

147.5 

30 

1006002 

n.r 

146.0 

45 

10O6O6Z 

12.7 

146.2 

60 

1096122 

13.3 

145.7 

4S 

100618Z 

14.7 

145.1 

50 

1087602 

15.3 

144.5 

50 

1PU7062 

15.3 

144.0 

50 

1007122 

16.2 

143.5 

60 

1007182 

16.7 

143.0 

65 

1008002 

17.0 

142.1 

78 

10O8062 

17.4 

141.2 

75 

1088122 

17.9 

140.2 

80 

1308182 

18.3 

139.2 

90 

1089002 

1C.7 

138.0 

120 

1089962 

19.1 

137.0 

150 

10C5122 

19.6 

136.0 

145 

1009182 

20.0 

134.9 

140 

1010002 

20.S 

133.4 

135 

1010062 

20.9 

132.1 

130 

1010122 

21.5 

1*0.0 

125 

1010192 

22.0 

129.7 

125 

1011002 

22.6 

120.0 

120 

1011062 

23.3 

128.0 

115 

I0I1I22 

23.8 

127.2 

115 

1011162 

24.2 

126.6 

lie 

1012002 

24.0 

126.1 

105 

1012062 

25.4 

125.8 

160 

1012122 

26.1 

125.9 

100 

1012182 

27.0 

125.9 

100 

lei jeez 

27.9 

126.4 

95 

1013062 

20.0 

127 2 

90 

1013122 

29.8 

128.5 

90 

1013102 

30.5 

130.5 

90 

1014802 

31.5 

133.0 

85 

1014062 

32.6 

136.4 

80 

1014J22 

34.0 

140.1 

70 

1014182 

35.5 

145. P 

60 

1015002 

36.0 

149.^: 

50 


F(J$ 

:r 

UARNllfG 

ERRORS 

WIND DST WIND 

0.0 

0.0 

0. 

-0. 

U. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

e.u 

0. 

-C. 

0. 

O.O 

0.0 

0. 

-O 

8. 

8.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

5.8 

152.2 

55. 

12. 

-15. 

6.2 

151.2 

CO. 

6. 

U. 

6.0 

150.8 

60. 

51. 

10. 

7.2 

149.4 

50. 

24. 

5. 

7.8 

149.4 

45. 

13. 

5. 

0.0 

149. 1 

50. 

0. 

-15. 

8.8 

149.1 

5H. 

73. 

5. 

10.7 

147.2 

40. 

19. 

10, 

11.5 

146.2 

45. 

37. 

0 

12.6 

146.0 

50. 

13. 

-10. 

13.5 

145.7 

50. 

18. 

5. 

14.7 

144.9 

40. 

12. 

-SO. 

15.5 

141.2 

45. 

21. 

-5. 

15.8 

144. 1 

50 

6. 

0. 

16.6 

143.6 

50. 

19. 

-10. 

16.e 

143. 1 

55. 

8. 

-10. 

17.3 

142.9 

CO. 

44. 

-10. 

17.5 

141.1 

65. 

8. 

-10. 

17.0 

140. 1 

70. 

8. 

-10. 

10.5 

139.0 

95. 

1C 

5. 

19.0 

130.0 

1 JO. 

:c 

20. 

19.2 

136.7 

150. 

19. 

0. 

19.5 

136.2 

150. 

13. 

5. 

20.2 

134.9 

140. 

12. 

0. 

20.6 

133.7 

140. 

18. 

5 

20.8 

132.2 

130. 

9. 

0. 

21.4 

130.7 

125. 

8. 

0. 

22. 1 

129.5 

125. 

13. 

0. 

22.6 

128.8 

I "5. 

0. 

5. 

23.6 

123.3 

115. 

19. 

0. 

23.0 

127.4 

110 

11. 

-5. 

24.8 

126.5 

110. 

36. 

0. 

24.0 

126.1 

105. 

9 

0. 

25.3 

125.4 

100. 

22. 

O. 

26.1 

125.7 

100. 

5. 

0. 

26.9 

125.6 

100. 

17. 

O. 

27.8 

126.3 

100. 

8. 

5. 

28.9 

127.0 

90. 

12. 

0. 

29.6 

128.4 

05. 

13. 

-5. 

30.3 

130.0 

80. 

28. 

-10. 

31.7 

133.4 

75. 

24 

-10 

32.4 

135.3 

75. 

13. 

-5. 

34.0 

139.9 

75. 

10. 

5. 

36.2 

145.1 

60. 

42. 

0. 

0.0 

0.0 

0. 

-0. 

0. 


24 HOUR FORECAST 




ERRORS 

POSIT 

UlrO DST 

U1HD 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. -C. 

0. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

O. -0. 

0. 

0.0 

0.0 

0. -0. 

0. 

6.8 

149.4 

70 97. 

30. 

7.7 

147.9 

75 97. 

10. 

7.3 

140.2 

70. 150. 

2* 

9.0 

146.3 

70. 05. 

40. 

9.9 

147.5 

60. i!5. 

15. 

11.9 

147.4 

C5. 05. 

5. 

11.9 

147.4 

ss. r»i. 

20. 

13.9 

142.0 

45. Ml. 

-5. 

14.7 

Ml.5 

55 177. 

5. 

15.2 

142 2 

E ! 10. 

15. 

16.7 

141.0 

CO. 100. 

0. 

17.7 

140.2 

60. 171. 

-5. 

19.3 

141.5 

CO. 142. 

-10. 

10.3 

142.2 

0. 70. 

-75. 

19.6 

141.3 

55. 119. 

-25. 

19.6 

141.3 

70. 142. 

-20. 

19.7 

141.2 

70. 190. 

-50. 

19.3 

137.8 

75. 47. 

-75. 

13.9 

137.0 

69. 59. 

-65. 

21. i 

134.0 

110. 102. 

-38. 

21 9 

134.5 

150. 104. 

15. 

20.9 

132.0 

150. 6. 

20. 

20.9 

132.4 

150. 96. 

25. 

22.4 

130.2 

120. 37. 

-5. 

23.0 

129.4 

220. 41. 

0. 

23.6 

127.9 

119. 19. 

-5. 

24.1 

127.0 

100. 21. 

-15. 

25.5 

126.5 

208. 04. 

-10. 

26.4 

126.7 

260. 101. 

-5. 

27.0 

127.4 

95. 1C7. 

-5. 

27.7 

127.4 

98 120. 

-10. 

29.2 

127.0 

90. 165. 

-10. 

20.2 

125.8 

90. 36. 

-5. 

27.8 

125.0 

es. 130. 

-5. 

29.6 

12C.2 

95. 120. 

5. 

31.5 

128.7 

0. 110. 

-90. 

42.1 

120.1 

75. 1S2. 

-10. 

33.3 

131.8 

60. 234. 

-20. 

34.2 

134.2 

50. 292. 

-20. 

33.0 

138.4 

60. 358. 

0. 

37.6 

147.0 

58. 142. 

0. 

0.0 

0.0 

0. -O. 

0. 

O.O 

0.0 

0. -O. 

0. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. -0. 

0. 


48 HOUR FORLCA5T 

r props 


POSIT 

UIHD DST WIND 

0.0 

0.0 

0. -J. 

0. 

O.O 

O.O 

0. -n. 

0. 

0.0 

e.o 

0. -0. 

0- 

U.O 

0.0 

0. -0. 

U 

O.P 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. -0. 

O. 

9.5 

145.5 

CO. IV. 

35. 

10.4 

14*.0 

85. 154. 

25- 

10 1 

245.7 

CO. .'22. 

j j. 

12.0 

143 5 

80. 147. 

SO. 

12.0 

144.0 

70. 150. 

20. 

15.n 

144.0 

75. 6G. 

2S- 

r>.9 

141.9 

75. IUU. 

15. 

15.8 

137.7 

55. 7 >9, 

-19- 

!6.j 

135 5 

C5. 3CCJ. 

-5* 

17.2 

136 2 

75. ’’OS. 

0. 

17.7 

235.6 

70. 26*?. 

-10. 

18.0 

234.2 

70. 195. 

-20- 

23.3 

139.6 

70. 289. 

-50. 

21.7 

140.1 

O. 233. 

-150. 

23.2 

139.9 

65. >05. 

-00. 

23.2 

1*10.0 

75. 347. 

-65. 

22.7 

140.1 

75. 395. 

-60. 

*2. 1 

13S.9 

60. 210. 

-59. 

23.5 

235.3 

85. 276. 

-40. 

26 3 

134.3 

105. *59. 

-20 

21.5 

231.0 

140. 332. 

20. 

23.1 

228.0 

130. 12. 

15. 

22.6 

120.7 

I3U. 102. 

15. 

24.9 

127.5 

110. 64. 

0. 

26.2 

126.8 

110. 92. 

5. 

27.5 

I2C.8 

too. 1?G. 

0. 

27.0 

127.3 

90. I?9. 

-10. 

TO. 2 

129.5 

OS. 269. 

-15- 

30.0 

130.2 

85. 263. 

-10. 

32.5 

233.6 

05. 396. 

-5. 

32.5 

133.6 

00. too. 

-10 

33 8 

134.0 

80. 265. 

-10. 

33.3 

130.6 

65. 154. 

-20- 

32.2 

12S.0 

75. 374. 

-5. 

34.0 

153.9 

85. 681. 

IS. 

36.3 

136.7 

0. 404. 

-60- 

O.A 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. -0. 

0. 

O.O 

0.0 

0. -0. 

0. 

0.0 

O.O 

P. -O. 

0. 

0.0 

O.O 

0. -0. 

0. 

O.O 

0.0 

0. -0. 

0. 

0.0 

0.0 

O. -0 

a. 

0.0 

0.0 

0. -0. 

o. 

0.0 

6.0 

0. -O. 

o. 


72 HOOK’ FORECAST 


POSIT 

WIND DST WIND 

8.0 

0.0 

0. -O. 

0. 

0.0 

0.0 

n. 0. 

0. 

0.0 

0.0 

9. -O. 

0 

0.0 

0.0 

0. 0. 

0. 

8.0 

o*.u 

o. -o. 

0. 

0.0 

0.0 

0. -G. 

O. 

12.8 

M2, r 

90. 102. 

40. 

13.2 

I 12.7 

23. 107. 

45. 

13.0 

M’.S 

90. 205. 

.*0. 

15.6 

2.10.9 

90. 137. 

25. 

15.7 

144.5 

90. 112. 

20. 

18.8 

143.0 

*15. 15S. 

28. 

18.8 

1.13.5 

93. D5. 

15. 

IC.i 

133. 1 

O'-.. 372. 

-?S. 

M.O 

129.2 

73. 5i0. 

-45. 

17.9 

129.7 

99. 476. 

-60. 

1C.0 

225.5 

80. 308. 

-65. 

28.8 

226.6 

80. 477. 

-63. 

29.0 

259.9 

75. 613. 

-60. 

26.2 

144.2 

0, 731. 

-1?0. 

2C.0 

I41.0 

60. 711. 

-65. 

20.2 

142.2 

7*1. 770. 

-55. 

26.5 

140.S 

75. 692. 

-15. 

25.5 

235.2 

S5. 4!<. 

-30. 

28.2 

1*6.3 

35. 551. 

-30. 

30.0 

130.3 

95. 7*1. 

-IS 

29.8 

137.6 

ICO. 679. 

-5. 

26.1 

126.5 

210. 86. 

120. 

26.4 

127.0 

120. 67. 

20. 

27.9 

•27.0 

90. 79. 

-10. 

29.2 

127.9 

90. III. 

-5. 

30.6 

1*9.6 

05. 165. 

-5. 

31.8 

131.3 

75. 107. 

-15. 

34.4 

136.2 

65. 370. 

-2S. 

34 0 

137.2 

70. 233. 

-15. 

30.0 

141.0 

6U. 491. 

-20. 

0.0 

0.0 

G. -0. 

0. 

O.O 

0.0 

G. -0. 

0. 

0.0 

0.0 

0. -0. 

0. 

A.e 

0.0 

0. -0. 

0. 

e.o 

0.0 

0. -o. 

0. 

O.O 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. -0. 

0. 

e.o 

0.0 

0. -0. 

0. 

0.0 

0.0 

O. -0. 

0. 

0.0 

0.0 

0. -o 

0. 

0.0 

0.0 

O. -O 

0. 

0.9 

0.0 

0. -0 

0. 

0.0 

O.O 

0. -G 

0. 

0.0 

0.0 

0. -0 

0. 

0.0 

0.0 

O. -0 

0. 


ALL FORECASTS TYPHOONS WILE OVEP 35 KTS 




LRHG 

24* HR 

48-HR 

72-HR 

UPNG 

21-Kft 

48-HR 

72-H 

AVG FORECAST POSIT ERROR 


10. 

119. 

248. 

370. 

18. 

120. 

243. 

370. 

AVG RIGHT ANGLE ERROR 


12. 

66. 

137. 

273. 

12. 

65. 

137. 

273 

AVG INTENSITY MAGNITUDE CRROR 

5. 

20. 

27. 

37. 

S. 

19. 

27. 

37. 

AVG INTENSITY BIAS 


-1. 

-8. 

-13. 

-15. 

0. 

-10. 

-13. 

-15. 

N0TCER OF FORECASTS 


44 

41 

36 

30 

43 

40 

36 

30 

DISTANCE TRAVELED 0Y STORM 

IS 

3728. 

NM 







OVERAGE SPEED OF STORM IS 

12. 

KNOTS 









SUPER TYPHOON WYNNE 
C I\ POSITIONS FOR CYCLONE NO. 23 


SATELLITE FIXES 


Fiv 

NO. 

THE 

O 

FIX 

position 

ACCRY 

DVORAK CODE SATELLITE COtTCNTS 

SITE 

1 

021200 

9.3N 

156.4E 

PCM 0 


OTHER 

PGU 

2 

021953 

8.2N 

155.4E 

PCN 6 


DMSP37 

PGTU 

3 

C221S4 

7.8N 

155.2E 

PCN 5 

TO.S-'U.S 

N0AA6 INIT OBS 

pf.ru 

4 

030480 

7 .oN 

154.3E 

PCN 0 


OTHER 

PGTU 

5 

030852 

S.6N 

153.7E 

PCN 6 


N0AA6 

PGTU 

6 

031200 

6.SN 

153.6E 

PCM 0 


OTHER 

PGTU 

7 

031600 

6.3N 

153.0E 

PCN 0 


OTHER 

PGTU 

8 

031800 

6.4N 

152.7E 

PCM 0 


OTHER 

PGTU 

9 

032100 

6.2N 

152.2E 

PCN 0 


OTHER 

PGTU 

10 

032132 

6. OH 

152.IE 

PCN 3 

T2.5^2.5 D2 0'24MRS 

N0AA6 

PGTU 

11 

040000 

6.0N 

152.OE 

PCN C 


QTHFP 

PGTU 

12 

040400 

6.IN 

151 6£ 

PCN t 


OTHER 

PGTU 

13 

040511 

6.3N 

151 2£ 

PCN 3 


TlROSN 

PGTU 

* 14 

041011 

5.7N 

ISO 9E 

PCN 5 


NOAAb 

PGTU 

* 15 

041200 

S.6N 

I50.5E 

PCN 0 


OIHER 

PGTU 

16 

042109 

7.5N 

149.8c 

PCN 3 

T3.5'3.S /D1.0/24HRS 

N0AA6 

PGTU 

17 

0S0949 

9.7N 

148.9E 

PCN 5 


H0AA6 

PGTU 

18 

051200 

9.7N 

149.4E 

PCN 0 


OTHER 

PGTU 

19 

051600 

10. IN 

:47.8£ 

PCN 0 


OTHER 

PuTU 

28 

P52030 

It.SH 

147.4£ 

PCN 6 


DMSP3? 

PGTU 

21 

052220 

II.8N 

MS. 9E 

PCN 5 

T3.0/3.O+/V0 5^25HRS 

HOARS 

PGTU 

22 

ObOOOO 

II.3N 

146.?£ 

PCN 0 


OTHER 

PGTU 

23 

060400 

12.5N 

146.3E 

PCN 0 


OTHER 

FGTU 

24 

8SC60P 

12.6N 

I4S.9E 

PCN 0 


OTHER 

Pf.TV 

25 

O6G630 

12.6m 

I4S.0E 

PCN 3 


11POSH 

PGTU 


163 














26 

060990 

13.3M 

145.06 

PCM 0 


OTHER 





PGTU 

27 

06O926 

13.3M 

145.4E 

PCM 3 


N0AA6 





PGTU 

* 26 

0612O0 

13.8H 

144.66 

PCM 0 


OTHER 





PGTU 

29 

061600 

M.7N 

145.26 

PCM 0 


OTHER 





PGTU 

* 38 

05180O 

15.GH 

144.86 

PCM 0 


OTHER 





PGTU 

31 

652180 

15. GH 

144.56 

PCH 0 


OTHER 





PGTU 

32 

0G22O6 

1S.3N 

144.46 

PCH 5 

T3.O'3.0 /S8.0'24HR5 

H0AA6 





PGTU 

33 

070000 

IS.3N 

143.96 

PIN 0 


OTHER 





PGTU 

34 

070400 

I5.7N 

144.16 

PCM 0 


OTHER 





F5TU 

35 

070610 

16.0M 

143.96 

PCM 5 


TIROSH 





PGTU 

36 

070900 

16.2H 

143.86 

PCM 0 


OTHER 





PGTU 

37 

070904 

16.2N 

142.4E 

PCM 6 


H0AA6 





PGTU 

* 38 

071600 

\7.7H 

142.76 

PCH 0 


other 





PGTU 

39 

071903 

17.1H 

142.?E 

PCM 5 


TIROSH 





PGTU 

40 

071903 

17.8H 

143.06 

PCM 5 


TIROSH 





RPIK 

41 

072100 

17.38 

142.56 

PCM 0 


OTHER 





PGTU 

42 

072143 

16.8H 

142.IE 

PCH 5 

T4.0/4.0 •''Dl.0/24HRS 

N0AA6 





PGTU 

43 

000000 

17.0N 

142.16 

PCH £ 


OTHFR 





PGTU 

44 

080400 

17. ON 

141.56 

PCH £ 


OTHER 





PGTU 

45 

050600 

17.5H 

141.16 

PCM C 


OTHER 





PGTU 

46 

080607 

17.4H 

141.IE 

PCN 3 


TIROSH 





PGTU 

47 

080900 

17.7N 

148.66 

PCH C 


OTHER 





PGTU 

48 

CO1023 

17.7M 

140.46 

PCH 3 


HCAA6 





PGTU 

49 

801200 

17.8M 

140.16 

PCH 6 


OTHER 





PGTU 

50 

8816C0 

18.4H 

139.46 

PCH 6 


OTHER 





PGTU 

51 

0*2100 

18.5N 

138.76 

PCN £ 


OTHER 





PGTU 

52 

082ie7 

18.0N 

138.66 

PCH 2 

T5.S/S.5 

DTBP37 

INIT OfiS 




PKSO 

* 53 

032211 

18.4N 

138.46 

PCH 1 


hOAA6 

PSN BASED 

ON 

DISTINCT ETE 

RPTB 

54 

882302 

10.3H 

138.16 

PCH 1 


NCAA6 





RKSO 

55 

08*362 

18.8H 

138.16 

PCH I 

TS.0/5.0 'D1.5/25HRS 

NOAOG 





PGTU 

56 

890300 

18. CM 

137.66 

PCM 6 


OTHER 





PGTU 

57 

090555 

19. IN 

137.1C 

PCH 1 


TIROSH 





PGTU 

58 

030900 

19.ZM 

136.76 

PCM E 


OTHER 





PGTU 

5S 

091000 

19.3N 

136.56 

PCH 1 


H0AA6 





PGTU 

60 

091200 

19.3N 

136.16 

PCH 6 


OTHCR 





PGTU 

61 

091600 

19.8N 

135.36 

PCH E 


OTHER 





PGTU 

62 

892180 

20.3N 

134.26 

PCH £ 


OTHER 





PGTU 

* 63 

092149 

20.7H 

133.66 

PCH 1 


N0006 

FSH BASED 

OH 

CELL 

DEFINED EYE 

RPMB 

64 

092240 

20.3N 

133.86 

PCH 1 

T6.S/6.5 /D1.0/24HRS 

N0AA6 





PGTU 

65 

10030O 

20.6N 

132.76 

PCH E 


OTHER 





PGTU 

* 66 

100/25 

21.7H 

132.86 

PCH 1 


N0AA6 

EYE PARTIALLY CLD 

FILLED 

RPTB 

67 

100900 

21.2N 

131.56 

PCM £ 


OTHER 





PGTU 

68 

101119 

21.48 

130.96 

PCH 1 


N0AA6 





PGTU 

69 

101829 

21.GH 

129.86 

PCH 1 


TIROSH 





RPIK 

70 

101829 

21.8N 

129.56 

PCH 1 


TIROSH 





PGTU 

71 

102100 

22.4H 

129.36 

PCH £ 


OTHER 





RODH 

72 

110080 

22.6N 

128.86 

PCH E 


OTHER 





PGTU 

73 

111057 

23.5H 

127.26 

PCH 1 


H0AA6 





PGTU 

74 

111200 

23.5H 

127.16 

PCH E 


OlHER 





PGTU 

75 

112100 

24.4N 

126.36 

PCH £ 


OTHER 





PGTU 

76 

112336 

24.8N 

126.26 

PCH 1 

T6.0/6.0 

H0AA6 

IhIT CBS 




PGTU 

77 

120908 

25.7M 

125.56 

PCH £ 


OTHER 





PGTU 

78 

121024 

25.811 

125.66 

PCH 1 


N0AA6 





PGTU 

79 

121034 

27.111 

126.46 

PCH C 


OTHER 





PGTU 

80 

141947 

27.3N 

126.36 

PCH 5 


TIROSH 





RPIK 

81 

122314 

27. 7 M 

126.36 

PCH 3 

T4.5/S.5-/U1.5/24MRS 

N0AA6 





PGTU 

* 82 

130651 

29.1H 

127.96 

PCH i 

T4.0/4.5- 

TIROSH 

IN IT OBS 




RKSO 

* 83 

130651 

28.9M 

127.46 

PCH 1 

T5.e/5.0*- 

TIROSH 

IHIT CBS 




RODH 

84 

130980 

29.4H 

128.06 

PfN C 


OTHER 





PGTU 

85 

131935 

30.8H 

131.26 

PCH 3 


TIROSH 





RKSO 

86 

132100 

38.9M 

132.CE 

PCH 0 


OTHER 





PGTU 

37 

132251 

31.4N 

132.56 

PCH 3 

T4.0/-4.5 /U3.5/24HRS 

H0AA6 





PGTU 

88 

140000 

21.5H 

133.16 

PCH C 


OTHER 





PG1U 

C9 

140300 

32.2H 

134.96 

PCH 0 


OTHER 





PGTU 

98 

148900 

33.3N 

137.86 

PCH 0 


OTHER 





PGTU 

91 

140948 

33. CH 

138.86 

PCH S 


NQAA6 





PGTU 

92 

141600 

35.8H 

143.36 

PCH G 


OTHER 





PGTU 

93 

U2100 

35.9N 

146.86 

PCH 0 


OTHER 





PGTU 

94 

150000 

35. IN 

148.66 

PCH G 


OTHER 





PGTU 


AIRCRAFT FIXES 


FIX 

Tire 

FIX 

FLT 

708TB 

OBS 

T1AX-SFC- 

■LHD 

max-flt-lvl* 

LND 

ACCRY 

EYE 

EY 6 ORIEN- 

EYE TETB (C) 

T1SN 

NO. 

(Zi 

POSITION 

LVL 

HOT 

T1SLP 

VEL/BRG/RNG 

DIR/VEL/BRG/RNG 

HAV/TBT 

SHAPE 

D1ATVTA1ION 

OUT/ IN/ DP/SST 

HO. 

1 

040122 

5.7N 

152.06 

700TB 

2954 

984 

?S 

110 

20 

210 

82 118 

20 

15 

2 

CIRCULAR 

10 



♦ 11 

♦ 16 

♦ 10 

1 

2 

040332 

5.9H 

151.7E 

708TB 

2919 

976 

65 

020 

IS 

lie 

55 030 

20 

10 

? 

CIRCULAR 

12 



♦ 12 

♦20 

♦ 9 

1 

3 

041617 

7. IN 

149.96 

708TB 

3064 





328 

33 228 

0 

5 

2 

CIRCULAR 

IS 



♦ 13 

♦ 15 

♦ 10 

2 

4 

041824 

7, 6 N 

149.66 

700TB 

3044 





270 

57 160 

9 

5 

2 








2 

S 

042111 

7.6N 

149.66 

700TB 

3898 


45 

010 

5 

0!0 

26 278 

?S 

5 

2 

CIRCULAP 

15 



♦ 12 

♦ 13 

♦ 9 

2 

G 

050320 

8.4H 

149.36 

70PT8 

3063 

997 

45 

350 

20 

010 

32 308 

IS 

4 

3 





♦ 10 

♦ 17 

♦ 8 

3 

7 

058621 

9.0N 

149.IE 

780TB 

3047 

996 

80 

090 

38 

160 

74 100 

12 

4 

3 





♦ 14 

♦ 17 

♦ 8 

3 

* 8 

0508S5 

8.3N 

149.06 

700TB 

3122 

1006 




070 

31 338 

130 

10 

7 





♦ 10 

♦ 12 

♦ 7 

4 

* 9 

051142 

8.9N 

148.!E 

700TB 

3135 





140 

29 020 

160 

•0 

5 








4 

10 

051615 

10 .3M 

146.8E 

708TB 

3127 

1008 




100 

28 340 

100 

10 

S 





♦ 12 

♦10 

♦ 8 

5 

II 

051831 

10 .4N 

146.7£ 

708TB 

3125 





893 

24 3*0 

130 

6 

5 








5 

* 12 

e520ll 

10. SN 

146.36 

700TB 

3127 

1008 




208 

19 120 

105 

6 

5 





♦ 9 

♦ 1 * 

♦ 8 

5 

13 

059052 

11. 8 H 

146.66 

700TB 

3054 


45 

270 

5 

300 

52 270 

IS 

2 

1 

Elliptical 

13 

10 

050 




6 

14 

660305 

12 . 2 N 

146.46 

700TB 

3041 

999 

58 

860 

5 

198 

45 140 

ie 

2 

4 

ELLIPTICAL 

18 

13 

030 

♦ 9 

♦ 14 

♦ 6 

6 

15 

660618 

12.9H 

146.46 

7001B 

3070 

994 

78 

100 

15 

120 

46 100 

5 

2 

/ 








7 

16 

e609O7 

13.4N 

146.26 

700TB 

3898 

1002 




150 

49 340 

30 

2 

5 





♦ 16 

♦ 12 

♦ 8 

7 

17 

e'i207 

13.CH 

146 . r 6 

700TB 

3081 





088 

40 340 

13 

2 

5 








7 

IB 

661514 

14.4N 

145.bE 

780TB 

3073 





188 

58 098 

12 

2 

2 





+ 11 

♦15 


8 

19 

070317 

15.SH 

144. .>£ 

7e0TB 

3033 

992 

58 

360 

7 

346 

44 270 

10 

3 

» 

CIRCULAR 

20 



♦ S 

♦14 

♦ 8 

10 

20 

071445 

16. SM 

143.36 

790TB 

2965 

994 




070 

70 010 

28 

S 

1 

CIRCULAR 

IS 



+ 11 

♦ 16 

♦ 9 

12 

21 

088240 

17. IN 

141.56 

70C*B 

2882 

97S 

80 

030 

15 

200 

53 180 

8 

6 

S 

Elliptical 

25 

15 

040 

+ 9 

♦ 14 

♦ 12 

14 

22 

081245 

I7.9M 

139.96 

700TV 

2660 





e3B 

168 350 

10 

4 

1 

CIRCULAR 

12 






15 

23 

081511 

19.3N 

139.46 

700TB 

2570 

952 




350 

87 270 

15 

4 

1 

CIRCULAR 

13 



♦ 11 

+ 16 

♦ 12 

15 

24 

082326 

18.7H 

138.16 

780TB 

2197 


130 

120 

7 

130 

115 098 

12 

5 

1 








16 

25 

090236 

18.8H 

137.66 

700TB 

2130 

890 

130 

290 

16 

010 

118 290 

14 

5 

1 

CIRCULAR 

10 



♦13 

♦29 

+ 15 

16 

26 

891255 

19.6N 

135.96 

700TB 

2207 





180 

113 890 

10 

5 

1 

CIRCULAR 

12 






17 

27 

891437 

19.8H 

135.66 

700TB 

2199 

898 




260 

110 188 

10 

S 

1 

CONCENTRIC 

II 

34 


♦14 +22 

♦ 17 

17 

28 

160012 

20 .5H 

133.36 

700TB 

2313 


100 

100 

20 

200 

114 1S0 

14 

4 

I 

CIRCULAR 

20 






18 

29 

108250 

20. 6 H 

132.02 

700TB 

2309 

912 

188 818 

8 

020 

184 270 

12 

3 

1 

CIRCULAR 

19 



♦ IB 

♦17 

♦17 

18 


164 
















36 

101120 

21. bN 

131.8E 

70878 

2267 

907 



280 

114 

100 

18 

5 

2 

CIRCULAR 

17 

♦ 13 

♦ 19 


21 

31 

181423 

21.7H 

130.?E 

70078 

2262 

3Qt 



610 

124 

280 

12 

7 

2 

CIRCULAR 

18 

♦ 12 

+ 17 


21 

32 

118855 

22. OH 

128.8E 

? 08 m 

2384 


100 090 

18 

180 

75 

090 

20 

4 

1 






22 

33 

118281 

22.9N 

128.5E 

708m 

2372 

913 

100 099 

10 

010 

73 

279 

30 

4 

1 

CIRCULAR 

28 

♦ 14 

♦ 18 

♦ 14 

22 

34 

110740 

23.5H 

122.?e 

780m 

2349 


100 130 

15 

200 

107 

138 

20 

10 

2 






23 

35 

110912 

23.6H 

127.SE 

70om 

2330 

914 

110 230 

15 

326 

100 

238 

15 

18 

4 

CIRCULAR 

20 

♦13 

♦20 

♦ 16 

23 

36 

111 222 

23.7N 

127.IE 

?08m 

2325 




090 

110 

030 

15 

5 

1 

CIRCULAR 

17 




24 

37 

111440 

24. OH 

126.7E 

7ecm 

2346 

915 



220 

115 

148 

15 

5 

1 

CIRCULAR 

19 

♦14 

♦ 17 


24 

38 

112120 

24.5H 

126.3E 

room 

2421 

924 



lie 

95 

830 

18 

7 

2 

CIRCULAR 

10 

♦IS 

♦ 17 

♦16 

25 

39 

126026 

24. OH 

126.IE 

rear* 

2437 


100 330 

IS 

290 

58 

210 

30 

5 

3 






25 

40 

120349 

25. IN 

125.7E 

70om 

2435 

925 

80 368 

25 

690 

68 

360 

61 

4 

1 

CIRCULAR 

15 

♦ 14 

♦ 17 

♦ 14 

26 

41 

120700 

25.7N 

•25.8E 

?pbm 

2413 


100 190 

30 

210 

97 

130 

16 

4 

1 






26 

42 

121019 

25.8H 

125.6? 

70om 

2428 

975 



too 

62 

090 

150 

10 

2 

CIRCULAR 

20 

♦13 

♦ 19 

+ 16 

27 

43 

121320 

26.3H 

125.."t 

70em 

2454 

927 



210 

55 

158 

110 

10 

2 

ELLIPTICAL 

13 10 120 

♦15 

♦ 18 

♦ 17 

27 

44 

130133 

28. IN 

I26.it 

?8om 

2564 


45 080 

115 

160 

71 

080 

85 

5 

2 






29 

45 

130315 

28.4H 

126.6c 

700 m 

2582 

943 



210 

72 

133 

75 

5 

2 



+ 13 

♦ 18 

♦17 

29 

46 

131239 

29.9H 

128. 7t 

78078 





150 

76 

068 

60 

ie 

2 






"0 

47 

131505 

30. IN 

129.3E 

70em 





326 

-9 

260 

68 

4 

2 



♦ 18 

♦ 18 

♦ 14 

30 

48 

148022 

31.SM 

133.0E 

70om 

2659 


70 070 

30 

188 

68 

070 

69 

2 

2 






31 

49 

143230 

31.8M 

134.2£ 

78em 

2 728 

956 

100 258 

60 

330 

81 

250 

30 

2 

2 



♦ 15 

♦15 

♦ 14 

31 

50 

148528 

32.4N 

135.8E 

7e8m 

2791 


88 ISO 

9 

160 

56 

070 

90 

5 

2 






32 

51 

140734 

32.8K 

136.9E 

7oem 

2783 


80 ISO 

30 

240 

81 

150 

30 

5 

5 



♦ 14 

♦ 16 

♦ 14 

32 


RADA? FIXES 


fix 

Tim 

FIX 



EYE 

EYE 

RADOB-CODE 



RADAR 

SITE 

HO. 

<Z) 

POSITION 

RADAR 

ACCRY 

SHAPE 

D1 AH 

ASUAR TDDFF 

COUtNTS 


POSITION 

LMO HO. 

1 

052335 

12.6H 

146.7E 

LA <D 

GOOD 

CIPCULAR 

20 


UAIL CLD OPEN N*E 


13.611 

144.9E 

91218 

2 

06O13S 

12. OH 

146.6E 

LAND 

GOOD 

CIRCULAR 

20 




13.6N 

144.9E 

91210 

3 

060235 

12.3H 

146.4E 

LAND 

GOOD 

CIRCULAR 

20 




13.6N 

144.9E 

91218 

4 

050335 

12.SN 

146.4£ 

LAND 

GOOD 

CIRCULAR 



UALL CLD OPEN E 


13.CN 

144.9E 

91218 

5 

060435 

12 .6N 

146.3E 

LAND 

FAIR 

CIRCULAR 

20 




13.6N 

144.9E 

91218 

6 

060535 

12 . ?N 

146. IE 

LAND 

POOR 






13.6N 

144.AE 

91218 

* 7 

060635 

13. IN 

146.IE 

LAND 

POOR 






13.CN 

144.9E 

91218 

B 

060810 

13.3H 

146.3E 

LAND 

POOR 






I3.6H 

I44.9E 

91218 

* 9 

060910 

13.711 

146.3E 

LAND 

POOR 






13.6N 

IJ4.9E 

91218 

10 

660935 

13.8H 

146.3E 

LAND 

POOR 






13.6N 

144.9E 

91218 

11 

0510:0 

I3.7M 

146.IE 

LAND 

POOR 






13.6H 

144.9E 

91218 

12 

061135 

13.8H 

146.OE 

LAND 

POOR 






13. CN 

144.9E 

91218 

13 

661210 

13.8H 

146.8E 

LAND 

POOR 






13.6N 

144.9E 

91218 

14 

061235 

13.8H 

146.BE 

LAND 

POOR 






13.6N 

144.9E 

91218 

IS 

06I335 

14. IN 

145.6E 

LAND 

POO? 






13.6H 

144.9E 

91218 

16 

061410 

14.3H 

145.9E 

LAND 

FAIR 

CIRCULAR 

39 


UAIL CLD OPEN N 


I3.6N 

144.9E 

91218 

17 

061435 

14.4N 

145.8E 

LAND 

GOOD 

CIRCULAR 

23 


UALL CLD OPEN N 


I3.6N 

144.9E 

91218 

18 

061510 

14.7H 

145.5E 

LAND 

GOOD 

CIRCULAR 

25 


LWIL CLD OPEN SU-Hc 


13.6N 

144.9E 

91218 

19 

061535 

14.6N 

145.t>E 

LAND 

GOOD 

CIPCULAR 

23 


UALL CLD OPEN N 


13. GN 

144.9E 

91218 

20 

061735 

14.9N 

I4S.36 

LAND 

GOOD 

CIRCULAR 

22 




13.6N 

144.9E 

91218 

21 

061835 

15. OH 

145.36 

LAND 

GOOD 

CIRCULAR 

22 


UGcL CLD OPEN N 


13.6H 

144.9£ 

91218 

22 

06t910 

15.ON 

145.IE 

LAND 

r.OOD 

CIRCUS AR 

20 




13.6N 

144.9E 

91218 

23 

061935 

IS. IN 

145.IE 

LAND 

GOOD 

CIRCUS AR 

20 




I3.6H 

144.9£ 

91218 

24 

062010 

I5.2M 

I45-OE 

LAND 

TAIR 

CIRCULAR 

20 


UALL CLD OPEN H 


13.6N 

144.9E 

91218 

25 

062035 

I5.2N 

145.BE 

LAND 

FAIR 

CIRCULAR 

20 


LRLL CLD OPEN M 


13.CN 

144.9E 

91218 

26 

052335 

IS.4N 

144.46 

LAND 

FAIR 






13.6N 

144.9£ 

91218 

27 

070635 

IS.4M 

144.36 

LAND 

FAIR 






13.6N 

144.9£ 

91218 

28 

0?9n0 

15.6N 

144.16 

LAND 

GOOD 

CIRCULAR 

25 




13.6N 

144.9£ 

91210 

29 

070335 

15.7N 

144.06 

LAND 

GOOD 

CIRCULAR 

25 


NORTHERN HALF WYNNE ATTENUATED 

13.6N 

144.9£ 

91219 

30 

070434 

15.7N 

144.OE 

LAND 

GOOD 

CIRCULAR 

25 




13.6N 

144.9E 

91218 

31 

O7053S 

:s.8M 

144.OE 

LAND 

COOD 






13.6N 

144.9E 

91218 

32 

070635 

15.9N 

143.9E 

LAND 

GOOD 




NORTHERN HALF ITrHhE 

ATTENUATED 

13.6N 

144.9E 

91218 

33 

070735 

15. SN 

M3.9E 

LAND 

GOOD 




NORTHERN HALF l/iMNE 

hHEKUATED 

13.6N 

144.9E 

91213 

34 

07C81O 

16. ON 

143.8E 

LAND 

FAIR 






13.6N 

144.9E 

91218 

35 

070835 

!6. IN 

143.7E 

LAND 

POOR 






13.CN 

144.9E 

91218 

3C 

110700 

23. SN 

127.86 

LAND 




23713 52814 



26.2N 

127.8£ 

47937 

37 

114735 

23.4.1 

127.76 

LAND 

FAIR 






26.4N 

127.86 

4793S 

38 

110800 

23.4N 

127.86 

LAND 




G5/02 ///// 



24.3N 

124.26 

47918 

39 

I10800 

23.6H 

127.6E 

LAND 




3'"3 5 "" 



24.0N 

125.36 

47927 

40 

110800 

23.5fi 

.2* 7E 

LAND 




20613 52805 



26.?N 

127.0€ 

47937 

4: 

• 10900 

23.4N 

127.5E 

LAND 




65-13 52716 



24.3N 

124.26 

47918 

42 

110900 

23. SN 

127.56 

LAND 




28873 52508 



24.8N 

125.36 

47927 

43 

111000 

23.4N 

127.46 

LAND 




65'13 53008 



24.3N 

124.26 

47918 

44 

111060 

23.6N 

127.46 

LAND 




20723 53080 



28.4N 

125.36 

47927 

4$ 

111000 

23.6M 

1*7.SE 

LAND 




11174 72905 



26.?N 

127.8E 

47937 

46 

111180 

23.5N 

127.4E 

LAND 




65'13 72009 



24.3N 

124.26 

47910 

47 

111 100 

23.6H 

127.3E 

LAND 




20813 53005 



28.4N 

125.36 

47927 

48 

1S1 SCO 

23.7H 

127.4E 

LAND 




I07I3 73eee 



26.2N 

J27.8E 

47937 

49 

l11130 

23.7M 

127.3E 

LAND 

FAIR 






26.4:1 

127.86 

47935 

50 

111200 

23.611 

127.2E 

LAND 




M717 52683 



28.4N 

125.36 

47927 

SI 

1112C0 

23.6m 

127.26 

LAND 




10702 73287 



24.311 

124.26 

47918 

52 

I1I20S 

23.8N 

127.2E 

LAND 

FAIR 






26.**! 

127.86 

47935 

53 

111235 

23. PN 

127.26 

LAND 

FAIR 






2C.4M 

127.86 

47933 

54 

111300 

23. ON 

127.2E 

land 




10713 53511 



20.4?: 

125.36 

47927 

55 

111300 

23. ?M 

127.ZE 

LAND 




107I2 73086 



26.2n 

127.86 

47937 

56 

111300 

23.7M 

127.2t 

LAND 




107S2 73286 



2 4.311 

124.26 

47918 

57 

111310 

23.9N 

127.SE 

LAND 

FAIR 






26.4N 

127.86 

4793S 

58 

111400 

23.0N 

127.IE 

LAND 




10713 5330S 



28.4N 

125.36 

47927 

59 

111480 

23.8M 

127.2E 

LAND 




10713 73105 



26.2N 

127.86 

47937 

60 

111480 

23.7N 

127.IE 

LAND 




10713 73207 



24.3*1 

124,26 

47918 

61 

111508 

24. ON 

127.OE 

land 




11843 53314 



28.-w 

125.36 

47927 

62 

111500 

24. BN 

127.IE 

LAND 




10713 73207 



26.?h 

127.OE 

47937 

63 

1115G0 

23. yn 

1??.IE 

LAND 




I07la 73486 



2J. 3n 

124.26 

47913 

64 

111600 

24.2N 

126.96 

LAND 




11713 S32I4 



28.4N 

125.36 

47927 

65 

11160O 

24.2N 

127.OE 

LAND 




20743 73410 



26.2N 

127.86 

47937 

66 

111663 

24. IN 

126.9E 

LAND 




10612 7331I 



24.3H 

124.26 

47918 

67 

II17C3 

24.3M 

126.7E 

LAND 




10612 53015 



28. a: 

125.36 

4792? 

68 

111708 

2*».7N 

126.86 

LAND 




20613 73311 



26.2N 

127.86 

47937 

69 

111700 

24.3N 

!«■’£ 

LAND 




10512 73215 



24. 3» 

124.26 

47919 

70 

111800 

24.4N 

126.6E 

LAND 




20613 73! 12 



26 2M 

127.86 

47937 

71 

111908 

24.311 

126.3E 

LAND 




12912 $2506 



28.-in 

125. *C 

47927 

72 

111900 

24.3N 

I26.SE 

LAND 




20714 72716 



26 .2* • 

127.86 

4793? 

73 

M1900 

24.3M 

126.3E 

LAND 




55'42 72*1! 



24.3*i 

124.2E 

47918 

74 

1128C0 

24.3M 

126.3E 

LAND 




11712 52004 



.3.4*1 

125.36 

4792? 

75 

112888 

24.2N 

126.46 

LAND 




20712 72608 



26.2H 

127.8E 

47937 

76 

1120 OO 

24.211 

126.3E 

LAND 




SS'42 726I3 



24.3H 

124.26 

47918 

77 

112100 

24.3N 

126.4£ 

land 




10513 58505 



20 .4H 

i2$.36 

4792? 

78 

112108 

24.3N 

126.4F 

LAND 




106 >2 72102 



24.3N 

I24.2C 

47918 

?9 

1122 C0 

2 1.5M 

126.3E 

LAND 




10513 53312 



28.-M 

125.3E 

4792? 

80 

1122 C0 

24.SN 

126.4E 

LAND 




20613 73106 



26.2N 

127.8E 

4793? 


165 









































? POSIT 

19.1 162.i 
18.3 161. 
17.? 160. 

17.8 159. 
18.0 158. 

18.3 IS8. 

18.6 SS7. 

15.1 155. 

19.4 1S4. 

20.6 153. 

20.7 152. 

21.4 151. 

22.3 ISO. 

22.6 149. 
22.0 147. 

23.2 146. 

23.9 145. 

24.6 144. 

25.4 142.! 

26.2 |4I. 

27.2 140. 

28.7 129. 

30.6 141. 

33.7 143. 


AVG FORECAST POSIT FP*OR 
AVG RIGHT ANGLE ERROR 
AVG INTENSITY ‘BCNITUDE ERROR 
AVG INTENSITY 8IAS 
NUTBER OF FORECASTS 


UARNtMG 

EPR0R5 

WIND DST UIND 


15 

0.0 

0.0 

0. 

-O. 

8. 

0.U 

0.0 

15 

O.O 

O.O 

0, 

-O. 

0. 

C.O 

0.0 

15 

0.0 

O.O 

0. 

-0. 

0. 

0.0 

0 

15 

0.0 

0.0 

0. 

-0. 

C 

0.0 

>.0 

15 

O.O 

0.0 

0. 

-0. 

0. 

0.0 

O.O 

15 

0.0 

O.C 

0. 

-0. 

0. 

0.8 

0.0 

20 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

o.e 

20 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

O.O 

20 

0.0 

O.O 

0. 

-0. 

0. 

0.0 

0.0 

20 

O.O 

0.0 

8. 

-0. 

0. 

0.0 

0.0 

20 

0.0 

0.:* 

0. 

-0. 

0. 

0.0 

0.0 

20 

0.0 

0 

0. 

-0. 

0. 

O.O 

0.0 

20 

0.0 

0.0 

0. 

-P. 

0. 

O.O 

0.0 

25 

0.0 

0.0 

8. 

-0. 

0. 

0.0 

o.e 

2S 

0.0 

0.0 

8. 

-0. 

0. 

O.O 

0.0 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

30 

23.6 

145.0 

30. 

24. 

0. 

27.0 

142.0 

30 

24.2 

144.5 

30. 

32. 

0. 

26.3 

141. I 

30 

25.4 

143.8 

38. 

11. 

0, 

29.3 

141.3 

30 

26.8 

111.3 

30. 

42. 

0. 

32.5 

140.5 

35 

27.2 

140.6 

35. 

rs. 

0. 

0.0 

0.0 

38 

28.2 

139.0 

35. 

30. 

s. 

0.0 

0.0 

30 

30.3 

141.7 

30. 

24. 

0. 

8.0 

8.0 

25 

33.1 

143.4 

25. 

39. 

0. 

0.0 

0.0 


TROPICAL STORM ALEX 
BEST TRACK DATA 


I HOUR FORECAST 
EPPOPS 

WIND DST UIND 

l.O 0. -0. 0. 


0. -0. 0. 

0. -0. 0. 

0. -0. 0. 


43 hour FORECAST 
ERPORS 


72 HOUR FORECAST 


IHD 

DST UIND 

POSIT 

UIND 

DS 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0 

0. 

-0. 

G. 

0.0 

0.0 

0. 

-0 

0. 

-0. 

0. 

O.U 

0.0 

0. 

-8 

O. 

-u. 

0. 

0.0 

0.0 

0. 

-3 

0. 

-0. 

O. 

C.O 

0.0 

0. 

-0 

0. 

-0. 

0. 

O.e 

0.0 

c. 

-0 

0. 


e. 

0.0 

0.0 

0. 

-8 

0. 

-u. 

0. 

0.0 

o.e 

0. 

-0 

8. 

-0. 

0. 

0.0 

0.0 

0. 

-0 

O. 

-0. 

0. 

0.0 

0.0 

0. 

-0 

0. 

-0. 

0. 

0.0 

0.C 

U. 

-8 

0. 

-0. 

a. 

0.0 

0.0 

y. 

-0 

0. 

-0. 

0. 

0.0 

U.b 

0. 

-0 

C. 

-0. 

0. 

0.0 

0.0 

0. 

-0 

O. 

-0. 

0. 

0.0 

0.0 

0. 

-0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0 

0. 

-0. 

0. 

8.0 

e.0 

0. 

-e 

e. 

-0. 

c. 

0.0 

6.0 

0. 

-e 

e. 

-9. 

0. 

C.O 

0.0 

0. 

-0 

8. 

-0. 

a. 

0.8 

0.0 

0. 

-0 

0. 

-0. 

0 . 

C.0 

0.0 

0. 

-0 

0. 

-0. 

0 . 

0.0 

0.0 

0. 

-0 

8. 

-0. 

0. 

0.0 

0.0 

0. 

-0 

0. 

-0. 

0. 

C.O 

0.0 

0. 

-0 


ALL FOPECASTS 

URNC 24-KR 40*HR 

28. 118. 0. 

17. 45. 0. 

1 . 11 . 0 . 

1. 11. U. 


TvprtOGNS VKIlE OVLR 35 <TS 
URNS 24-KR 43-HA 72-HR 

0. 0. 0. U. 

0 . 0 . 0 . 0 . 

0 . 0 . 0 . 0 . 

0 . 0 . 0 . 0 . 

0 0 0 0 


DISTANCE TRAVELED BY STORM IS 1044. MM 
AVERAGE SPEED C F STORM IS 13. KNOTS 


TP0P1CAL STORM ALEX 
FIX POSITIONS FCP CYCLONE NO. 24 


SATELLITE FI>fS 


FIX TlrC 
NO. (2) 


I 

03C841 

19 

4M 

161 

7E 

PCN 

6 

2 

C816Q0 

19 

7h 

160 

4E 

PC** 

0 

£ 

032121 

18 

IN 

159 

4£ 

PCN 

5 

4 

0983UC 

13 

4M 

159 

IE 

PCM 

0 

. 

091200 

18 

7N 

158 

IE 

PCN 

0 

6 

891600 

18 

7H 

IS7 

6E 

PCN 

0 

7 

092858 

18 

8M 

156 

IE 

PCN 

5 

8 

169938 

19 

6n 

153 

3E 

PCN 

5 

9 

102217 

22 

5N 

153 

IE 

PCN 

5 

10 

1109.5 

22 

7N 

150 

eE 

PCN 

* 

! 1 

II1203 

2T 

HI 

14? 

6E 

PCN 

0 

12 

112IS5 

23 

IN 

147 

4E 

PCN 

5 

13 

12C6C0 

“4 

EM 

145 

6E 

PCN 

0 

11 

I2CGS3 

24 

SN 

145 

CE 

PCN 

5 

15 

12C9eO 

24 

tN 

145 

CC 

PCN 

0 

16 

122 ICO 

26 

2n 

141 

8E 

PCN 

0 

17 

122314 

26 

?N 

141 

3E 

PCN 

5 

18 

130900 

27 

6H 

139 

7E 

PCN 

0 

19 

131608 

25 

9N 

140 

?t 

PCN 

G 

20 

132100 

3: 

SN 

142 

4E 

PCN 

0 

2! 

13225I 

32 

9H 

143 

0E 

PCN 

5 

22 

149C08 

33 

6N 

143 

SE 

PCN 

0 

23 

140380 

35 

SN 

145 

St 

PCN 

z 

24 

140900 

38 

3N 

ISO 

IE 

PCN 

0 


Tl.5'1.5 'D0.S'?4HR$ 


ULCC 20.9 155 
UL ONLi 


FIX THB 
NO. (Z) 


AIRCRAFT FI>£S 


roorc oes mx-src-inD mx-FLT-LVL-LND accry 

KIT MSLP VEL/tJPC'RNG DIP/VEl/BRC/RNG NAV/TtT 


130546 

19.4N 

154.6E 

156CFT 

1009 

25 950 

75 

170 

25 060 

70 

3 

10 

110303 

21.911 

158.PE 

1500FT 

1006 

15 070 

4S 

020 

15 270 

25 

8 

5 

J2C014 

23.3n 

146.3E 

150CFT 

1004 

49 030 

68 

:>o 

51 038 

60 

5 

2 

121520 

25. IN 

143.3E 

recro 

3081 1000 



080 

.1? 360 

20 

1C 

5 

138108 

2S.2H 

141.3E 

700TB 

3109 

35 tie 

Sfe 

160 

46 ©62 

IS 

3 

3 

13C4J4 

26.9H 

140.7E 

7C8.'B 

3093 999 

35 350 

10 

12© 

33 360 

IS 

S 

3 


EYE OP I EH- EYC Itir iC' ISH 
DIAtVTATION CUTX IN/* DP/SST NO. 


♦28 +24 *23 28 
♦23 *24 +24 28 
♦24 *24 423 29 
♦ 12 M6 ♦! 1 


NOTICE - '.H£ ASTERISKS INDICATE FI>£S UNREPRESENTATIVE AND HOT UStD FOR BEST TRACK PURPOSES. 


167 


































TYPHOON BETTY 
BEST TRACK DATA 




BEST TRACK 



UAPHlHG 



24 HOUR FORECA 

ST 


48 HOUR FC7TCAST 


72 HOUR FORECAST 








CPRGF5 




ERRORS 




ERRORS 





MO/DA/HR 

POSIT UIHD 

POSIT 

UlND 

DST UIHD 

POSIT 

UIHD 

DST UIHD 

POSIT 

UIHD 

DST UIHD 

POSIT 

UIHD PST UIHD 

1028122 

2.1 

151.3 

25 

0.0 

0.0 

0. 

•0. 

0. 

0.0 

O .0 

3. 

-0. 

0. 

e.e 

G.O 

0. 

-0. 

0. 

0.0 

0.0 

8. -O. 

0. 

1C:818Z 

7.3 

152.7 

25 

0.0 

0.0 

0. 

-6. 

0. 

6.0 

0.0 

8. 

-O. 

0. 

C'.b 

0.0 

e. 

-u. 

e. 

O.O 

e.o 

6. -0. 

0. 

I020302 

7.8 

153.8 

20 

8.2 

152.9 

35. 

58. 

5. 

10.2 

149,0 

GO. 

103. 

10. 

11.0 

141.5 

70. 

117. 

-*, 

13.? 

139.5 

80. 197. 

-15. 

1029062 

8.9 

154.2 

30 

8.9 

154.1 

32 

6. 

5. 

11.2 

153.2 

68. 

242. 

5. 

12.2 

149.2 

70. 

479. 

-10. 

13.0 

144.5 

00. 579. 

-IS. 

IC29I22 

9.9 

153,4 

35 

9.6 

153.2 

.10. 

21. 

5. 

n.9 

149.4 

60. 

130. 

0. 

12.7 

146.2 

75. 

49*. 

-10. 

13.4 

142.6 

80. 554. 

-10. 

1029I8Z 

10.4 

152.1 

45 

10.8 

152.0 

50. 

25. 

5. 

1C.9 

147. I 

70. 

116. 

0. 

13.6 

142.5 

95. 

274! 

-5. 

15.3 

138.8 

99. 397. 

-5. 

1030002 

10.9 

150.6 

SO 

10. C 

151.5 

50. 

56. 

O. 

12.2 

146.0 

70. 

274. 

-5. 

14.9 

142.0 

85. 

53C. 

-10. 

1C.4 

137.5 

99. 375. 

-S. 

1030062 

11.7 

149.1 

55 

ii.C 

14y.2 

60. 

8. 

5. 

P.3 

143.1 

80. 

118. 

0. 

14.7 

137.2 

05. 

153. 

-'0. 

17.8 

131-5 

90. PG. 

-10. 

1030122 

M.i 

117.2 

60 

12.4 

147.5 

60. 

21. 

0 . 

'3.8 

141.3 

80. 

liA. 

-5. 

15.2 

135.7 

95. 

ISO. 


18.0 

120.5 

90. 132. 

-15. 

1030182 

12.9 

145.1 

70 

12.0 

145.7 

65. 

35. 

-5. 

14.2 

138.9 

00. 

65. 

-10. 

16.5 

132.8 

90. 

117. 

-5. 

20.0 

I2C.2 

55. 317. 

-10. 

1O31002 

13.2 

113.1 

75 

13.3 

14J.S 

70. 

24. 

-S. 

15.3 

I'0.4 

S5. 

79. 

9. 

19.5 

130.9 

115. 

22?. 

20.’ 

23.5 

129.9 

105. 553. 

-S, 

1031062 

I3.A 

141.1 

CO 

13.6 

141.7 

CO. 

35. 

9. 

1C.4 

113.9 

:lg. 

137. 

5. 

21.S 

129.0 

120. 

377. 

20. 

26.2 

131.2 

1!9. 749. 

0. 

1071122 

13.0 

1.59.4 

05 

14.1 

1*9.3 

05. 

19. 

0. 

17.3 

132.2 

105. 

131. 

15. 

42.2 

128.3 

S15. 

431. 

18. 

27.0 

134.? 

105. 90 2. 

-10. 

1031182 

14.0 

137.8 

90 

13.0 

137 5 

05. 

21. 

-5. 

15.2 

130.3 

110. 

103. 

15. 

17.1 

175.0 

125. 

252. 

2C. 

21.0 

122.2 

120. 434. 

0. 

1101002 

14.0 

136.2 

95 

14.3 

136-3 

90. 

19. 

-5. 

15.3 

129.0 

115. 

100. 

20. 

19.2 

525.: 

no. 

344. 

20. 

25.3 

127-3 

IIS. 527. 

-5. 

1181062 

14.2 

134.6 

95 

14.1 

134.6 

90. 

6. 

■5. 

15.0 

120.C 

115. 

107. 

15. 

13.5 

125.0 

110 . 

* 13. 

0. 

22.2 

127.1 

189. SIS. 

-■5$, 

110U22 

14.4 

133.1 

90 

14.2 

132.5 

90. 

37. 

0. 

16.C 

12C.4 

100. 

192. 

-s. 

20.8 

125.5 

9S. 

388. 

-20. 

24.7 

133.0 

85. 709. 

-35. 

1101192 

14.7 

132.0 

95 

14.0 

131.8 

05. 

13. 

-ID. 

17.2 

I2C.B 

BO. 

102. 

-25. 

21.6 

127.7 

75. 

432. 

-45. 

25.3 

135.2 

69. 540. 

-45. 

1102CO2 

1 1.0 

131.2 

95 

15.0 

136.4 

05. 

48. 

-10. 

17.C 

126.6 

80. 

221. 

-39. 

21.6 

127.7 

75. 

•126. 

- 45 . 

25.3 

136-C 

50.1056. 

-15. 

11*2062 

14.9 

130.. 

IOC 

14.9 

130.3 

IP0. 

6. 

0. 

16. U 

127.1 

80. 

156. 

-30. 

Ib.t 

126.9 

70. 

291. 

-55. 

22.9 

129.7 

60. 60S. 

10. 

1102122 

15.0 

129.3 

105 

15.2 

129.4 

10H. 

1.*. 

-5. 

So.3 

12C. 7 

90. 

146. 

-25. 

I9.0 

124.8 

00. 

223. 

-•SO. 

22.7 

120.2 

60. 5P4. 

15. 

U02102 

14.7 

120.6 

105 

15.2 

120.5 

105. 

30. 

0. 

16.7 

125.3 

100. 

129. 

-20. 

10.9 

124.2 

00. 

-23. 

-25. 

22.C 

127.5 

60. 4?5. 

15. 

1103002 

14.2 

128.1 

110 

14.2 

128.1 

110. 

0. 

6. 

15.2 

127.9 

115. 

ICO. 

-5. 

16.6 

ITS.2 

1C5. 

-Vi. 

4A. 

iC.C 

124.2 

95. 203. 

50. 

M03062 

14.2 

127.3 

110 

14.4 

12/ .7 

11C. 

2C. 

C. 

15.9 

126.0 

115. 

139. 

-10. 

17.3 

124.3 

105. 

2C7. 

55. 

iti.e 

12J.4 

95. 103. 

59. 

:103122 

14.4 

PC.7 

115 

14.7 

126.5 

115. 

19. 

0. 

1C.9 

173.C 

:ic. 

47. 

-ie. 

10.3 

121.4 

58. 

51. 

S. 

21.4 

127. n 

60. 13. 

•S. 

1103102 

14.6 

12S.8 

120 

14.6 

175.0 

155. 

12. 

-5. 

15.3 

123.1 

no. 

96. 

5 . 

J7.8 

121.2 

50. 

°n. 

5. 

20.0 

»?1.3 

65. 127. 

25. 

!104002 

14.0 

124.8 

120 

14.6 

124.9 

115. 

13. 

-5. 

15.4 

120.2 

78. 

54. 

5 . 

17.2 

117.2 

BO. 

°6y. 

35. 

20.3 

U5.2 

65. 560. 

23. 

1104062 

15.2 

123.7 

125 

14.9 

123.S 

120. 

21. 

-S. 

.6.3 

119.1 

75. 

:u9. 

25. 

SO. 2 

115.3 

35. 

JG2. 

•50. 

21.0 

112.2 

65. 913. 

30. 

1104122 

15.8 

122.8 

120 

14.7 

122.5 

120. 

60. 

0. 

17.2 

I1C.3 

00. 

111 . 

35 

S9.5 

II/. 5 

05. 

•'17. 


22.2 

•»2,1 

SO. 913. 

15. 

1104107 

ib.D 

121.G 

105 

JH.0 

*21.2 

IOC 

23. 

-5. 

17.4 

117.2 

05. 

22! . 

40. 

19.9 

114.9 

85. 

5* *. 

•15. 

?7.2 

111.3 

40.1006. 

5. 

110SOO2 

16.3 

120.0 

CS 

16.3 

120.5 

65. 

17 

0. 

17.9 

116.4 

eo. 

276. 

35. 

20.0 

113.3 

C5. 

wit. 

25. 

0.5 

0.0 

0. -C. 

0. 

H0Se62 

17.3 

120.7 

55 

17.7 

P0.7 

40. 

24. 

-18. 

22.0 

121.8 

;o. 

C4. 

-25. 

9.0 

0.0 

0. 

-0. 

0. 

0.5 

U.t 

C. -0. 

0. 

110S122 

IS.3 

120.5 

45 

18.5 

120,3 

•15. 

16. 

3. 

21.0 

120.0 

30. 

126. 

-15. 

O.f* 

0.9 

0. 

- 0 . 

0. 

0.0 

O.U 

0. -C. 

0. 

11OS182 

I? 2 

120.6 

45 

15.6 

120.9 

45. 

29. 

0. 

23.0 

123.6 

20. 

G5. 

-70. 

0.O 

0.0 

0. 

-II. 

0. 

0.0 

0.0 

0. -O. 

0. 

5106002 

• 9.9 

120.8 

45 

19.4 

120,7 

45. 

30. 

0. 

22.2 

122 .: 

45. 

1C3. 

5. 

0.0 

0.0 

0. 

-*J. 

0. 

0.6 

0.0 

(». -3. 

0. 

1106062 

20.6 

121.2 

45 

20.6 

121.3 

40. 

C. 

-5. 

■*4.4 

125.4 

25 

60. 

-10. 

0.0 

9.0 

0. 

- 0 . 

0. 

•\*« 

0.0 

0 . - 0 . 


1106122 

21.5 

122.2 

45 

21.S 

1?2.4 

35’ 

13. 

- 10 . 

25.6 

12C.4 

25. 

22. 

-10. 

O.C 

0.0 

0. 

-0. 

0. 

8 0 

0.0 

0. -3. 

0. 

1105IB2 

22.4 

123.3 

40 

22.5 

123.6 

25. 

10. 

-15. 

27.0 

132.8 

25. 

64. 

-10. 

0.0 

O.U 

0. 

- 0 . 

0 a 

0.3 

0.0 

0. -0. 

0. 

11070B2 

23.5 

124.7 

40 

23.5 

125.1 

40. 

22. 

0. 

O.'J 

O.O 

n. 

-0. 

0 . 

9.6 

O.U 

0. 

-u. 

0. 

0.Y 

0.0 

u. - 0 . 

0. 

1107062 

24.4 

126.5 

35 

24.6 

12G.3 

40. 

16. 

5. 

0.0 

0.0 

0 . 

-0. 

0 . 

O.O 

0.0 

t. 

-II. 

0. 

0.0 

I'.O 

0. -0. 

0. 

1107122 

25.C 

120.8 

35 

25.3 

128.5 

35. 

24. 

A. 

0.0 

0.0 

e. 

-0. 

0. 

a.o 

O.O 

0. 

-n, 

0. 

O.C 

0.6 

0. -0. 

0. 

1107102 

26.9 

131.6 

35 

o.c 

0.0 

0. 

-C. 

0. 

0.0 

0.0 

0 . 

- 0 . 

0. 

0.9 

0.0 

0. 

-0. 

0 . 

0.0 

0.0 

0. -0. 

0. 


ALL FOPCC«iSTS TkPNDCHS 1*1 HE OMR 35 KTS 



LHNG 

24-NP 

40-HR 

72-KR 

IFNG 

74-HR 

4C-MR 

77-HR 

AVG FORECAST POSIT FP e OR 

23. 

131. 

306. 

524. 

23. 

pi. 

206. 

524. 

AVG PIGHT AlfGLE ERROR 

14. 

01. 

215. 

405. 

14. 

01 . 

215. 

405. 

-AVG INTENSITY roCHITUDE ERROR 

4. 

14. 

23. 

17. 

4. 

14. 

23. 

17. 

AVG INTENSITY eiAS 

-2. 

. 

3. 

1 . 

0 . 

- 1 . 

3. 

1 . 

NUT8ER OF FORECASTS 

39 

36 

29 

20 

Z? 

rc 

29 

23 


DISTANCE TRavELCD BY STCPn IS 1220. Htt 


AVERAGE SPEED 0* STORM IS 13. INOTS 

t/pmqo*. ecnv 

FIX POSITIONS FOR CYCLONE NO. 25 


SATELLITE FltfS 


FIX 

Tirt 

FIX 





1 /*. 

12) 

POSITION 

AC CRY 

DVORAK CODE SATELLITE 

CLIENTS 

SI*c 

1 

;c*.2o> 

6.6N 151.3E 

PCh 0 

OTHER 


P5TU 

2 

?*2!22 

4,All 152.8E 

PCM 5 

10896 


Pf.TU 

3 

2 ?seal 

..'•'I 151.9E 

PCH S 

HQAA6 


PC.TU 

4 

230939 

*.4N *Sl.2t 

PCH 5 

hoaac 


PCTU 

5 

231203 

7.511 IV 9C 

PCN 0 

OTHER 


PCTU 

6 

231608 

7.ON 150. er 

PC’I 0 

OTH£P 


PCTU 

7 

282218 

7.IN 153.>E 

PCM 5 



PCTU 

C 


7.5N 152.6E 

Pv ’ C 

T2.5/2.S OTHER 

1N1T O0S 

PCTU 

9 

2*0300 

r..3M 15S.1E 

FCN u 

0 T H£P 


PCTU 

18 

290916 

9.4N 153.7C 

PC*. 5 

JcOAAA 


PCTU 

11 

23*20? 

9.8H 1S3.SE 

PCN 0 

PTH£P 


PCTU 

12 

291600 

10.ON IS2.5E 

PCN 0 

OTWJR 


PCTU 

13 

2920/3 

l?.9ll 1SC.9S 

PCN 6 

K6P37 


PCTU 

14 

292108 

11.111 1S8.4E 

PCN 0 

OTlCR 


PCTU 

15 

7*2156 

10.71. 151. IE 

PCN 5 

T3.5/3.S /D! .O'72HFS H06A6 


Peru 

1C 

3—‘•800 

11.2h IS8.7E 

PC.* 0 

OTlCR 


PCTU 

17 

309-03 

11.ON ISO.IE 

PCN 0 

CT*ER 


PCTU 

18 

3&03I5 

II.SN 149.SE 

PCM 5 

r- *OSN 


PGTU 

19 

309*0? 

P.4N I4R.PE 

PCH 0 



PCTU 

20 

380854 

1I.6N 149.36 

PCN 5 

N0466 


PCTU 


331889 

13.ON 1J5.*t 

Pt». 6 

TiPGSH 


PGTU 

22 

382108 

12.8h 143.TE 

PC.* 0 

OTHER 


PGTU 

23 

382133 

12.8m 144.2E 

rc« s 

T4.5/4.5 /01.C/24NRS MO»«S 


PGTU 

24 

3*8300 

13.7H 142.3E 

RCN 0 

OD^R 


PCTU 

25 

313900 

13.CM 149 3£ 

PCN C 

GTH£P 


P-.TU 

26 

311013 

I3.9H 139.Sf 

PCN 3 

MO* 


Pf.TU 

27 

2:1203 

13.$N I38.fi 

**.»« 0 

OTlffP 


PUTU 

23 

*11600 

|4.3h 138 2€ 

PCN 0 

OT^P 


Peru 

2* 

312121 

13.6N I26.81 

PCN 3 

DMSP3? 

168 

PGTU 


















sv 

312252 

13.6M 

I36.36 

Kll 3 

’5. 5'5. 5 

'Dl.0'2SHPS 


PM J 

31 

312252 

13.7M 

136 ft 

f'Ui 5 



t&fdtG 

**' .1 

i. 

0:93*0 

14.0N 

135.CE 

Pi't n 



OlMTf 

P( 1U 

33 

01*3900 

14. Hi 

133.5E 

r at o 



0Tl£p 

pr.su 

34 

01C9SC 

14. Hi 

133.47 

r*ui 5 



ICl¥«C 

«n.w 

35 

0I12G8 

14.Ml 

1*2.*£ 

PCM f. 



GIISP 

r*,iu 

36 

011630 

14.211 

152.37 

s-Cti o 



OT>CP 

KTU 

3.' 

0119*9 

14.5*1 

13!.66 

Pen 5 



firosti 

PGTU 

38 

011519 

14.411 

131.-st 

PCM 5 



riPuSH 

PP:» 

39 

012230 

la. 711 

131.3E 

PCH 3 

15.0x5.5 

B0.Sx?4HR5 

N0i¥f6 

Pi.lU 

*0 

048200 

14.0H 

130.3E 

r'CM 0 



OTIC® 

p.ty 

41 

826603 

15.2M 

i30.3E 

e C»l 0 



OTHER 

PMU 

42 

628990 

15.ON 

129.7E 

PCM 0 



QTHEP 

PP.Tli 

43 

021189 

15. IN 

129.47 

PCs 5 



ftOAAfe 

PCIU 

44 

821280 

I5.2N 

129.i£ 

PCN 0 



OTHER 

KlU 

4S 

822183 

14.0M 

128.26 

PCN 0 



UTl£P 

pg iy 

4/» 

830688 

14.4H 

I27.9c 

ECU C 

T6.8'6.0 

'£»! .0x25hP$ 

07»CR 

PATH 

4? 

03C3P8 

14.311 

127.9C 

PCN £ 



OTiCR 

Pi* is 

46 

03C903 

14.SM 

127.IE 

PCN £ 



OTMEP 

pr.m 

43 

03104' 

14.6N 

127.CE 

*'C*l 1 



1 iiriufC 

PT.TU 

50 

031208 

14.5N 

126.?E 

PCs £ 



OTHER 

pc.ry 

51 

032196 

14 SN 

125.2E 

PCN £ 



OTHER 

pr.TU 

52 

832159 

14.61 

I25.0E 

PCM 1 



t*tSPJ? 

r.»su 

51 

032326 

14.CM 

124.96 

PCN 1 

16.5/6.5 

/50.5^4rtP5 

IfifiHfi 

J-i-lU 

54 

049388 

14.8N 

124.26 

F*M E 



OTHER 

Pf.lU 

55 

049980 

15.4.1 

123.26 

PCN E 



other 

PM|» 

56 

045018 

15.5N 

122.3E 

PCN 6 



N0AA6 

POM 

57 

U41024 

15.6n 

123.2£ 

rc:i £ 



NGAm6 

fn.IU 

55 

041700 

1S.7H 

1?2.6£ 

PCN E 



OTHER 

rvru 

59 

84ICC" 

15.9N 

121.6E 

PCN £ 



OTHER 

pr.ru 

60 

*42103 

16. IN 

120.9c 

PCN 0 



OTHfP 

POTU 

61 

012204 

16.8m 

120.6E 

PCN s 

15.0x6.0 

XU1.5X24HP5 

NORA6 

Pl.TU 

62 

e5CC90 

i6.?»: 

128.?£ 

PCN c 



CTlCP 

PORT 

63 

3 .>03 00 

16.8N 

128.9£ 

PCN 0 



OTHER 

i MO 

64 

85C589 

17.6M 

129.47 

PCS 0 



OTHER 

KT.TU 

£5 

851*37 

10. IN 

120.7E 

PCN 6 



NOAHS 

POM 

66 

051203 

17.7N 

120.2£ 

PCN 0 



OTHER 

«T.TU 

67 

052103 

18.9N 

I20.7E 

PCN 0 



OTHER 

FCTU 

68 

C60CO0 

19.Sn 

121 .2f 

PCN 0 

13.6/'4.8*/U2.0x25H* 5 

OTh£P 

PGTU 

* 69 

066O22 

19.1*1 

!19.35 

PCN 3 

T2.5X2.5 


NC<Am6 INIT COS 

PP»» 

70 

868380 

28.2N 

120.9t 

PCN 0 



OTHER 

Peru 

71 

0609C9 

71. IN 

121.C£ 

PCN 0 



01h£R 

Peru 

72 

861115 

20.9M 

121.56 

PCN 6 



noaac 

POM 

73 

061128 

2J.2H 

121.76 

PCN 5 



*JCaA6 

PGTU 

74 

862100 

20.6H 

123.5£ 

PCN 0 



OTHER 

PCTU 

75 

P70380 

22.tot 

:24.6E 

•CM 5 

T3.0x5.0 


N0AA6 IN IT C6S 

vso 

76 

870000 

23.6N 

124.5t 

PCN 0 

12.0x3.8 

'yi.ex24PPS 

OTHER 

PGTU 

77 

870990 

24.7H 

127.4£ 

PCN 0 



OTHER 

PGTU 

7e 

871658 

2S.5N 

128.46 

PCN 5 



NCSAS 

PT.TU 

79 

071268 

25.8N 

128.7£ 

PCN 0 



OTHER 

PGTU 

eo 

871600 

26.6M 

130.2£ 

PCI 0 



OTnER 

pr.ru 

81 

072337 

27.9N 

134.l£ 

PCN 5 

Tl.0x2.0 

/W:.0x24MPS 

H0AA6 

PGTU 

92 

eeeeoe 

27.8s 

135.5E 

PCN 0 



OTHER 

PGTU 

83 

O80300 

28. en 

137.6E 

PCM 0 



OTHEP 

PGTU 

84 

O8C6C0 

28.6« 

148.2E 

PCN 0 



OTȣR 

PGTU 


Fix T:r€ 

NO. Ci 


AlPCPfiFT n*£S 


7D3I3 80S mx-<FC mx-rLT-<.VL*'JO aCCPY 

HGT nSvP VtL^DPC/F.'C 11R At L/«?«/*»« NflV/t^T 


EY£ OPIEH- EH Tiff* <C» 
DIATWATIOH UuTx JN/' fcPx$57 


1 

290451 

6.7N 

154 2E 

1SO0FT 


ICO! 

30 290 

12C 

328 

30 

?90 

120 

6 

9 



♦25 

*25 

♦24 

2 

251526 

18.5N 

152.6E 

?«3 rft 

3989 

994 



140 

28 

720 

20 

3 

5 



411 

♦ 12 


3 

292112 

:u.2M 

151.BE 

7C»tl 

3C24 

993 

35 270 

18 

360 

3i 270 

63 

5 

5 



♦11 

♦ 13 

♦ *? 

4 

3809-42 

11.0?* 

ise.5£ 

7cu?n 

3C24 


40 100 

20 

250 

54 

110 

30 

5 

6 






5 

398253 

31. 4N 

ISO.IE 

recse 

2999 

991 

50 070 

10 

158 

04 038 

30 

*; 

5 



*12 

♦ 13 

♦II 

6 

390333 

JI.8N 

148.5E 

70C*© 

2^94 

969 

35 300 

98 

850 

49 

298 

60 

5 

5 



*10 


♦ 10 

7 

301132 

S2.1N 

147.SE 

708TB 

297/ 




130 

72 

078 

28 

5 

3 




♦ 14 

♦11 

« 

3oi2£? 

12.4N 

146.CE 

700M3 

2942 

93! 



:5c 

79 

070 

15 

5 

3 



♦12 

♦ 15 

♦ 1 > 

9 

3*5385 

13.7J: 

139 CE 

7ee?B 

2771 




259 

56 

280 

:c 

s 

2 






1C 

311443 

13.71- 

1 .8. tel 

7w»f» 

2760 

959 



820 

96 

290 

40 

1C 

2 



*13 

♦19 

♦12 

11 

311834 

14.8N 

137.6E 

700n5 

?736 




368 

57 

280 

75 

5 

1 






12 

512128 

14. IN 

i27.ee 

7 core 



*80 3S0 

28 

COO 

80 

303 

70 

5 

1 



♦IP 

♦IN 

♦ 11 

13 

0I9C33 

S3.in 

IJA.IE 

7MfO 

2759 

962 

lie y.v 

:7 

* ? n 

« 

ere 

55 

5 

I 



*:3 

♦ 18 

♦13 

14 

8:S459 

14. 7N 

:3?.st 

rce?B 

2790 




058 

94 

320 

•d 

b 

& 



• * * 

• »7 


IS 

f.2P<*29 

14.7N 

171.0E 

7CCTB 

2740 


12C 273 

28 

CIO 

109 

2"0 

29 

4 

2 



♦ i 1 

♦21 


16 

820 CCS 

14.91 

>3C.7£ 

7n0?c 

27J4 

956 

126 e$e 

40 

ISO 

112 

CEO 

IS 

4 

2 



*18 

♦21 

♦11 

17 

P2113I 

IS.OH 

129.6E 

799TB 





I*V 

£3 

060 

25 

5 

2 



*12 

♦ie 


13 

821184 

15.Cl 

•29.ee 

780« 


959 



350 

68 

280 

70 

5 

2 

CLUPftCfiC 

19 ID 350 

*16 

♦ J*» 

*12 

19 

830026 

14. IN 

120.IE 

7 fStt 

2702 


60 290 

i:e 

028 

87 

3iO 

60 

8 

5 



*;■» 

*:7 


28 

0395*22 

14.7N 

I27.CE 

70C tZ 

2659 

943 

68 ISO 

15 

<30 

69 

ISO 

20 

5 

3 

CIRCULAR 

35 

*:c 

♦ 17 

♦ 14 

21 

830544 

14.3N 

127.6£ 

7C0T5 

2683 


45 330 

:oc 

830 

90 

3!8 

15 

8 

3 

circular 

30 

*:S 

*1? 

♦12 

22 

0*1206 

!4.«i 

126.?E 

7C3TS 

247.5 




3S3 

ICO 

278 

35 

7 

: 

c : c culat 

35 




23 

035425 

14.41 

126.47 

?0^B 

2458 

929 



2S3 

113 

“10 

38 

7 

1 

C IPCtiLM 

35 

*12 

*22 

♦11 

24 

832288 

14.61 

125.3E 

rewo 

<44: 

926 

68 278 

ip 

368 

105 

270 

28 

5 

5 

CIRCuLPw 

35 

*14 

♦ 19 

*13 

25 

040158 

14.61 

124.5E 

? eo?c 



170 040 

i8 

!7e 

! 12 

eso 

14 

5 

5 

CJ°Ct*.AR 

35 




26 

840348 

14.91 

!24.|R 

7C0TB 

2475 

92S 

130 010 

16 

838 

123 

310 

22 

3 

2 

CIKW.AR 

35 

*17 

*19 

“15 

27 

C40S5! 

15. M 

127.IE 

TftrB 

2 159 

923 



320 

76 

18*1 

25 

5 

3 

CPcriTRIC 

2* 30 

*!! 

♦15 

♦ I* 

23 

0-*! 106 

15. 7N 

i42.ee 

7dCr© 

2432 








5 

3 

CIRCULAR 

25 


*15 

♦15 

29 

830040 

17.5n 

120.3E 

7«m 

296 * 

98? 

45 308 

^0 

368 

39 

280 

eo 

2 

10 



*12 

*:: 

♦ 7 

30 

031317 

!8.8n 

128.76 

70CfR 

3980 




130 

55 

03.. 

UP 

5 

3 






51 

851550 

59.21 

120.BE 

78»B 

299/ 

SSv 



340 

36 

248 

90 

5 

J 



*14 

*14 

• 10 

32 

0SO33S 

20.2H 

121.1C 

78sr* 

29?9 

9$€5 

30 040 

368 

133 

39 

e48 

188 

S 

S 



* 8 

*12 

♦:i 

33 

861322 

21.91 

122.4£ 

700TB 

3011 




320 

75 

220 

ICO 


$ 






,>4 

061555 

42. IN 

127.IE 

7CCKB 

3817 

993 



:3o 

50 

"X* 

70 

«: 

1 



*12 

*12 

♦ 0 

35 

070135 

23. BN 

125.26 

703TB 

3032 


48 04C 

10 

330 

6* 

230 

eo 

2 

2 






36 

070408 

24.21 

125.7E 

7CCTB 

3826 

994 

48 368 

•5 

C 20 

3* 

308 

68 

5 

2 



+ 14 

*15 

*10 


O O >4 ■ * si 9k 




















T 




























TROPICAL STORM CARY 
BEST TRACK DATA 


BEST TRACK WARNING 24 HOUR FORECAST 48 HOUR FORECAST ?2 HOOP FORECAST 

ERRORS ERRORS ERRORS 


MO/"DA 

POSIT WIND 

POSIT 

UIHD 

DST UIHD 

POSIT 

UIHD 

DST UIHD 

POSIT 

UIHD DST UIHD 

POSIT 

UIHD 

DST UIHD 

1628:82 

13.6 

124.5 

25 

0.0 

0.0 

6. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.8 

8. -8. 

0. 

c.e 

6.8 

0. 

-0. 

0. 

1629662 

!3.3 

122.S 

25 

0.8 

0.0 

0. 

-8. 

8. 

0.0 

0.0 

0. 

-0- 

8. 

8.0 0.0 

0. -0. 

0. 

0.8 

0.8 

0. 

-0. 

0. 

1629862 

14.5 

121.0 

25 

8.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-8. 

0. 

1029122 

IS.! 

II9.4 

33 

14.8 

120.0 

25. 

39. 

-5. 

16.3 

115.2 

50. 

33. 

15. 

18.5 111.2 

55. 260. 

28. 

20.4 

107.2 

45. 

457. 

15. 

1029182 

15.2 

118.0 

35 

•5,* 

118.3 

43. 

21. 

5. 

12.3 

M3.6 

50. 

120* 

15. 

19.1 

110.1 

45. 311. 

10. 

21.1 

107.2 

48. 

532. 

15. 

1036002 

16.1 

112.0 

35 

16.2 

112.0 

40. 

6. 

5. 

19.0 

113.2 

50. 

220. 

15. 

21.3 M2.4 

45. 401. 

10. 

25.2 

! 15.7 

20. 

?C9. 

0. 

I038062 

16.3 

116.2 

35 

16.8 

115.2 

50. 

41. 

15. 

19.8 

112.9 

60. 

222. 

25. 

22.0 112.3 

56. 489. 

28* 

0.0 

0.0 

0. 

-0. 

8. 

1030122 

16.3 

115.6 

35 

12.8 

114.2 

50. 

1P3. 

15. 

21.2 

112.4 

55. 

388. 

20. 

23.6 113.2 

50. 651. 

20. 

0.6 

0.8 

0. 

-0. 

0. 

1030182 

16.0 

115.2 

35 

16.5 

114.9 

40. 

34. 

'j. 

12.6 

112.1 

35. 

ICI. 

0. 

10.2 109.4 

30. 326. 

5. 

0.0 

0.0 

0. 

•8. 

0. 

1031C3J 

15.6 

114.2 

35 

16.9 

114.2 

45. 

83. 

10. 

18.2 

Mi.4 

40. 

218* 

5. 

19.5 188.9 

30. 456. 

10. 

0.0 

0.0 

0. 

-8. 

0. 

1031662 

15.3 

114.1 

3S 

15.6 

114.3 

45. 

21. 

18. 

IS.8 

M2.2 

40. 

138. 

10. 

0.0 8.8 

0. -0. 

0. 

C.O 

0.0 

6. 

- 0 . 

0. 

1031122 

14.8 

113.6 

35 

15.2 

113.2 

45. 

33. 

10. 

14.3 

109.8 

30. 

103. 

8. 

0.0 0.0 

0. -8. 

0. 

0.0 

O.0 

8. 

-c. 

0. 

1031182 

14.2 

112.0 

35 

14.2 

M2.4 

35. 

35. 

8. 

14.5 

102.6 

28. 

156. 

-5. 

C.0 

0.0 

0 . -O. 

0. 

0.0 

8.6 

0. 

- e . 

0. 

1101802 

14.6 

112. e 

35 

14.3 

112.2 

35. 

44. 

8. 

14.0 

109.5 

30. 

14 C. 

10. 

0.0 0.0 

0. -0. 

0. 

0.0 

c.e 

0. 

-0. 

0. 

1101062 

13.9 

III.! 

30 

14.5 

111.0 

35. 

36. 

5. 

e.o 

0.0 

0. 

-0. 

e. 

0.0 0.0 

8. -O. 

0 . 

0.0 

6.0 

0. 

- o . 

c . 

1101122 

13.1 

110.1 

30 

13.6 

110.3 

30. 

32. 

0. 

0.0 

6.0 

0 . 

-0. 

e. 

0.0 0.3 

e. -a. 

0 . 

0.0 

O.O 

3. 

-0. 

a . 

1101182 

12.4 

189.2 

25 

12.5 

169.2 

25. 

6 . 

0. 

0.0 

0.0 

0 . 

- 8 . 

0 . 

6.0 0.0 

C. -0. 

0 . 

0.0 

0.0 

0 . 

• 0 . 

0 . 

1102032 

II.9 

108.2 

20 

e.e 

0.8 

0 . 

- 0 . 

0. 

0.0 

0.0 

0 . 

- 0 . 

e. 

0.0 0.0 

e . - o . 

0 . 

0.0 

0.6 

0 . 

- 0 . 

0 . 


«l FORECASTS TYPHOONS CHILE (*€P 35 KT$ 



LRNC 

24-HR 

40-HR 

72-MR 

URNC 

24-MR 

43-HP 

72-HR 

AVC FORECAST POSIT ERROR 

38. 

180. 

421. 

630. 

8. 

0. 

0. 

0. 

AvG RIGHT ANGLE ERPOR 

27. 

158. 

358. 

545. 

0. 

0. 

0. 

P. 

AVG INTENSITY MAGNITUDE ERROR 

6. 

M. 

14. 

16. 

0. 

0. 

6. 

3. 

AvG INTENSITY BIAS 

5. 

10. 

14. 

10. 

8. 

0. 

0. 

0. 

NUrCER Cf FORECASTS 

14 

II 

7 

3 

0 

8 

0 

0 


5I$TA:CE TRAVELED 8V STORM IS i860. NT1 
AVERAGE SPEED OF STORM IS 10* KNOTS 







TYPHOON DINAH 


BEST TRACK DATA 


24 mOU» FORECAST 
ERRORS 


l HOUR FORECAST 
ERRORS 


72 HOUR FORECAST 


iileoez 

4.3 

ice.i 

20 

e.e e.o 

O. 

-8. 

0. 

0.8 

e.e 

e. 

-0. 

p. 

e.e 

e.e 

e 

-0 

1118122 

3.C 

177.5 

28 

e.e e.o 

6. 

-0. 

0. 

0.0 

o.e 

8. 

-0. 

e. 

e.a 

8.0 

e 

-0 

1118162 

2.8 

175.7 

20 

e.e e.o 

6. 

-0. 

8. 

e.e 

0.0 

e. 

-0. 

0. 

e.e 

6.9 

e 

•tf 

11I $862 

2.4 

173.9 

20 

e.e e.8 

0. 

-0. 

0. 

8.0 

0.8 

0. 

-0. 

0. 

e.e 

8.0 

e. 

-0 

1119062 

2.7 

172.3 

20 

e.e e.o 

0. 

-0. 

9. 

e.e 

8.0 

e. 

-e 

8. 

e.e 

6.9 

e 

-6 

1119122 

3.3 

178.8 

20 

e.o e.o 

e. 

-0. 

e. 

0.3 

0.0 

0. 

-e. 

e. 

8.0 

0.6 

0 

-e 

1119182 

4.0 

169.5 

25 

e.o o.e 

o. 

-e. 

0. 

o.e 

e.e 

0. 

-e. 

e. 

0.8 

e.e 

6 


1128062 

4.8 

168.1 

25 

o.e e.e 

O. 

-3. 

8. 

e.e 

e.e 

0. 

-8 

0. 

0.C 

o.e 

e 

-e 

1128*62 

5.7 

166-S 

30 

e.e 0.0 

e. 

-8. 

0. 

e.e 

e.e 

0. 

-0. 

0. 

e.e 

e.e 

e. 

-c 

1123122 

7.S 

164.7 

30 

o.e e.o 

e. 

-e. 

e. 

e.e 

e.e 

e. 

-c. 

e. 

e.e 

o.e 

e 

-0 

1126182 

8.6 

162.6 

35 

0.6 8.0 

8 

-e. 

8. 

0.0 

0.0 

e. 

-0. 

0. 

0.8 

o.e 

0 

-0 

1121882 

S.S 

168. S 

40 

0.0 8.0 

0. 

-8. 

0. 

0.0 

e.o 

6. 

-0. 

e. 

n.e 

e.e 

C 

-e 

1121862 

10.2 

157.? 

45 

10.5 157.6 

35. 

19. 

-10. 

12.6 

149.6 

45. 

32 

-38. 

15.9 

143.3 

55 

103 

1121122 

10.5 

155.5 

55 

10.8 155.3 

40. 

21. 

-IS. 

13.1 

143.2 

55. 

C4. 

-3fa. 

16.6 

142.C 

60 

133 

1121182 

10.8 

153.5 

65 

11.0 153.3 

60. 

17. 

-5. 

i4.e 

146.3 

68. 

70. 

-40. 

18.6 

141.2 

35 

210 

1122002 

11.7 

151.5 

70 

11.4 151.4 

75. 

19. 

5. 

14.3 

I4J.5 

100. 

133 

e. 

18.0 

137.6 

110 

42? 

1122062 

13.1 

143.4 

75 

13.0 149.4 

80. 

6. 

5. 

17.2 

142.0 

ICG. 

126. 

8. 

22.» 

139.8 

ies. 

359 

1122122 

14.2 

147.3 

05 

14.0 147.5 

75. 

1?. 

-ie. 

10.2 

148.9 

65. 

1G*. 

-:c. 

24.5 

143.5 

60 

233 

1122182 

15.1 

145.3 

100 

15.2 145.3 

GO. 

35. 

-2*5. 

2C.2 

143.8 

95. 

1«5. 

0. 

26.2 

146.2 

?e. 

2C5 

1123882 

16.2 

144.7 

100 

16-2 144.8 

100. 

6. 

0. 

21.8 

142.4 

95. 

130 

5. 

27.2 

143.2 

85 

350 

1123862 

17.4 

144.2 

100 

16.2 *44.1 

100. 

72. 

0. 

21.4 

142.0 

80. 

256 

-5. 

27.0 

14/.6 

65 

535 

1123122 

18.7 

143.0 

95 

18.6 142.9 

96. 

8. 

-s. 

23.3 

145.1 

75. 

211. 

-5. 

0.0 

0.0 

9 

-6 

1123102 

20.2 

144. 1 

95 

20.4 144.0 

65. 

13. 

-18. 

27.2 

150.2 

70. 

iec 

e. 

e.e 

o.e 

e 

-e 

1124802 

21.4 

144.7 

90 

21. X *44.7 

95. 

ia. 

5. 

25.6 

158.3 

70. 

263 

10. 

c.e 

o.e 

e 

-0 

1124062 

23.0 

146.3 

85 

21.2 114.7 

90. 

139. 

5. 

29.4 

156.2 

55. 

125 

5. 

o.e 

o.e 

e 

-6 

5124122 

24.6 

148.7 

88 

24.5 143.7 

85. 

6. 


0.6 

O.e 

e. 

-6 

ft. 

e.o 

e.e 

6 

-e 

1124182 

26.fa 

15!.5 

70 

25.9 151.4 

ee. 

6. 

10. 

e.e 

e.e 

<>. 

-P 

0. 

e.e 

0.8 

e 

-o 

1125862 

27.4 

154.a 

ee 

2?-5 154,? 

65. 

8. 

5. 

9.0 

e.o 

e. 

-0 

e. 

e.e 

6.0 

0 

.p 

1I2S667 

28.8 

158.5 

50 

29.0 159.3 

66. 

16. 

10. 

0.0 

o.e 

c. 

-0 

e. 

o.e 

6.e 

e 

-c 





ALL FORECASTS 





TYPHOON-; LM-.tE CMP 31 

£TS 





.PNC 


24- HR 

4$-HP 72- 



iPHC 

24-** 43-► 

P 72-HP 

A'.C FORECAST POSIT £RR» 

25 


145. 

304. 

6?3 




25. 

i45. 

304. 

673. 

*v£ PIOHI AhCiX ERROR 

14 


93. 

i?S. 

336. 



14. 

93. 

175. 

336. 

AVC INTENSITY tt%N|TV?C 

ERROR 7 


12. 

21. 





2. 

12. 

21. 

17. 

hvo intensity bias 


- ! 


-9. 

-3. 


. 



ft. 

-9. 

-3. 


5. 

nu?E£R Cl 

FORECASTS 


1 


13 

9 


5 



17 

13 

3 


5 


POSIT i 
0.0 C.0 


7C.8 I3S.C 
21.2 133.2 

23.4 13?.e 
24.6 133.4 

27.4 143.6 
0.8 8.0 
o.o e.e 

0.6 0.5 

6.o e.« 

o.e e.e 
c.e e.e 
o.e e.e 
c.e e.e 
e.e e.e 
e.e e.e 
e.e o.e 
e.e e.e 


i tST UIKS 
- 8 . 0 . 
-e. e. 
-e. o. 

-8. O. 

-a. o. 
-e. e. 

8. 

- 5 . 8 . 

'8. 0. 
- 8 . 8 . 
- 8 . 8 . 
- 0 . 8 . 
436. -28. 
612. -18. 
778. 25. 

629. 1C. 

716. 26. 
-8. 8. 
-8. 8. 


DISTANCE TRAV£l£ 5 **Y STCPtl 1$ 3530. wi 

AVERAGE SPEED C? STORli IS 21- KNOTS 


Typhoon 

rix positions fcp cyclcpc ho. 2? 


SATELLITE rises 


- JX 

Tirt 

FIX 





HO. 

Cl 

POSIT 

:cn 

<CCPY 

0V5PA* COPE 

A TELL 1 T£ CincHTS 

SITE 

, 

5i4?33 

-1.3N 

179.SC 

PCS 0 


OIMCR 

pctu 

2 

131209 

4. JN 

177 4£ 

FCH 0 


OT*R 

Peru 

3 

1*2190 

3.2* 

174.CC 

PC“ 0 


cniR 

PCTU 

4 

190009 

4.ON 

173.61 

PCM 0 


DTl** 

Pr.Tw 

; 

1*2049 

4.211 

169.CS 

PCI. 6 

70.VU.5 

•OiAC IHIT OOS 

rxrj 

6 

2CC980 

5.s« 

IC5.SE 

ro* o 


OTKP 

PGIU 

7 

201708 

r.iH 

S65.CE 

PfJ» 0 


OTHER 

per*; 

P 

2c:tce 

S.6« 

163.IE 

rtv o 


OrKR 

PCTU 

3 

202:c« 

3.9N 

161.6£ 

PC** o 


OT*<R 

P^TV 

ie 

7I8S84 

?.6N 

1S9.9C 

PSH C 


CTHCR 

PCTy 

:i 

21=6=9 

IB,tN 

157. H 

PCN o 

xj.ei.c 

OTK& |Hi7 XA 5 

KTV 

;* 

21C900 

;e. ik 

156.6C 

PCM C 


OTKR 

p*r» 

£3 

2ie*es 

13.•« 

156.4£ 

PfN A 


ff>*6 

KTU 

14 

21 

ib.sn 

155.76 

rcH o 


ftT<P 

«TU 

15 

211600 

M.7H 

153.96 

PCS c 


OTKC 

PSTU 

16 

212I70 

::.4» 

152.3E 

pcm e 


37*<p 

rerw 

£? 


11.CN 

15l.4£ 

Krt £ 

74.5-4.5 'Dl.S'lS^S 

OTXP 

PCW 

18 

22® ■ 

:2.n 

159.3£ 

kh e 


OtHfP 

PCTU 

19 

22T605 

IT. IS 

149.21 

rcn c 


OTl*.P 

POTLi 

24 

22*953 

li.9H 

;47 a *C 

PCM c 


OTKR 

pciy 

21 

221200 

:4.iH 

147.2S 

P/M C 


or.jp 


22 

2/I6SB 

! S.0S 

146.2E 

KM C 


OTKP 

NST« 

21 

272122 

:5.7m 

145.3E 

PCM ! 

75.5-5.5 OI.Oy2:*^S 


PC TV 


23=390 

;6.6n 

144.4£ 

n> c 


OTXP 

KTU 

25 

23*605 

17.JM 

14*. 4C 

PCN c 



PCTV 

2t 

2309CS 

13. & 

144.ie 

PCM C 


PTXP 

PC TV 

2? 

231C02 

:9.2m 

141.96 

PCM 3 


?0-‘*6 

PC TV 

23 

231082 

:7.*n 

143. ?€ 

PCM ; 




29 

7 31TOC 

IS.Sh 

144.CC 

PCM 1 


OTKR 

PC IV 

30 

232241 

20.9»i 

144.6C 

PCM J 

T4.a^5.5 An.V25>*S 

*C«6 

PCT*» 

I! 

2433*50 

25. ON 

145.21 

PCN £ 


0T<» 

pen# 

32 

240r*3* 

»3.6M 

147.56 

PC* l 


OTh£p 

re tv 

>3 

24093? 

23.®* 

I47.et 

PC* l 


MQAA6 

*r05« 

34 

241208 

24.V* 

145.76 

Km £ 


OTHER 

PC TV 

35 

241680 

25.5*4 

ise.-s 

PC* c 


01*<R 

PC TV 

36 

24221? 

26.9N 

1*3.01 

PCs* 3 

T5.8/4.5 W.9/24K 


PC TV 

37 

2503*0 

73.0* 

156.5C 

PCn 0 


or<e 

PC Tv 

30 

2512*5 

3S.2H 

162.61 

PCM 0 


OTr<R 

PC Ml 


-V 















AiStt££*J 


fix t:t 

F JX 

fii ?>es 

35 

nz*-src-is<- HH-ftT-tW.-tfO AK*nf 

M 

£YE 0*10- 

Cft Tirr <€* 


*c. o 


LVL KiT 


vll HiV-TST 

5»?C 

^sev^TSSw 


N3. 


* 

21*225 

9.S* 

i59.ec 

♦5®vFT 


953 

55 95? 

25 

133 

41 55? 

25 

3 

1 






1 

2 

21*222 

ic.t* 

153.7£ 

7»« 

2S34 

524 



C2C 

S3 2i9 

3 

7 

> 

CJSCtt# s 


♦S3 

*15 

*i: 

2 

« 

212247 

::,« 

S5t.« 

Teere 

293! 


99 2@ 

5 

343 

33 27* 

13 

5 

1 






» 

4 

r>e^s5 

£2.3?* 

!«-« 

?««: 

2331 

52? 

1C9 

2 

199 

35 3X 

2 

5 


CiSO&^ 4 


• IS 

*15 

*13 

3 

5 

22032S 

ll.s* 

I43.tc 

reer® 

292? 

5?5 



334 

23 343 

5 

4 

£ 



*22 

*15 

•14 

4 

b 

221224 

:« 

147.2C 

.*«?« 

2*4> 




33C 

53 313 

23 


2 






4 

? 

221443 

:j.4< 

IJi.Sf 


2255 




343 

32 2-55 

5 

4 

■ 

' [itU.4 5 


• SI 

*12 

*15 


3 

22X«I 

!j.«m 

14.4 

r?er* 

2*53 


ie* tg 

3 

313 

.'! 2a 

15 







3 

9 

2271*5 

15.&-* 

145. jc 

7?^B 

2543 

541 

;t* 33? 

5 

253 

54 153 

15 

s 

2 

C1?CU.** 2 


*14 

*15 

*12 

* 

se 


1S.3* 

:•».« 

7SC3 

2435 


*> 3@ 

3 

253 

34 153 

5 

5 

4 







j j 


:i.ss 

144.35 


243# 

533 

1« €43 

4 

13? 

2 S3* 

15 

i 

2 



*24 

*15 

*12 

5 


23132: 

2S-?f* 

:-3.^ 

7S^» 

22-59 




25? 

42 214 

24 

2 

* 






> 

S3 

231554 

:9.«* 

NJ « 

r&re 

22 9 

555 



e-53 

23 315 

15 

2 

2 

25 zt 

lie 

♦ IS 

*19 

•xe 

4 

u 

24B122 

2i.i* 

144.$^ 

t^ts 

22*2 


SC? 123 

2t 

<« 

99 123 

?* 

5 

i 






7 

15 

2*«2 

22. >» 

I*.« 


2212 


X 233 

13 

die 

5$ 29? 

25 

5 

2 

Uvl>15». 23 15 

« 

-SI 

*it 

•SI 

2 











*1* 

TIT 

f i» 



tn 

r45ce-cc24 



SSTc 

Ml. 

i2> 

pssi::^ 

«crr 

S^l 

51--1 

T53F? 

^nt»TS 

F05ITI&* 

?e. 

, 

22X113 

23. yr, 142.4c 

£.®*2 





13-«* ~*E 

92713 

2 

222135 

ii.Cfi 142.5c 

iSfO 





!J.4S 144.9S 

92229 

X 

2ii2ie 

U*.> 142.31 

i#0 





13.^ 144.94 

922?* 

4 

221235 

:4.7N 142.3 

iifO 





*J.*W 144.K 

52219 

5 

22*315 

14.3* 14<.^ 

*ft*v 





;3XH Sii.lt 

52219 

4 

22»5 f 4 

!4.Ch 145.3€ 






ll.*-* 6 244.9C 

3S2S9 

? 

222535 

u.?m 1J5.4E 






13.^* 544.9* 

5S2I9 

5 

22141? 

24.5H 144.3t 

14^ 





IJ.*S £44.9* 

J!2H 

9 

22221? 

£4.@* 145.2* 

1*70 





13.CS 144. IS 

92229 

1? 

221735 

J4.9M i*.;s 

L**0 





IJ.0 144.9* 

522:9 

21 

271313 

:5.fr< 






XJ.4S 144.9C 

92229 

!j 

221335 

13.2?* ;*.« 

k*0 





U.O» S44.9S 

92219 

13 

222*35 

•3.V* I45.2t 

i-*9 





!! ^ lii.K 

*1719 

£4 

222151s 

15.S* i-c-.f* 

L4#*5 





£3.*« S-M.-S 

9S2S9 

15 

72.* 135 

!i.M 145.22 



49 



23.*?* £4*-% 

5S2S9 

14 

2227!* 

is.e* ix5.it 






1J.9* I4S.J* 

??215 

12 

227235 

:5.e» i45.es 

l<*5 





1;.S* 144 9C 

9125? 


JOriCC - r-5 »$Te»;5<S «•> Wicail rws l«»f.WfSt<i7SVf »t -CT VS» fo? KtT TKCJt «?«SsS. 


173 















TROPICAL STORM ED 
BEST TRACK DATA 


BFST TRACK WARNING 24 HOUR FORECAST 48 HOUR FORECAST 72 HOUR FORECAST 

ERRORS ERRORS ERRORS 


MO/DA/-HR 

POSIT UIND 

POSIT 

WIND 

DST UIND 

POSIT 

UIND 

DST UIND 

POSIT 

UIND DST 

UIND 

POSIT 

UIND 

DST UIND 

1214882 

9.8 

138.0 

IS 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-O. 

9. 

0.0 

0.0 

0. -0. 

8. 

0.0 

. .0 

0. 

-0. 

0. 

1214062 

10.3 

136.5 

IS 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1214122 

10.7 

135.4 

15 

0.P 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

3. 

-0. 

0, 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1214182 

11.2 

133.9 

15 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

e . 

0.0 

0.0 

0. -0. 

0. 

B.0 

0.0 

0. 

-0. 

0. 

1215082 

11.4 

132.7 

20 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

e. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1215062 

II.7 

131.5 

25 

0.0 

0.0 

0. 

-0. 

0. 

C 0 

0.0 

0. 

-0. 

e. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1215122 

11.9 

P0.7 

35 

0.0 

0.0 

0. 

-0. 

O. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. -0. 

O. 

0.0 

O.0 

0. 

-0. 

0. 

i2isiez 

12.1 

129.9 

40 

0.0 

6.0 

0. 

-0. 

O. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1216002 

12.3 

129.2 

45 

0.0 

0.0 

O. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. -0. 

0. 

0.0 

6.0 

0. 

-0. 

9. 

1216062 

12.7 

128.5 

50 

12.8 

120.5 

40. 

6. 

-10. 

14.3 

126.0 

SO. 

96. 

10. 

15.6 

123.7 

45. 232. 

10. 

16.5 

121.3 

25. 

374, 

-15. 

12161*7 

13.1 

128.0 

50 

13.2 

127.8 

48. 

13. 

-10. 

14.8 

125.2 

so. 

149. 

IS. 

15 9 

122.0 

SO. 28?. 

10. 

16.8 

120.8 

30. 

442. 

-S. 


- S 

127.8 

50 

13.4 

12? 6 

50. 

13. 

0. 

14.9 

125.7 

59. 

129. 

15. 

16. _ 

124 2 

45. 233. 

5. 

17.0 

122.1 

25. 

360. 

-10. 



127.7 

45 

13.8 

127.1 

58. 

37. 

5 

15.4 

125.5 

50. 

155. 

15. 

1C.5 

123.8 

40 259. 

O. 

0.0 

0.0 

0. 

-0. 

8. 



*27.5 

40 

13.7 

127.2 

50. 

18. 

10. 

15.0 

125.9 

50. 

115. 

15. 

16.5 

124.1 

40. 237. 

C. 

17.5 

121.8 

25. 

433. 

-IP. 

't *' 


27.4 

35 

13.9 

126.8 

50. 

42. 

15. 

15.2 

12S.4 

70. 

137. 

10. 

16.7 

123.8 

40. 24$. 

5. 

0.0 

8.0 

0. 

-0. 

0. 

' , . 


27.3 

35 

14.3 

126.6 

45. 

67. 

10. 

16.8 

124.9 

40. 

231. 

O. 

17.1 

12? 9 

30. 322. 

-5. 

0.0 

0.0 

0. 

-8. 

0. 

w . 


127.2 

35 

14.4 

125.8 

45. 

101. 

SO. 

15.8 

124.3 

45. 

212. 

5. 

17.2 

122.5 

40. 371. 

S. 

0.0 

0.0 

0. 

-0 

0. 


■ , 

127.0 

35 

13.7 

127.0 

45. 

18. 

10. 

14.7 

12S.3 

45. 

94. 

5. 

15.7 

124.5 

40. 245. 

5. 

0.0 

O.O 

0. 

-0. 

0. 


o.S 

127.0 

40 

13.9 

126.9 

45. 

25. 

5. 

15.2 

125.5 

45. 

115. 

10. 

16.1 

123.8 

40. 296. 

10. 

0.0 

0.0 

0. 

-9. 

0. 

<o/ 

13.7 

127.3 

40 

14.0 

127.5 

4S. 

21. 

5. 

16.1 

129.3 

40. 

1O0. 

5. 

10.2 

133.5 

25. 493. 

0. 

0.0 

0.0 

0. 

-0. 

C. 

1219092 

13.9 

127.4 

48 

14.6 

127.6 

45. 

43. 

s. 

16.3 

129.8 

40. 

i:7. 

5- 

0.0 

0.0 

0. -0. 

0. 

0.0 

O.0 

0. 

-0. 

0. 

1219062 

13.9 

127.2 

40 

13.8 

127.3 

45. 

8. 

5. 

<4.8 

126.7 

35. 

113. 

0. 

0.0 

0.0 

0. -O. 

6. 

0.0 

0.0 

9. 

-0.. 

0. 

1219122 

14.2 

127.2 

35 

14.0 

127.1 

45. 

13. 

10. 

14.7 

126.5 

35. 

12C. 

5. 

0.0 

0.0 

0. -0. 

0. 

o.e 

0.0 

0. 

-O. 

0. 

1219182 

14.S 

127.8 

35 

14.3 

127. * 

40. 

26. 

5. 

15.2 

126.0 

30. 

171. 

5. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-0. 

c . 

1220082 

14.1 

128.1 

35 

15.2 

128.1 

35 

66. 

0. 

16. | 

127.0 

25. 

249. 

5 

0.0 

0.0 

0. -6. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1220062 

13.4 

128.0 

35 

14.2 

127.0 

35. 

49. 

O. 

O.O 

0.0 

0 

-0. 

0. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1220122 

l ?.9 

127.7 

38 

14.4 

127.6 

35. 

90. 

5. 

0.0 

0.0 

e . 

-0. 

0. 

0.0 

0.0 

0. -0. 

0. 

O.0 

0.0 

8. 

-0. 

0. 

1220182 

12.4 

127.4 

25 

14.4 

127.6 

35. 

120. 

10. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. -0. 

0. 

0.0 

U .0 

0. 

-0. 

0. 

1221002 

12.0 

127.0 

20 

11.5 

126.8 

25. 

13. 

5. 

0 0 

0.0 

o. 

-0. 

0. 

0.0 

0.0 

0. -0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 


ALL FORECASTS TYPHOONS WHILE OVER 35 KTS 



URNG 

24-HR 

49-HR 

72-HR 

URNG 

24-HR 

48-HR 

72-HR 

AVG FORECAST POSIT ERROR 

40. 

146. 

292. 

402. 

0. 

0. 

0. 

0. 

AVG RIGHT ANGLE ERROR 

21. 

120. 

262. 

378. 

0. 

0 . 

0. 

O. 

AVG INTENSITY MAGNITUDE ERROR 

7. 

8. 

5. 

10. 

0. 

0. 

0. 

0. 

AVG INTENSITY BIAS 

5. 

8. 

4. 

-10. 

c. 

0. 

0. 

0. 

NUfEJER OF FORECASTS 

20 

16 

11 

4 

0 

0 

0 

0 

DISTANCE TRAVELED BY STORM IS 

987. 

Nfl 







AVERAGE SPEED OF STORM IS 6. 

KNOTS 









TROPICAL STORM ED 
FIX POSITIONS FOR CYCLONE NO. 28 


SATELLITE FIXES 


FIX 

TINE 

FIX 





SITE 

HC. 

(2) 

POSITION 

ACCRY 

DVORAK CODE SATELLITE 

COrrtNTs 

1 

140000 

9.9N 

13B.0E 

PCN 0 

Tl.0/1.0 

OTHER 

IM1T OBS 

PG1U 

2 

140300 

10. ON 

137.:E 

rcN 0 


OTHER 


PCTU 

3 

141200 

10.5N 

135.4£ 

PCM C 


OTHER 


PGTU 

4 

14:600 

II.3N 

134.5E 

PCN 0 


OTHER 


PGTU 

5 

1421«0 

12.8N 

134. IE 

PCN 0 


OTHER 


PGTU 

6 

142314 

12.7N 

133.8E 

PCN 5 

T2.0/2.0 /Dl 0/23HR5 

N0AA6 


PGTU 

7 

150000 

I2.3N 

133.3E 

PfH 3 


OTHER 


PG1U 

0 

1SO309 

13.ON 

133.OE 

PCN 0 


OTHER 


PGTU 

9 

151021 

12. IN 

120.2E 

PCN 6 


N0AA6 


PGTU 

10 

ISlbOO 

1$.5N 

130 0E 

PCN 0 


OTHER 


PGTU 

II 

15225? 

12.2N 

<29. IF. 

PCh 5 

Tl.0/2.0 /UI.0/24HRS 

N0AA6 


PGTU 

12 

160000 

13.8H 

129.9E 

PCN 0 


OTHER 


PGTU 

13 

160903 

13.4N 

127.6E 

PCH 0 


OTHER 


PGTU 

U 

161200 

13.5M 

527.5E 

PCM 0 


OTHER 


PGTU 

15 

162 IPO 

13.6M 

127.36 

PCN 0 


OTHER 


PGTU 

16 

i«uoeo 

13.7N 

12?.06 

PCN 0 


OTHER 


PGTU 

i. 

170910 

13.8*1 

127.lt 

PCN 5 


NOW'S 


ROW! 

18 

170900 

14.0H 

i2C.7E 

PCN 0 


OTHER 


PGTU 

19 

’71 IOC 

14. ?N 

l27.2F 

PCN 5 


•ttlAOf 


PGTU 

20 

171200 

15. ON 

127.46 

PCN 0 


OTHER 


®GTU 

2: 

171600 

14.6H 

125.9E 

P'.N 0 


OTHER 


PGTU 

22 

17>100 

14.3N 

1?6.3E 

PCN 0 


OTHER 


PGTU 

27 

17*348 

14.6N 

125.7E 

»CN 5 

T3.0/3.0 

N0A46 

1N1T OBS 

PGTU 

2.1 

lOOiUO 

13.8N 

177.0S 

PCN 0 


OTHER 


PGTU 

25 

131045 

13.7N 

12 ».2E 

p-H 5 


N0AA6 


JsFi*: 

26 

181046 

13.7N 

i?r.2E 

PCN 5 


I1OAA6 


RODN 

27 

1Q1P4G 

*4. ON 

127.8b 

PCN *> 


N0AA6 


PGTU 

28 

1EU203 

S3.7M 

127.IF 

PCN C 


OTHER 


PGTU 

29 

101600 

14.311 

127.7E 

pin 0 


OTHER 


PUW 

30 

187180 

1 1.4M 

127.4E 

PCN 0 


other 

ULCC 15.4 127.5 

PGTU 

31 

182325 

14. ON 

127.81 

PCN 5 

T2.0/3.0 /U1-0/24HRS 

N0AA6 


PGTU 

32 

!VOS00 

*6.111 

127.9E 

PCN 0 


OTHER 


PGTU 

3' 

191023 

15.2m 

127.81 

PfH 5 


HGAA6 


PGTU 


191*23 

1S.8N 

127.lt 

PCH S 


H0AA6 


PP!!, 

•5 

191200 

14.7H 

128.IE 

PCM 0 


OTHER 


PGTU 

if 

192108 

I* - 5N 

129.PE 

PCN 0 


OTHER 


PGTU 

37 

13*333 

1 

12A.8E 

PCN 5 

T2.O/2.O-/S1.0/24HRS 

H0AA6 


P.,1U 

38 

?O0600 

. if, 

20.0E 

PCH 0 


OTHER 


PGTU 

39 


. i.3 

26.0E 

PCH 0 


OTHER 


PGTU 

40 

241U2 

1- S- 

120.0E 

PCH 5 


N0AA6 


RPrt. 

41 

2J16O0 

14,711 

127.5E 

PCN 0 


OTHER 


PGTU 

\? 

2O2240 

12.ON 

12G.9E 

PCN 3 

Ti.O-1.0 /U1.0/24KRS 

H0AA6 

LL EXPOSED 

PGTU 


4 


174 













AIRCRAFT FIXES 


nx TIME 

FIX 

FLT 

70CMG 

OBS 

MAX-SFC-UMD 

mx-FLT-t VL-UID 

ACCRY 

EYE 

EYE ORIEN- 

EYE 

TEMP <C) 

NO. <2> 

POSITION 

IVL 

HCT 

MSLP 

VEt/BRC/KNQ 

DIR/VEL/BRG/RNC 

NAV/TET 

SHAPE 

DIAIVTATION 

OUT-' 

IN/' D P.'S ST 


I 

150458 

11.7N 

131.7E 

I500FT 


1004 

35 

020 

20 

150 

32 

020 

20 

2 

3 

♦25 

♦25 

♦22 

2 

160320 

12.6N 

128.9fc 

1500FT 



58 

090 

15 

160 

CO 

09O 

15 

6 

5 

♦23 

♦26 

♦26 28 

3 

161315 

13.IN 

127.9£ 

700MB 

3049 





240 

33 

140 

40 

10 

8 




A 

161610 

13.ON 

127.8E 

700MB 

3037 





028 

50 

300 

35 

10 

10 

+ 12 

+ 15 

♦ 7 

5 

170316 

13.5N 

127.4E 

700MB 

3025 

991 

SO 

060 

IQ 

880 

33 

350 

15 

3 

2 

♦ 11 

*15 

♦ 10 

6 

171341 

13.3N 

126.9£ 

7ocre 

3040 





120 

38 

040 

35 

10 

5 




7 

171558 

13.5N 

127.3£ 

708MB 

3032 

992 




35b 

32 

290 

120 

10 

5 

+ 13 

♦ 14 

♦ 11 

0 

1CQ3G4 

13.4N 

12?.IE 

70OM8 

3024 

992 

35 

320 

75 

020 

SI 

330 

!0O 

7 

3 

♦ 10 

+ 14 

♦10 

9 

101140 

13.ON 

127.5E 

70ore 

303? 





340 

40 

740 

30 

5 

5 




10 

to 1555 

13.9H 

127.5E 

7oere 

3016 

991 




290 

50 

200 

15 

5 

8 

♦ |4 

♦ 14 

♦ 18 

11 

190245 

13.9N 

127.4£ 

700MB 

3029 


40 

300 

10 

080 

32 

3O0 

18 

3 

2 




12 

190413 

13.9N 

127.3E 

700MB 

3021 

989 

33 

090 

IS 

280 

32 

100 

10 

3 

2 

*13 

+ 17 

♦ 10 

13 

191348 

14.2N 

127.2E 

700MB 

3064 





C80 

22 

820 

30 

10 

S 




14 

191S43 

14.5N 

127.7£ 

reere 

3067 

999 




>30 

32 

150 

58 

6 

5 

♦ 12 

♦ 12 

+ 12 

15 

200230 

13.9N 

128.IE 

700MB 

3066 


45 

300 

SO 

010 

20 

320 

40 

10 

b 




16 

2O042O 

14.ON 

128.0E 

700MB 

3065 

935 

40 

15^ 

10 

270 

23 

160 

90 

10 

5 

♦ 15 

♦ 17 

♦ 11 


SYNOPTIC FINES 

FIX TIME FIX INTENSITY NEAREST 


NO. 

(Z> 

POSITION 

ESTIMATE 

DATA <NM) 

COUNTS 

I 

160000 

12.0H 129.GE 

28 

60 


2 

181200 

13.5M 127.0E 

35 

20 


3 

21C000 

•2.0N 127.0E 

30 

30 



NOTICE - THE ASTERISKS <*) INDICATE FIVES UNREPRESENTATIVE AND NOT USED FOR BEST RACK PURPOSES. 


































2. NORTH INDIAN OCEAN TROPICAL CYCLONES 


TROPICAL CYCLONE 25-80 
BEST TRACK DATA 


24 HOUR FORECAST 
ERRORS 


48 HOUR FORECAST 
ERRORS 


72 HOUR FORECAST 


MO/DA/HR 

POSIT UIND 

POSIT 

UIND 

DST UIND 

POSIT 

UIND 

DST UIND 

POSIT 

UIND 

DST UIND 

POSIT 

UIND 

DST UIND 

1112022 

11.3 

74.0 

20 

0.0 

0.0 

0. 

-8. 

0. 

0.0 

0.0 

0. 

-0. 

e. 

0.0 

0.0 

0. 

-0. 

0. 

8.0 

0.0 

8. 

-0. 

0. 

1112082 

11.3 

74.1 

28 

0.3 

0.0 

0. 

-0. 

0. 

8.8 

0.0 

0. 

*0. 

e. 

0.0 

0.0 

0. 

-0. 

0. 

6.0 

0.0 

0. 

-0. 

8. 

1112142 

It.4 

73.5 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.8 

0.0 

3. 

-0. 

8. 

0.0 

0.0 

0. 

-0. 

0. 

8.0 

0.0 

0. 

-0. 

0. 

1112202 

11.5 

73.0 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.8 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1113022 

11.6 

72.5 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1113082 

11.8 

72.0 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

8.0 

0. 

-0. 

0. 

8.0 

0.0 

0. 

-0. 

0. 

1113142 

12.0 

71.6 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.8 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

6. 

-0. 

0. 

6.0 

0.8 

0. 

-0. 

0. 

1113202 

12.2 

71.4 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.6 

e. 

-0. 

0. 

1114022 

12.4 

71.1 

25 

0.0 

0.0 

0. 

-8. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

C.0 

0. 

-0. 

0. 

P.0 

0.6 

e. 

-0. 

a. 

!114082 

12.7 

^0.8 

25 

0.0 

0.0 

0. 

-0. 

0. 

8.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-8. 

0. 

tO 

0.0 

0. 

-0. 

0. 

1U4I42 

12.9 

78.6 

25 

0.0 

0.0 

e. 

-0. 

0. 

8.0 

0.0 

0. 

-0. 

0. 

0.6 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1114202 

13..1 

70.3 

25 

3.0 

0.0 

0. 

-0. 

0. 

8.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

o. 

-0. 

0. 

1115022 

13.5 

6S.9 

38 

0.0 

0.0 

0. 

-0. 

0. 

8.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1115082 

13.7 

69.7 

30 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-8. 

0. 

0.0 

0.0 

6. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1115142 

14.1 

69.5 

30 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1115202 

14.4 

69.1 

30 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

a. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

111602Z 

14.7 

68.7 

30 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

e. 

-0. 

0. 

0.0 

0.0 

0. 

“\i« 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1116082 

14.9 

68.4 

30 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

8.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

e. 

1116142 

15.0 

68.0 

30 

0.0 

0.0 

0. 

-8. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

•8. 

0. 

1116202 

IS.2 

67.6 

30 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

o. 

1117022 

15.4 

67.1 

35 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1117082 

16.1 

66.7 

35 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

8. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

e. 

0.0 

0.0 

0. 

-0. 

C. 

1117142 

16.9 

66.8 

35 

15.9 

66.4 

35. 

64. 

0. 

17.0 

65.1 

40. 

220. 

10. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 


0. 

1117292 

17.6 

67.2 

35 

17.3 

67.4 

35. 

21. 

0. 

19. 1 

69.8 

35. 

45. 

10. 

e.a 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1118022 

18.2 

67.6 

35 

17.8 

67.9 

35. 

29. 

0. 

17.8 

67.9 

30. 

169. 

10. 

0.0 

0.0 

8. 

-0. 

0. 

0.0 

0.0 

0. 

“0. 

0. 

1118082 

18.7 

68.2 

30 

18.1 

68.4 

35. 

38. 

5. 

19.0 

71.2 

30. 

46. 

10. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1113142 

19.2 

68.7 

30 

19.2 

68.0 

30. 

6. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

8. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1118202 

19.6 

69.2 

25 

19.0 

69.4 

30. 

16. 

S. 

0.0 

0.0 

0. 

-0. 

0. 

0,0 

0.0 

8. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

3. 

1119022 

19.9 

69.9 

20 

20.0 

69.8 

2S. 

8. 

5. 

0.0 

0.0 

0. 

-0. 

0. 

0.8 

0.0 

0. 

-0. 

0. 

6.0 

0.0 

0. 

“0. 

0. 

1119082 

20.4 

70.7 

20 

20.3 

70.7 

20. 

6. 

0. 

0.0 

0.0 

0. 

-0. 

P. 

8.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 


ALU FORECASTS 


URNG 

24. 

is. 

2. 

2 . 


AVG FORECAST POSIT ERROR 
AVG RIGHT ANGUE ERROR 
AVG INTENSITY MAGNITUDE ERROR 
AVG INTENSITY BIAS 
NUfBER OF FORECASTS 


DISTANCE TRAVELED BY STORM IS 940. NM 
AVERAGE SPEED OF STORM IS 5. KNOTS 


24-HR 

128. 

66 . 

IB 

10 . 


4Q-HR 72-HR 


0 . 

0 . 

B 


TYPHOONS UHIlE OVER 35 KTS 
URNG 24-HR 48-KR 72-HR 


0 . 

0 . 


0 . 

8 


0 . 

0 . 

0 . 


TC23-00 

FIX POSITIONS FOR CYCLONE NO. 23 


SATELLITE FIXES 


0 . 

0 . 


8 . 

8 . 

a. 


FIX 

T JrE 

FIX 






NO. 

<Z> 

POSITION 

ACCRY 

DVORAK CODE SATELLITE 

I 

120311 

11.IN 

74.7E 

PCH 

5 

r».0/2.3 


N0AA6 

2 

130248 

11.7N 

7 2.2E 

PCN 

5 

Tl.S/1.5 

/L0.S/24HRS 

N0AA6 

* 3 

148407 

13.7N 

68. IF 

PCH 

6 

Tl.5/1.5 

/S0.0/24HRS 

N0AA6 

4 

141505 

12. BN 

70.4E 

PCN 

6 



N0AA6 

5 

158345 

13. SN 

69.9£ 

PtM 

6 

T2.0/2.C 

/TB.5/24HRS 

N0AA6 

6 

151443 

14.0N 

69. N,’ 

PCM 

c 



N0AA6 

* 7 

168322 

I4.8N 

6A.>t 

PCN 

5 

T2.0/2.0 

/S0.*/24MRS 

K0AA6 

8 

16I42B 

15. IN 

68. HE 

FCN 

6 



N0AA6 

9 

170360 

15.SN 

67.lt 

PCN 

5 

T2.5/2.5 

/D0.S/24HRS 

N0AA6 

10 

171539 

I7.0N 

67.2E 

PCN 

6 



N0AA6 

11 

180418 

18. SN 

67.5E 

PCN 

6 

Tl.5/2.5 

/U1.0/24HRS 

N0AA5 

12 

181516 

18 SN 

68.6E 

PCN 

6 



N0AA6 


KGUC 

KGUC 

KGUC 

KGUC 

KGUC 

KGUC 

KGUC 

KGUC 

KGUC 

KGUC 

KGUC 

KGUC 


NOTICE - THE ASTERISKS 1*5 INDICATE Fl>£$ UNREPRESENTATIVE AND NOT USED FOR BEST TRACK PURPOSES. 


176 











TROPICAL CYCLONE 27-80 
BEST TRACK DATA 


i hour forecast 


72 HOUR FORECAST 


mO/dO/ipi 

POSIT UIND 

POSIT 

UIND 

ERRORS 
DST WIND 

POSIT 

UIND 

ERRORS 

DST UIND 

PQ31T 

UIND 

CPPORS 

DST UIND 

POSIT 

UiHD 

DST UIND 

l2in<lC? 

0.0 

32.0 

25 

0.0 

0.0 

O. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-U. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

'21014/ 

0.0 

9?.9 

25 

o.O 

0.0 

0. 

-0. 

0. 

O.G 

0.0 

0. 

-O. 

0. 

0.0 

O.U 

u. 

“0. 

0. 

0.0 

0.0 

0. 

-0. 

u. 

I'lUZVZ 

9.1 

93.4 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

O.O 

8. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0 

1211022 

9.0 

33.5 

20 

O.ft 

fi.c 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

o.e 

0. 

-8. 

e. 

121100? 

9.7 

“3.2 

20 

o.u 

o.o 

0. 

-0. 

0. 

u.u 

0.0 

O. 

-O. 

0. 

0.0 

O.U 

U. 

-0. 

0. 

0.0 

0.0 

0. 

-8. 

c. 

17111k: 

3.7 

92.0 

23 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

“0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-8. 

0. 

1?11202 

9.7 

**2.5 

25 

0.0 

0.0 

0. 

-9. 

0. 

0.0 

0.0 

0. 

-9. 

0. 

0.0 

0.0 

15. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1212422 

9.0 

97.0 

25 

0.0 

0.0 

0. 

-0. 

V. 

0.0 

0.0 

is. 

-0. 

0. 

0.0 

0.0 

0. 

“0. 

0. 

C.e 

0.0 

0. 

-0. 

0. 

1211022 

10.2 

«M.6 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-O. 

0. 

u.o 

0.0 

n. 

-O. 

0. 

171/1V 

10.0 

91.0 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

o.u 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-O. 

0. 

o.e 

0.0 

0. 

-0. 

0. 

121?'0i 

11.1 

92.1 

?5 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

B. 

-0. 

0. 

0.0 

u.o 

0. 

-0. 

0. 

0.0 

u.u 

A. 

-0. 

0. 

12130/7 

11.2 

92 -6 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.'» 

o.o 

is. 

-0. 

P. 

0.0 

o.o 

0. 

-U. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1213*W2 

11.3 

*3.2 

25 

0.0 

0.0 

0. 

-o. 

0. 

9.9 

0.0 

0. 

-0. 

0. 

O.n 

O.C 

0. 

-c. 

0. 

0.0 

O.G 

0. 

-0. 

*»_ 

1/13112 

11.3 

95.7 

25 

0.0 

0.0 

0. 

-0. 

o. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

o.u 

0.0 

a. 

-0. 

s. 

I2HW 

11.0 

94.0 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

8.0 

o.c 

0. 

-0. 

0. 

0.0 

0.0 

A. 

-0. 

0. 

12140;^ 

10.0 

94.0 

25 

0.0 

o.n 

0. 

-0. 

0. 

0.0 

u.o 

0. 


(1. 

0.0 

0.0 

0. 

-U. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

14I4W/ 

10.S 

9J.7 

25 

0.0 

u.o 

0. 

-0. 

0. 

(1.4 

O.n 

0. 

-0, 

0. 

0.0 

U.U 

O. 

-0. 

8. 

O.A 

o.u 

0. 

-0. 

0. 

1/1414"* 

10.3 

93.3 

25 

O.G 

0.0 

0. 


u. 

D.*l 

0.8 

0. 

-0. 

0. 

C.0 

l p 

8. 

-8. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

I214202 

10.7 

*2.3 

23 

0.0 

0.0 

0. 

-a. 

A. 

0.0 

O.O 

*1. 

-0. 

0. 

0.0 

O.P 

0. 

-0. 

0. 

0.0 

0.0 

fs. 

-O. 

0. 

121W2 

9 P 

91.1 

25 

0.0 

H.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

*0. 

0. 

o.o 

0.0 

U. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

S7IIHCV 

10.0 

■>o.o 

25 

0.0 

0 0 

0. 

-o. 

»«. 

0.9 

U.O 

0. 

-0. 

0. 

0.0 

n.o 

0. 

-0. 

0. 

O.A 

0.0 

0. 

-0. 

a. 

1/15142 

10.1 

PJ.S 

2* 

0.0 

0 0 

0. 

- 0 . 

A. 

0.0 

o.e 

0. 

-0. 


0.0 

0.0 

n 

“0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

I7l!»*tt 

9.3 

87.0 

30 

0.0 

0.0 

0. 

-o. 

0. 

O.U 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

O. 

0.0 

0.0 

0. 

-0. 

u. 

171'07. 

0.0 

05.7 

30 

O.O 

0.0 

0. 

-0. 

0. 

o.« 

0.0 

0. 

-O. 

0. 

0.0 

0 0 

0. 

-0. 

0. 

0.0 

0.8 

0. 

-0. 

u 

1JU/C2 

O.G 

04.6 

35 

0.0 

0.0 

J. 

-0. 

o. 

0.0 

0.0 

0. 

“0. 

0. 

o.c 

O.u 

u. 

- n . 

8. 

0.0 

0.0 

0. 

-0. 

0. 

121G14: 

O.G 

03.5 

35 

0.2 

97.0 

35 

4J. 

ft. 

U.6 

70.0 

39. 

09. 

5. 

9.2 

74.7 

35. 

98. 

10. 

11.9 

70.0 

49. 

IG7. 

IS. 

1714 4)2 

0.5 

07. G 

35 

B.-l 

E?.l 

35. 

30. 

0. 

0.0 

?««. 1 

SC. 

73. 


9.1 

75. P 

30. 

97. 

5 

0.0 

0.0 

0. 

-0. 

0. 

17|*0/7 

3.4 

01.8 

35 

9-1 

91.G 

35. 

43. 

0. 

10.0 

78.G 

20. 

167. 

“5. 

0.0 

0.:> 

0. 

-0. 

0. 

o.c 

u.o 

0. 

-0. 

0. 

171i03<. 

U.3 

"1.1 

30 

9.3 

CO. 7 

35. 

G'l. 

5 • 

0.0 

0.0 

0. 

-0. 

A. 

0.0 

O.U 

b. 

-0. 

0. 

U.O 

0.0 

0. 

-0. 

0. 

1717142 

«.I 

CO.? 

?5 

9.rt 

CO. 2 

35 . 

102. 

1C. 

o.o 

0.0 

9 . 

-0. 

0. 

0.0 

O.P 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

1217202 

7.8 

70.0 

25 

9.5 

79.0 

20. 

102. 

0. 

O.U 

O.O 

0. 

-0. 

0. 

0.0 

U.O 

0. 

"A. 

0. 

0.0 

o.o 

0. 

-0. 

It. 

IZ13072 

7.7 

77.U 

?5 

0.0 

0 O 

0. 

-0. 

c. 

•t.ll 

0.0 

0. 

*•0. 

is. 

0.0 

O.U 

0. 

-0. 

0. 

0.0 

0.0 

9. 

-0. 

0 

1?12002 

7 7 

75.0 

25 

0.0 

0.0 

0. 

-0. 

0. 

B 0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

O. 

-0. 

0. 

1210142 

7.7 

74 .7 

?3 

0.0 

0.0 

u. 

-0. 

0. 

0.1* 

0.0 

0. 

-0. 

0. 

0.0 

O.U 

0. 

-0. 

0 . 

u.u 

0.0 

0. 

-0. 

0. 

•219/02 

7.9 

73.9 

?5 

0.0 

0.0 

0 

-0. 

0. 

0.0 

O.O 

0. 

-0. 

0 . 

0.9 

O.O 

0. 

“0. 

0. 

o.u 

0.0 

0 . 

-0. 

0. 

1211*022 

0.1 

72.9 

25 

0.0 

0.0 

0. 

-0. 

a. 

J.O 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

0. 

“0. 

0. 

o.e 

o.o 

0. 

-0. 

0. 

1219002 

0.5 

71.7 

25 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

e.o 

0. 

-0. 

I ). 

0.0 

0.8 

c. 

-0. 

0. 

0.0 

0.0 

0 . 

“0. 

n. 

!2t«>!42 

9.1 

70.7 

25 

0.0 

0.0 

0 . 

-0. 

9 . 

0.0 

0.0 

0. 

-0. 

0. 

0.0 

0.0 

u. 

-0. 

0. 

0.0 

0.0 

0. 

-0. 

0. 

121^202 

9.0 

f.9.9 

25 

O.U 

0.0 

0 . 

- 0 . 

0 . 

0.0 

0.0 

0 . 

- 0 . 

0 . 

0 0 

0.0 

0 . 

“ 0 . 

0 . 

0.0 

o.c 

0 . 

- 0 . 

0 . 

1220022 

10.9 

co.o 

25 

0.0 

0.0 

0 . 

- 0 . 

0 . 

0.9 

0.0 

0 . 

- 0 . 

0 . 

0.0 

0.0 

0 . 

- 0 . 

0 . 

o.c 

0.0 

0 . 

- 0 . 

0 . 




AVO FORECAST POSIT Ef kOR G5. It 

A\T> PIUIT ANGIE CRRIT* '/). f 

AvV INTENSITY MAGNITUDE ERFCR i. 

AVU INTENSITY BIAS 3- 

NUWLK OF FORECASTS G 

OlOTAJCt TRAVELED OY STORtl tG 20IG. lin 

AVERAGE SPECD OF STORtl IS 9. KNOTS 


ALL rORCCASTS 
llfi 24 HR 40-HR 7/-HR 


TYPHOONS UHILE OVER 35 KTS 
JRHG 24-HR 40-HR 72-1* 

0. 0. C. 0. 

0 . 0 . 0 . 0 . 

0. 0. O. 0. 

0 . 0 . 0 . 0 . 

0 0 0 0 


TC27-80 

FIX POSITIONS FOR CYCLONE NO. 2? 


SATELLITE FI)€S 


NO. 

(2) 

POSITION 

ACCRY 

DVCRAK CODE SATELLITE 

COTtENTS 

SITE 

1 

101208 

9.5N 

93. IE 

PCN 0 


OTHER 


PCTU 

2 

iiee08 

9.4N 

93.5E 

PCN 0 


OTHER 


PGTU 

3 

110225 

9.6N 

93.5E 

PCN 6 

Tl.5/1.5 

N0AA6 

INIT 08$ 

KGUC 

4 

118600 

9.4N 

93. IE 

PCN 0 

Tl.0/1.0 

OTHER 

1NIT DBS 

PCTU 

5 

110980 

9.5N 

92.4£ 

PCN 0 


OTHER 


PCTU 

• 6 

111208 

9.9N 

92.8E 

PCN 0 


OTHER 


PCTU 

* 7 

128203 

11.3N 

92.2E 

PCN 5 

T2.0/2.0 /D0.5/24HRS 

N0AA6 


KGUC 

8 

120300 

10. ON 

92.2E 

PCN 0 

Tl.0/1.0 /S0.0/21HRS 

OTHER 


PCTU 

9 

128606 

10.4N 

91.6E 

PCN 0 


other 


PCTU 

10 

122100 

10.8N 

92.6E 

PCN 0 


OTHER 


PGTU 

* 11 

130140 

I1.2N 

92.8E 

PCN 5 

T2.0/2.0 /S0.U/24HRS 

N0AA6 


KGUC 

* 12 

130300 

1 1 .OH 

93.2£ 

PCN 0 

T8.5/0.S /UB.S'24HRS 

OTHER 


PCTU 

13 

140117 

11.3H 

93.9E 

PCN 5 

T1.S/2.3-/U0.5/24HRS 

N0AA6 


KGUC 

* 14 

141358 

11.2N 

95.0E 

PCN 6 


N0AA6 


FJDG 

15 

158055 

10.5N 

92.8E 

PCN 6 

T1.5/2.0-/U0.5/24NRS 

N0AA6 


KGUC 

16 

1503e0 

9.4N 

91.5E 

PCN 0 

Tl.0/1.0 

OTHER 

INIT 06S 

PCTU 

17 

151608 

18. SN 

88.7£ 

PCN 0 


OTHER 


PCTU 

18 

160214 

8.2N 

86.5£ 

PCN 5 

T2.0/2.0 /D0.S 

N0AA6 


LGUC 

19 

160308 

8.7N 

85.SE 

PCN 0 


OTHER 


PCTU 

20 

160680 

0.2H 

84.2E 

PCN 0 

T2.S/2.5-/D1.5/27HRS 

OTHER 


PCTU 

21 

161200 

8.2N 

83.7E 

PCN 0 


OTHER 


PCTU 

22 

161688 

8.6N 

83.2E 

PCN 0 


OTHER 


PGTU 

23 

162188 

9.IN 

82.6E 

PCN 0 


OTHER 


PGTU 

24 

170880 

9.0N 

82.3* 

PCN 0 


OTHER 


PCTU 

25 

178980 

9.8N 

C1.8E 

PCN 0 


OTHER 


PGTU 

* 26 

I7l2e8 

9.4N 

80.4£ 

PCN 0 


OTHER 


PCTU 

* 27 

171431 

9.BN 

88.9E 

PCN 6 


N0AA6 


FJDG 

* ?8 

171608 

9.4N 

79.2E 

PCN 0 


OTHER 


PGTU 

29 

180688 

7.8N 

76.2E 

PCN 0 


OTHER 


PCTU 

30 

188980 

8.3N 

76. IE 

PCH 0 


OTHER 


PCTU 

31 

288343 

12.3N 

70.4E 

PCN 6 

Tl.8/1.0 /S0.0 

N0AA6 


KGLC 

32 

288486 

11.2N 

68.2£ 

PCN 5 

Tl.0/1.0 /SB.0 

N0AA6 


KGUC 

33 

281S04 

11. CM 

69.3F 

PCN 4 

Tl.0/1.0 ✓se.e 

NOAAS 


KGUC 


177 



















APPENDIXI 


CONTRACTIONS 


ACCRV 

Accuracy 

LVL 

Level 

AC FT 

Aircraft 

M 

Meter(s) 

ADP 

Automatic Data Processing 

M/SEC 

Meters per Second 

AI REP 

Aircraft Weather Report(s) 

MAX 

Maximum 


(Commercial and Military) 

MB 

Millibar(s) 

ANT 

Antenna 

MET 

Meteorological 

APT 

Automatic Picture Transmission 

MIN 

Minimum 

ARWO 

Aerial Reconnaissance Weather 

Officer 

MSN 

Mission 

ATT 

Attenuation 

NAV 

Navigational 

AVG 

Average 

NAVPGSCOL 

Naval Postgraduate School 

AWN 

Automated Weather Network 

NEDN 

Naval Environmental Data Network 

BRG 

Bearing 

NEDS 

Naval Environmental Display 
Station 

CDO 

Central Dense Overcast 

NEPRF 

Naval Environmental Prediction 

Cl 

Current Intensity 


Research Facility 

CLD 

Cloud 

NESS 

National Environmental Satellite 
Service 

CLSD 

Closed 

NET 

Near Equatorial Trough 

CNTR 

Center 

NM 

Nautical Mile(s) 

CPA 

Closest Point of Approach 

N/O 

Not Observed 

DEG 

Degree(s) 

NOAA 

National Oceanic and Atmospheric 

DIAM 

Diameter 


Administration 

DIR 

Direction 

NRL 

Naval Research L ooratory 

DMSP 

Defense Meteorological Satellite 

NTCC 

Naval Telecommunications Center 


Program 

OBS 

Observation(s) 

ELEV 

Elevation 

PCN 

Position Code Number 

FLT 

Flight 

PSBL 

Possible 

GOES 

Geostationary Operational 
Environmental Satellite 

PTLY 

Partly 

HGT 

Height 

QUAD 

Quadrant 

HPAC 

Mean of XTRP and Climatology 

RADOB 

Radar Observation 

HR 

Hour(s) 

RECON 

Reconnaissance 

HVY 

Heavy 

RNG 

Range 

ICAO 

International Civil Aviation 

SAT 

Satellite 


Organization 

SFC 

Surface 

IR 

Infrared 

SLP(MSLP) 

Sea Level Pressure (Minimum Sea 
Level Pressure) 

KM 

Kilometer(s) 

SPOL 

Spiral Overlay 

KT 

Knot(s) 

SRP 

Selective Reconnaissance Program 

LLCC 

Low-Level Circulation Center 



179 




















STSRY 

Stationary 

SST 

Sea Surface Temperature 

ST 

Super Typhoon 

?C 

Tropical Cyclone 

TCARC 

Tropical Cyclone Aircraft Recon¬ 
naissance Coordinator 

TCFA 

Tropical Cyclone Formation Alert 

TCM 

Tropical Cyclone Model 

TD 

Tropical Depression 

TIROS 

Television Infrared Observation 
Satellite 

TS 

Tropical Storm 

TY 

Typhoon 

■u’rr 

Tropical Upper Tropospheric Trough 
(Sadler, 1976) 

VEL 

Velocity 

VIS 

Visual 

VSBL 

Visible 

KESTPAC 

Western Pacific 

KMO 

World Meteorological Organization 

WHO 

Wind 

KRS 

Weather Reconnaissance Squadron 

XTRP 

Extrapolation 

Z 

Zulu Time (Greenwich mean time) 


180 




















APPENDIX H 


DEFINITIONS 


PEST TRACK - A subjectively smoothed 
path, versus a precise and very erratic 
fix-to-fix path, used to represent tropical 
cyclone movement. 

CENTER - The axis or pivot of a tropi¬ 
cal cyclone. Usually determined by wind, 
temperature, and/or pressure distribution. 

CYCLONE - A closed atmospheric circu¬ 
lation rotating about an area of low pressure 
(counterclockwise ir. the northern hemisphere) 

EPIIEMERIS - Position of a body (satel¬ 
lite )~IrTspace as a function of time, when 
no geographical reference is available for 
gridding satellite imagery, then only ephem- 
eris gridding is possible which is solely 
based on the theoretical satellite position 
and is susceptible to errors from satellite 
pitch, orbit eccentricity, and the non- 
spherical earth. 

EXPLOSIVE DEEPENING - A decrease in the 
minimum sea level pressure of a tropical cy¬ 
clone of 2.5 mb/hr for 12 hrs or 5.0 mb/hr 
for 6 hrs (ATR 1971). 

EXTRATROPICAL - A term used in warnings 
and tropical summaries to indicate that a 
cyclone has lost its "tropical" characteris¬ 
tics. The term implies both poleward dis¬ 
placement from the tropics and the conversion 
of the cyclone's primary energy sources from 
release of latent heat of condensation to 
baroclinic processes. The term carries no 
implications as to strength or size. 

EYE - "EYE" is used to describe the cen¬ 
tral area of a tropical cyclone when it is 
more than half surrounded by wall cloud. 

FUJIWHARA EFFECT - An interaction m 
which tropical cyclones within about 700 nm 
(1296 km) of each other begin to rotate cy- 
clonicallv about one another. When intense 
tropical cyclones are within about 400 nm 
(741 km) of each other, they may also begin 
to move closer to each other. 

MAXIMUM SUSTAINED WIND - Maximum surface 
wind speed averaged over a 1-minute period of 
time. Peak gusts over water average 20 to 25 
percent higher than sustained wind. 

RAPID DEEPENING - A decrease in the min¬ 
imum sea level pressure of a tropical cyclone 
of 1.25 rob/hr for 24 hrs (ATR 1971). 

RECURVATURE - The turning of a tropical 
cyclone from an initial path toward the west 
or northwest to the north then northeast. 

SIGNIFICANT TROPICAL CYCLONE - A tropi¬ 
cal cyclone becomes "significant" with the 
issuance of the first numbered warning by 
the responsible warning agency. 


SUPER TYPHOON/HURRICANE - A typhoon/ 
hurricane in which the maximum sustained 
surface wind (1-minute mean) is 130 kt (67 
m/sec) or greater. 

TROPICAL CYCLONE - A non-frontal low 
pressure system of synoptic scale develop¬ 
ing over tropical or subtropical waters and 
having a definite organized circulation. 

TROPICAL CYCLONE AIRCRAFT RECONNAIS¬ 
SANCE COORDINATOR - A CINCPACAF representa- 
tive designated to levy tropical cyclone 
aircraft weather reconnaissance require¬ 
ments on reconnaissance units within a 
designated area of the PACOM and to func¬ 
tion as coordinator between CINCPACAF, 
aircraft weather reconnaissance units, and 
the appropriate typhoon/hurricane warning 
center. 

TROPICAL DEPRESSION - A tropical cy- 
clone in which the maximum sustained surface 
wind (1-minute mean) is 33 kt (17 m/sec) or 
less. 

TROPICAL DISTURBANCE - A discrete sys¬ 
tem of apparently organized convection— 
generally 100 to 300 nm (185-556 km) in 
dianete—-originating in the tropics or sub¬ 
tropics having a non-frontal migratory 
character, and having maintained its iden¬ 
tity for 24 hours or more. It may or may 
not be associated with a detectable per¬ 
turbation of the wind field. As such, it 
is the basic generic designation which, in 
successive stages of intensification, nay 
be classified as a tropical depression, 
tropicai storm or typhoon (hurricane). 

TROPICAL STORM - A tropical cyclone 
with maximum sustained surface winds (1- 
minute mean) in the range of 34 to 63 kt 
(17-32 ra/scc) inclusive. 

TROPICAL UPPER TROPOSPHERIC TROUGH 
[TUTt 7- "A dominant climatological system, 
and a daily synoptic feature, of the summer 
season over the tropical North Atlantic, 
North Pacific and South Pacific Oceans," 
from Sadler, James C., Feb. 1976: Tropical 
Cyclone Initiation by the Tropical Upoer 
Tropospheric Trough (NAVENVPREDRSCHFAC 
Technical Paper No. 2-76) 

TYPHOON/HURRICANE - A tropical cyclone 
in which the maximum sustained surface wind 
(1-minutc mean) is 64 kt (33 m/scc) or 
greater. West of 180 degrees longitude 
they are called typhoons and east of 180 
degrees they are called hurricanes. For¬ 
eign governments use these or other terms 
for tropical cyclones and may apply dif¬ 
ferent intensity criteria. 

WALL CLOUD - An organized band of cumu¬ 
li jorm clouds immediately surrounding the 
central area of a tropical cyclone. The 
wall cloud may entirely enclose the eye 
or only partially surround the center. 








APPENDIX m 


REFERENCES 


Arnold, C. P., 1977: Tropical Cyclone Cloud 
and Intensity Relationships. Dept of Atmos. 
Sci. Paper No. 277, Colorado State Univer¬ 
sity, Pt. Cell Ins. Co, 155 pp. 

Atkinson, G. D., and Holliday, c. R., 1977: 
Tropical Cyclone Minimum Sea Level Pressure - 
Maximum Sustained wind Relationship for West¬ 
ern North Pacific. Monthly Weather Review , 
Vol. 105, No. 4, pp. 421-27 (also FLEWEACEN 
TECH NOTE: JTWC 75-1). 

Brand, S., 1968: Interaction of Binary Trop¬ 
ical Cyclones of the Western North Pacific 
Ocean. HAVWEARSCHFAC TECH REPORT No. 26-68. 

Brand, S., and Blelloch, J. W., 1973: 

Changes in Characteristics of Typhoons Cros¬ 
sing the Island of Taiwan. ENVPREDRSCHFAC 
Technical Paper No. 8-73, 21 pp. 

Dvorak, V. F., 1973: A Technique for the 
Analysis and Forecasting of Tropical Cy¬ 
clone Intensities from Satellite Pictures, 
NOAA TM NESS 45, 19 pp. 

Guard, C. P., 1979: The Intensity of Recur¬ 
ving Western North Pacific Tropical Cyclones: 
A New Look. Unpublished, 33 pp. (available 
from NAVOCEANCOMCEN/JTWC, COMNAVMAR, Box 17, 
FPO SF 96630). 


Harrison, E. J., 1975: Forecast Verifica¬ 
tion as a Function of Reconnaissance Plat¬ 
form. FLEWEACEN TECH NOTE: JTW 75-2, 16 pp. 


Holliday, C. R., 197*: Double Intensifica¬ 
tion of Typhoon Gloria, 15 4 and a Brief 
Review of Similar Occurrences. FLEWEACEN 
TECH NOTE: JTWC 76-1, 16 pp. 

Ranage, C. S., 1971: Monsoon Meteorology . 
Academic Press, 253 pp. 

Riehl, H., 1971: Intensity of Recurving Ty¬ 
phoons, NAVKEASERSCHFAC Technical Paper No. 
3-71, 11 pp. 

Sadler, J. C., 1976: Tropical Cyclone Ini¬ 
tiation by the Tropical Upper Tropospheric 
Trough, NAVENVPREDRSCHFAC Technical Paper No. 
2-76, 103 pp. 

Sikora, C. R., 1C76: A Reevaluation of the 
Changes in Speed and Intensity of Tropical 
Cyclones Crossing the Philippines, FLEWEACEN 
TEC). NOTE: JTWC 76-2, 11 pp. 


. . . . . * . . .....* . . ... . ., 










APPENDIX m 


PAST ANNUAL TYPHOON REPORTS 


Copies of past Annual Typhoon Reports 
can be obtained through the: 


National Technical Information Service 
5285 Port Royal Road 
Springfield, Virginia 22161 

Refer to the following acquisition numbers 
when ordering: 


YEAR ACQUISITION NUMBER 


1959 

AD 

786147 

1960 

AD 

786148 

1961 

Ad 

786149 

1962 

AD 

786128 

1963 

AD 

786208 

1964 

AD 

786209 

1965 

AD 

786210 

1966 

AD 

785891 

1967 

AD 

785344 

1968 

AD 

785251 

1969 

AD 

785178 

1970 

AD 

785252 

1971 

AD 

768333 

1972 

AD 

768334 

1973 

AD 

777093 

1974 

AD 

010271 

1975 

AD 

A023601 

1976 

AD 

A038484 

1977 

Ah 

A0S5512 

1978 

AD 

A070904 

1979 

AD 

A082071 



















DISTRIBUTION 


Arcwc (2) 

APGI./LYU (2) 
af keaceh Taiwan (3) 

AMERICAN INST OF TAIWAN (1) 
AWIUCAN STATISTICS INDEX (1) 
ARRS/CC !2) 

AWS/DNT (5) 

AWS/DOR (5) 

null OF MET, BRISBANE (2) 

BUR OF MET, MELBOURNE (4) 

BUR OF MET, PERTH (1) 

CATHOLIC UNIVERSITY OF AMERICA (2) 
CENWEABUR TAIWAN (3) 

CINCPAC (2) 

CIHCPACAT/DOW (I) 

CINCPACFLT (5) 

CIUDAD uNIV, MEXICO (1) 

CIVIL DEFENSE, GUAM (3) 

CIVIL DEFENSE, SAIPAN (6) 

OHO WASHINGTON DC (1) 

CNOC (2) 

COLORADO STATE UNIV 53) 

COLORADO STATE UN1V (LIBR) < 1) 
COMFAIRECONRON ONE (VQ-1! (3) 
COMLOGSUPFORSEVESTHFLT (1) 

COMAAVAIRSYSCOM (1) 
COMNAVFACENGCOMPACDIV {II 
COMNAVMARIANAS (2) 

COMNAVSURFPAC (2) 

COMP AT3EC0NF0RS EVEN Til FLT (1) 
CCMPHIBCRU ONE (1) 

COMSC ti) 

COMSEV1UTHFLT (2) 

COMSUBG.W SEVEN (1) 

COMTHIRD r LT (1) 

COMUSNAVrHIL (1) 

DDC, VA (I) 

DEPT OF AIR FORCE (1) 

DET 2, IKK (2) 

DET 2. 7WK (1) 

DET 4, 1WW (2) 

OET 4, HO AWS (2) 

DET 5, 1KW (I) 

DET 8. 30WS (2) 

DET 10, 30WS (1) 

DET 15, 30WS (1) 

DET 17, 30WS !1) 

DET 18, 30WS (1) 

ENVSCISUPGRU (1) 

FAA, GUAM (5) 

FLENUMOCEANCEN MONTEREY (2) 

FLORIDA STATE UHIV TALLAHASSEE (2) 
GEOLOGICAL SURVEY, GUAM (2) 
GOVENOR OF GUAM (4) 

GUAM PUBLIC LIBRARY (5) 

INDIA MET DEPT (3) 

INST OF PHYSICS, TAIWAN (2) 

JAPAN MET AGENCY (3) 

JASDF, TOKYO (2) 

LOS ANGELES PUBLIC LIBR (2) 

MAC/HO, IL (2) 

MARINERS WEATHER LOG (1) 

MASS INSTI OF TECH (I) 

XCAS FUTENMA {!) 

MCAS IWAKUNI (2) 

MCAS KANEOHE BAY (1) 

HET DEPT BANGKOK (1) 

MET RESEARCH INST LIBR, TOKYO (2) 
MET SOC OF NSW, AUST (1) 

NASA GREENBELT, KD (4) 

NAT CUM CNTR, NC (I). 

NAT WEA ASSOCIATION (1) 

NATWEASERV FOROFF, HONOLULU (2) 
NATEASERV PACREG (2) 

NAVAL ACADEMY 52) 


NAVEASTOCEANCEN, NORFOLK (1) 

NAVHISTCEN (1) 

NAVOCEANCOMCEN, RCTA (1) 

NAVOCEANCOMFAC, JACKSONVILLE (1) 
NAVOCEANCOMFAC, YOKOSUKA 53) 
NAVPOLAROCEANC'-"', SUITLAND (I) 
NAVWESTOCEANCEN, PEARL HARBOR (2) 

NCBC (1) 

NEPRF (8) 

NESS/SFSS (1) 

NHC, NOAA (3) 

NOAA/EDS CORAL GABLES, FL (4) 

NOAA/ERL RX9 ROCKVILLE, MD (1) 
NOAA/HYDROLOGY BR SILVER SPRINGS, MD (!) 
NOAA/LIBRARY ROCKVILLE, MD (1) 

NOAA/NESS WASHINGTON DC (2) 

NOAA/PMEL SEATTLE. WA (2) 

NOCD, AGANA (3) 

NOCD, ASHEVILLE (1> 

NOCD, ATS'JGI (1) 

NOCD, BARBERS POINT (1) 

NOCD, CUBI POINT (1) 

NOCD, KADENA (2) 

NOCD, MISAWA (2) 

NPGS DEPT OF MET (3) 

NPGS LIBR (11 

OCEAN ROUTES INC, CA (2) 

OCEANO SERVICES INC, CA (1) 

OKINAWA HET OBS 51) 

OLG/HQ AWS (1) 

PACAF/DOS (1) 

PAGASA RP (3) 

ROYAL OBSERVATORY HONG KONG 55) 

STARS ASD STRIPES (1) 

TAIWAN UNIV 53) 

TEXAS AIM UNIV 51) 

TTPI, SAIPAN 58) 

TYPHOON COM SECR, MANILA (I) 

UNIV OF CHICAGO 51) 

UNIV OF GUAM (2) 

UNIV OF HAWAII DEPT OF MET (3) 

UNIV OF HAWAII LIBR 51) 

UNIV OF ILLINOIS AT URBAHA-CIIAMPAICN 51) 
UNIV OF MEXICO 51) 

UNIV OF RP (2) 

UNIV OF WASHINGTON 51) 

UNSECDEF, PENTAGON (1} 

USS BELLEAUKOOD 5LHA-3) (I) 

U C S BLUE RIDGE 51) 

USS CONSTELLATION 52) 

USS CORAL SEA 51) 

USS ENTERPRISE (I) 

USS KITTY’ HAWK 51) 

USS LONG BEACH (2) 

USS NEW ORLEANS (2) 

USS OKINAWA 51) 

USS RANGER (2) 

USS TARAWA 51) 

USS TRIPOLI tl) 

WEA SEKV MET OBS, AGANA 52) 

WORLD HEATHTR BLDG LIBS (1) 

1WW/DON 5o) 

3AD/D0X 51) 

3KW/DNC 51) 

SWW/BSC 51) 

17 WS/KE (1) 

30WSQ (3) 

34 AWF, 920 WRG 51) 

41 RWRK 52) 

43SW/OI (1) 

54WRS 53) 

2350 TCHTG 51) 















UNCLASSIFIED _ 

SECURITY CLASSIFICATION OF THIS PAGE (Phen Dot* Entotod) 


REPORT DOCUMENTATION PAGE 

READ INSTRUCTIONS 

BEFORE COMPLETING FORM 

'■ REPORT NUMBER 2. GOVT ACCESSION NO. 

Annual Tropical A K A. Ad 

Cvclone Report 1980 fi fl Of 

3. RECIPIENT'S CATALOG NUMBER 

P U9 

4. TITLE (mnd Subtitle) 

ANNUAL TROPICAL CYCLONE REPORT l98j/» / 

s. type of report a period covered 

Annual (JAN-DEC 1980) 

S. performing org. report number 

7. AUTHOR'S} - --— - - ----- — 

•• CONTRACT OR GRANT NUMBER^*} 

■(BgJU 

9. PERFORMING ORGANIZATION NAME AND ADDRESS 

U. S. Naval Oceanography Command Center/Joint 
Typhoon Warning Center (NAVOCEANCOMCEN/JTKC) 

FPO San Francisco 96630 

10. program element, project, task 

A**EA A WORK UNIT NUMBERS 

11. CONTROLLING OFFICE NAME AND ADDRESS 

U. S. Naval Ocenography Command Center/Joint . //) 
Typhoon Warning Center (NAVOCEANCOMCEN/JTKC) 

FPO San Francisco 96630 

JijJEPORT OATE 

198 / 

**** PAGES 

<«. MONITORING AGENCY NAME A ADDRESS^// dlIterant tram Control imp Olllao) 

f) t, - Ti n- 

IS. SECURITY CLASS, (at thlo report) 

UNCLASSIFIED 

IS*. OECLASSIFI CATION/DOWN GRADING 

SCHEDULE 


1*. DISTRIBUTION STATEMENT (ol Olio Report) 


Approved for public release; distribution unlimited. 


17. DISTRIBUTION STATEMENT (ol tho oketroct entered la Block 30. II OlllotOBI ha Report) 


i«. Supplementary notes 


119. KEY WORDS (Confirm* on mid* it n*c*mm*rr and Identity by block numb*c) i 

Tropical cyclones 

Tropical storms 

Tropical cyclone forecasting 

Tropical depressions 

Tropical cyclone research 

Typhoons 

Tropical cyclone steering model 

Meteorological satellite 

Tropical cyclone fix data 

_Aircraft reconnaissance_ 


ABSTRACT (Coatlnuo an torero* old* II nocoooory mtd Identify by ktock nttmborj 


|Annual publication summarising the tropical cyclone season in the western 
North Pacific, Bay of Bengal and Arabian Sea. A brief narrative is given 
on each significant tropical cyclone including the best track. All recon¬ 
naissance data used to construct the best tracks are provided. Forecast 
verification data and statistics for the JTKC are summarized. Research 


efforts at the JTKC and NEPRF are discussed briefly. 


A 

L 1 

DD 1 jSIPn 1473 edition of 1 NOV *s is obsolete UNCLASS 

S/N fttnT.niA.Acni .... . 

Ified 


SECURITY CLASSIFICATION of TNIS PACE (Rkoa Beta Baland) 



185